中考数学反比例函数综合经典题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学反比例函数综合经典题附答案

一、反比例函数

1.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.

(1)求一次函数和反比例函数的解析式;

(2)求△ABH面积.

【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,

∴CO=2,即C(0,2),

把C(0,2),D(﹣1,0)代入y=ax+b可得,

,解得,

∴一次函数解析式为y=2x+2,

∵点A的横坐标是1,

∴当x=1时,y=4,即A(1,4),

把A(1,4)代入反比例函数y= ,可得k=4,

∴反比例函数解析式为y=

(2)解:解方程组,可得或,

∴B(﹣2,﹣2),

又∵A(1,4),BH⊥y轴,

∴△ABH面积= ×2×(4+2)=6.

【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.

2.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .

(1)求这两个函数的解析式;

(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,

则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,

∴xy=﹣3,

又∵y= ,

即xy=k,

∴k=﹣3.

∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;

(2)解:由y=﹣x+2,

令x=0,得y=2.

∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),

A、C两点坐标满足

∴交点A为(﹣1,3),C为(3,﹣1),

∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.

【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即

可求出.

3.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,

OE=2.

(1)求反比例函数的解析式;

(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.

【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.

∵CE⊥x轴,

∴∠CEB=90°.

在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,

∴CE=BE•tan∠ABO=6× =3,

结合函数图象可知点C的坐标为(﹣2,3).

∵点C在反比例函数y= 的图象上,

∴m=﹣2×3=﹣6,

∴反比例函数的解析式为y=﹣

(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).

在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,

∴OA=OB•tan∠ABO=4× =2.

∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .

∵点D在反比例函数y=﹣第四象限的图象上,

∴S△DFO= ×|﹣6|=3.

∵S△BAF=4S△DFO,

∴4+ =4×3,

解得:n= ,

经验证,n= 是分式方程4+ =4×3的解,

∴点D的坐标为(,﹣4).

【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的

图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.

4.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。对于任意正实

数a、b,可作如下变形a+b= = - + = + ,

又∵≥0,∴ + ≥0+ ,即≥ .

(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.

(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.

(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

【答案】(1)a=b

(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .

当D与O重合时或a=b时,等式成立.

(3)解: ,

当DE最小时S四边形ADFE最小.

过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,

所以DE最小值为8,此时S四边形ADFE= (4+3)=28.

【解析】【分析】(1)根据题中的例子即可直接得出结论。

(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。

(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。

5.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉

相关文档
最新文档