第六章葡萄糖

合集下载

第六章糖代谢

第六章糖代谢
硫辛酸, CoASH, Mg 2+
42
College of Life Sciences
(二)三羧酸循环
(tricarboxylic acid cycle, TCA 环)
(柠檬酸循环、Krebs环) Kerbs, 1953年诺贝尔化学奖
部位:线粒体基质
43
College of Life Sciences
3-P-甘油醛 磷酸二羟丙酮
23
College of Life Sciences
(一)糖酵解途径
贮能阶段: 后5步
(2)3- 磷酸甘油醛 (2)丙酮酸
☆生成 2 NADH(H) + 4ATP
24
College of Life Sciences
(一)糖酵解途径
6
3-P-甘油醛脱氢酶
3-P-甘油醛
磷酸化酶
糖原脱支酶催化支链上的3个葡萄糖残基转移到糖原 分子的一个游离的4′端上,形成一个新的-1,4糖苷 G-1-P 键,而脱支酶催化转移后剩下的通过-1,6糖苷键连 接的葡萄糖残基的水解,释放出一分子的葡萄糖。
转移酶
葡萄糖-1-磷酸在磷酸葡萄糖变位酶的作用下可以转 去分支酶 换为葡萄糖-6-磷酸。
45
College of Life Sciences
(二)三羧酸循环
3 异柠檬酸氧化生成-酮戊二酸
蔗糖
磷酸化酶
1-磷酸葡萄糖+果糖
11
College of Life Sciences
第二节 糖的分解代谢
糖分解的主要途径:
☆ ☆
在无氧条件下进行的无氧分解 在有氧条件下进行的有氧氧化
一、糖的无氧分解
• 在无氧情况下葡萄糖进行分解,生成2分子丙酮酸

第六章 糖代谢

第六章 糖代谢

CH 2OH
H H
OH HO
OH
H OH
H OH
葡萄糖
ATP ADP
己糖激酶; 葡萄糖激酶(肝)
CH 2O
P
H H
OH HO
OH
H OH
H OH
6-磷酸葡萄糖
2. 6-磷酸葡萄糖转变成1-磷酸葡萄糖
CH 2O
P
H H
OH HO
OH
H OH
H OH
6-磷酸葡萄糖
CH 2OH
H
OH
H
磷酸葡萄糖变位酶
OH HO
H H
O H
OH HO
H OH
H OH
6-磷酸葡萄糖
2-磷酸甘油酸
P O CH 2
CH2OH
O
Mg2+
H HO
己糖异构酶 H
OH
OH H
6-磷酸果糖
(fructose-6-phosphate, F-6-P)
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
3. 6-磷酸果糖转变为1,6-双磷酸果糖
葡萄糖
CH 2OH
H H
OH HO
OH
H OH
H OH
CH 2OH
H H
OH HO
OH
H OH
H OH

CH 2OH
H H
OH
CH 2OH
H H
OH
OH HO
?H
H
O
OH
α-1,4-糖苷键
OH
H
H OH
OH
糖原合成特点:
1、葡萄糖活化 2、需要糖原引物

第六章葡萄糖

第六章葡萄糖
生产含水α-葡萄糖在50℃ 以下冷却结晶,生产无水 α-和无水β-葡萄糖在较 高温度用真空罐蒸发结晶。
实用文档
在葡萄糖工业的发展初期,不了解葡萄糖溶 液中各异构体的平衡关系和有关规律性,曾 误认为与蔗糖相似,试用蔗糖结晶的方法, 遇到很大的困难。蔗糖溶液中不含有异构体, 情况简单得多。以后研究了葡萄糖溶液中的 平衡体系、结晶规律,于1920年以后确定了 目前通用的工艺,葡萄糖生产才得到大发展。
实用文档
工业上生产的葡萄糖产品除这3种外,还有 “全糖”,为省掉结晶工序由酶法糖浆直接 制成的产品。
酶法所得淀粉糖化液的纯度高,甜味纯正, 能够喷雾干燥直接制成颗粒状全糖,也可凝 固成块状,再粉碎成粉末状全糖。
这种产品的生产工艺简单,时间快,成本较 低,虽然质量不及结晶葡萄糖,但适于多种 食品工业和化学工业应用。
表中数据是纯度90%的酸法淀粉糖化液在40℃的试 验结果。过饱和度虽能促进结晶速度,但工业生产 却不能用过高的过饱和度,因为结晶速度快,易于 产生伪晶,颗粒细小,分蜜困难,也影响产品的质 量。
由酸法糖化液结晶,一般保持过饱和度在1.15 ~ 1.25之间,母液再结晶,因为纯度较低,一般保持 稍高的过饱和度,在1.20~1.40之间。
第六章 葡 萄 糖
工业上生产的结晶葡萄糖有含水α-葡萄糖、 无水α-葡萄糖和无水β-葡萄糖3种。前1种 的生产最为普遍,产量也最大,后两种的产 量较小,α-葡萄糖现在很少生产。这3种产 品在若干性质方面存在差别,简单地表示于 表7-1。
实用文档
实用文档
含水α-葡萄糖含有一个分子水,理论含水量为9.1%, 工业上生产一般干燥到含水量约 8.5%。
实用文档
葡萄糖的溶解度随温 度的升高而增加,见 表7-2,表中数据都是 指平衡状态的溶解度。

第六章 糖代谢

第六章 糖代谢

内 容糖第六章 糖的化学和代谢糖的化学 糖代谢 糖的消化与吸收 糖的分解代谢 糖原的合成与分解糖的化学一、糖的概念糖是多羟基醛或多 羟基酮及其聚合物和 衍生物的总称。

P5二、 糖的分布生物界中含糖的比例90% 80% 70% 60% 50% 40% 30% 20% 10% 80%30% 10% 2%0%植物人和动物微生物微生物三、 糖的生物学作用1. 糖是人和动物的主要能源物质 2. 糖类还具有结构功能 3. 糖具有复杂的多方面生物活性与功能四 、糖的分类1. 2. 3.单糖 寡糖 多糖1(一) 单糖概念: 不能被水解成更小分子的糖称为单糖。

特点: 单糖是糖类物质的基本结构单位。

种类: 丙糖、丁糖、戊糖、己糖、庚糖丙糖:甘油醛和二羟丙酮甘油醛二羟丙酮丁糖戊糖赤藓糖赤藓酮糖D-核糖D-核酮糖D-木糖D-木酮糖己糖:葡萄糖和果糖葡萄糖的两种形式D-葡萄糖(G)β -D-葡萄糖 α-D-葡萄糖2D - 果糖(F)(二)寡 糖概念: 由单糖缩合而成的短链结构 (一般含2~6个单糖分子) 特点: 二糖最为广泛葡萄糖 半乳糖 果糖环α-D-果糖 麦芽糖 蔗糖 乳糖(三) 多 糖许多单糖分子缩合而成的长链结构 1. 多糖的分类(1)按照来源分类 (2)按生理功能分类 植物多糖 动物多糖 微生物多糖 海洋生物多糖 储存多糖 结构多糖( 3 )多糖按照其组成成分的分类多糖同聚多糖 杂聚多糖(均一多糖) (不均一多糖)粘多糖结合糖糖蛋白蛋白聚糖糖脂脂多糖O连N连鞘糖脂甘油糖脂 萜醇衍生磷酸多类固醇 衍生同聚多糖与杂聚多糖同聚多糖 杂聚多糖2. 重要多糖的化学结构与生理功能(1)淀粉• 是高等植物的贮存多糖 • 直链淀粉 支链淀粉 α-1,4糖苷键 α-1,6糖苷键α-1,4糖苷键 直链结构 支链结构 直链结构 支链结构直链淀粉3(2)糖 原 支链淀粉• 糖原是动物 体内的贮存 多糖,主要α-1,6糖苷键存在肝及肌 肉中。

第六章糖代谢

第六章糖代谢

磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
主要是从丙酮酸生成葡萄糖的具体 反应过程。
糖异生与糖酵解的多数反应是共有 的、可逆的;
糖酵解中有3个不可逆反应,在糖异 生中须由另外的反应和酶代替。
5
(一)丙酮酸转变成磷酸烯醇式丙酮酸
丙酮酸
生物素
丙酮酸羧化酶
CO2 ATP
(线粒体)
ADP+Pi
草酰乙酸
磷酸烯醇式丙酮酸
第六章 糖代谢
Metabolism of Carbohydrates
内容提纲
概述 糖的分解代谢
糖的无氧氧化 糖的有氧氧化 磷酸戊糖途径
糖原的合成与分解 糖异生作用 血糖及其调节
2
第六节 糖异生
Gluconeogenesis
糖异生途径 糖异生的调节 生理意义
3
概念 糖异生(gluconeogenesis)是指从非糖化合
果糖二磷酸酶-1 Pi
1,6-二磷酸果糖 6-磷酸果糖
向反应,这种互变
ADP 6-磷酸果糖激酶-1 ATP
循环称之为底物循
ADP+Pi
GTP 磷酸烯醇式丙
丙酮酸羧化酶
环(substratecycle)。 CO2+ATP
草酰乙酸
酮酸羧激酶 GDP+Pi
丙酮酸
PEP +CO2
ATP 丙酮酸激酶 ADP
14
18


质 激


胰高血糖素 —
激素对糖异生和糖酵解的调节作用
19
三、糖异生的生理意义
(一)饥饿情况下维持血糖浓度恒定(最主要功 能) (二)补充或恢复肝糖原储备

医学生物化学(第六章)糖 代 谢

医学生物化学(第六章)糖  代  谢

46
F-2,6-BP的生成与作用 * 生成:
(PFK-2)
(F-6-P)
(F-2,6-BP)
* 作用:促进F-1,6-BP生成
图6-5
47
PFK-2是一双功能酶:
PFK-2活性(使F-2,6-BP↑) 具有
2,6-二磷酸果糖酶2活性(使F-2,6-BP↓)
(PFK-2)
(F-6-P)
(F-2,6-BP)
TCA循环
56
图6-3 糖代谢三条途径间的关系
①无氧酵解 ②磷酸戊糖途径 ③有氧氧化
57
(一) 葡萄糖
丙酮酸
* 胞浆内进行
* 过程同糖酵解, 消耗2ATP
* 生成4ATP
* 生成2 NADH + H+
(3-磷酸甘油醛 (×2)
1,3-二磷酸甘油酸)
58
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
四个阶段:
I.己糖磷酸化(Glc
F-1,6P)
II.
(×1)
磷酸己糖
裂解
(×2)
磷酸丙糖
(×2) 氧化 (×2)
III. 磷酸丙糖 丙酮酸
IV.
(×2)
丙酮酸
还原乳(×酸2)(无氧)
18
(×2) (×2)
(×2)
19
1.己糖磷酸化(Glc
F-1,6P)
(1) Glc/Gn磷酸化为G-6-P
第一次磷酸化反应
a. 神经系统:
下丘脑和自主神经 调节 激素分泌
b. 激素:
(表6-1)
c. 组织器官: 肝脏最主要
9
激素对血糖浓度的调节
相互协同/拮抗

6第六章糖代谢137030032

6第六章糖代谢137030032
(2)R酶(脱支酶):水解糊精和支链淀粉外围的α - 1.6糖苷键 (3)麦芽糖酶(α -葡萄糖苷酶):彻底分解麦芽糖
2、淀粉磷酸解:在淀粉磷酸化酶作用下生成G-1-P 淀粉 + nH3PO4
淀粉磷酸化酶
n G-1-P
淀粉磷酸化酶:从还原端开始逐个水解α - 1.4糖苷 键 G-1-P 生成 G 还需另外两种酶。
三羧酸循环(TCA)线粒体基质中
TCA生化过程:分两段 (1)准备阶段:丙酮酸
→ 乙酰CoA
(2)TCA环的运转:乙酰CoA逐步脱氢氧化,生成CO2和还原态氢
一、准备阶段:丙酮酸 乙酰-CoA 细胞质中,EMP形成的丙酮酸有氧进入线粒体,在 丙酮酸脱氢酶系催化下:(见P214总反应式)
丙酮酸+NAD++HSCoA→乙酰CoA+NADH+H++CO2
糖生物学功能:
结构、能源、原料,活性物质
糖:
多羟基醛/酮及衍生物
可水解为多羟基醛/酮或它们的衍生物的物质
糖的种类:单糖、寡糖、多糖和复合糖
单糖:
1、3C糖(丙糖): 甘油醛(GAP)和二羟丙酮 2、4C糖(丁糖): 赤藓糖。如:E-4-P 3、5C糖(戊糖): 核糖、核酮糖(R)、木酮糖(X)。 4、6C糖(已糖):葡萄糖(G)、果糖(F)、半乳糖。 5、7C糖( 庚糖):景天庚酮糖(S)
线粒体基质中
2、三羧酸循环定义:氧化乙酰CoA是一个循环过程,反 应从乙酰CoA与草酰乙酸缩合成柠檬酸开始,经过一系列 反应,再生草酰乙酸。由于循环中的物质大多数是三羧 酸和二羧酸,所以称为三羧酸循环
二、三羧酸循环(柠檬酸循环)
3、三羧酸循环反应历程:
循环共有8步反应,五大步骤。 ①、柠檬酸合成: 2C + 4C 6C 由柠檬酸合成酶催化,反应见P216 乙酰辅酶A中的高能硫酯键分解提供能量。该反应不可逆,是TCA 的一个调节位点

生物化学第六章 糖类代谢

生物化学第六章 糖类代谢
O
H
OH
HO
H
HO
H
H
OH
OH
CH2OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
2. 寡糖 能水解生成2-20个分子单糖的糖,各单
糖之间借脱水缩合的糖苷键相连。
常见的几种二糖有
麦芽糖 (maltose) 葡萄糖 — 葡萄糖 还原糖
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
烯醇化酶
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
催化此反应的酶是烯醇化酶,它在结合底物前必 须先结合2价阳离子如Mg2+、Mn2+,形成复合物, 才能表现出活性。该酶的相对分子量为85000,氟 化物是该酶强烈的抑制剂,原因是氟与Mg2+和无 机磷酸结合形成一个复合物,取代了酶分子上 Mg2+的位置,从而使酶失活。
Glu
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑥3-磷酸甘油醛氧化成1,3-二磷酸甘油酸
生成1分子 NADH+H+

动物生物化学 第六章 糖的代谢

动物生物化学  第六章  糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H

第六章 糖代谢

第六章 糖代谢

ATP
CH2
O
P
磷酸甘油酸 变位酶
COOH C CH3 O
丙酮酸激酶
2+、 Mg2+、K+
COOH C O P
烯醇化酶
COOH H C CH2 O OH P
ATP
ADP
CH2
H2O
将底物的高能磷酸基直接转移给ADP生成ATP,这种ADP 将底物的高能磷酸基直接转移给ADP生成ATP,这种ADP ADP生成ATP 或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直 接相偶联的反应过程称为底物水平磷酸化。 接相偶联的反应过程称为底物水平磷酸化。 底物水平磷酸化
HO
HO
P
O
CH2 O H H OH HO H
CH2 OH
O
P
P
O
CH2 O H H OH HO H
CH2OH OH
6-磷酸果糖激酶1 磷酸果糖激酶1 Mg2 + ADP ATP
哺乳动物体内已发现4种己糖激酶同工酶,分布于不同的组 哺乳动物体内已发现4种己糖激酶同工酶, 织中。其中Ⅳ型只存在于肝细胞中, 织中。其中Ⅳ型只存在于肝细胞中,对葡萄糖有高度的专 一性,又称为葡萄糖激酶。 一性,又称为葡萄糖激酶。 葡萄糖激酶 葡萄糖激酶的Km值比其他己糖激酶高,且受激素调控。 葡萄糖激酶的Km值比其他己糖激酶高,且受激素调控。 Km值比其他己糖激酶高
丙酮酸脱氢酶复合体
乙酰CoA 乙酰CoA + NADH + H+ + CO2
O COOH C CH3 O TPP CH3C S HS (CH2)4COOH HS CoA O
③ ①
丙酮酸脱氢酶 OH
CH3 HS HS

《生化》第六章糖代谢

《生化》第六章糖代谢
O=C O
P
ATP ADP
ADP
ATP
COOH C OH
C
OH
磷酸甘油酸激酶
F-1,6-2P
CH2 O
磷酸二 羟丙酮
NAD+ NADH+H+
P
CH2 O
P
3-磷酸 甘油醛
1,3-二磷酸 甘油酸
3-磷酸甘油酸
磷酸甘油酸激酶(phosphoglycerate kinase)
ATP
1,3-二磷酸甘油酸
ADP
G-1-P
二、单糖的氧化分解 主要指G,经多糖降解后生成的G,吸收进 入细胞进行氧化分解,从而为机体提供能量。机 体几乎所有的组织的细胞中,都能进行糖的分解 以获能。
G进行氧化分解供能的途径主要有三条
糖的无氧分解(酵解)
糖的有氧分解 糖的磷酸戊糖支路分解
1.糖酵解的反应过程
(1)糖酵解(glycolysis)的定义
第二阶段
由丙酮酸转变成乳酸。
Glu
ATP ADP
(一)葡萄糖分解成丙酮酸
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
G-6-P F-6-P
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
HO CH2 H HO O H OH H H H OH
P O CH2
ATP ADP
H HO O H OH H H H OH
门静脉
肝脏
GLUT
各种组织细胞
体循环
三、糖代谢的概况
糖原
糖原合成 肝糖原分解
酵解途径
ATP
有氧
核糖 磷酸戊糖途径 +
NADPH+H+

6第六章3 糖类代谢

6第六章3 糖类代谢

1
戊糖磷酸途径的发现


向供研究糖酵解使用的组织匀浆中添加碘乙酸(甘油醛-3磷酸脱氢酶的抑制剂)和氟化钠(烯醇化酶的抑制剂)等糖 酵解途径的抑制剂,发现葡萄糖的利用仍在继续。这个结果 说明葡萄糖的利用除了经过糖酵解途径外,还有其他途径。 1931年,Otto Warburg及其同事,还有Fritz Lipman,发现 了葡萄糖-6-磷酸脱氢酶和6-磷酸葡糖酸脱氢酶,这两种酶催 化的反应都可以利用葡萄糖,他们还发现NADP+是这两种酶 的辅酶。通过对这条途径的详细研究,发现葡萄糖转变成了 多种五碳糖、七碳糖、四碳糖、三碳糖、六碳糖的磷酸酯。 在这条途径中,有CO2的释放和NADPH的合成,但没有 ATP的合成。
ADP 己糖激酶
葡萄糖-6-磷酸
磷酸葡萄 糖变位酶
葡萄糖-1-磷酸
UTP
PPi Gn UDP
UDPG-焦磷酸化酶
UDPG
糖原合成酶
直链葡萄糖
分支酶
糖原
27
四、糖异生作用 ( gluconeogenesis)

某些非糖物质(如乳酸、丙酮酸、甘油、或某些 氨基酸)在肝脏中可转变为糖(G或糖原),这 个过程称糖异生作用。此作用主要在肝脏进行, 也可在肾脏发生。各物质转变成糖的具体途径虽 然有所不同,但都是通过先转变为糖酵解中的某 一中间产物,然后再转变为糖。
2
发生于胞液中,是一条需氧的代谢途径,在 肝脏、骨髓、脂肪组织中较活跃。 此途径分为氧化阶段和非氧化阶段两个阶段。

3
葡萄糖-6-磷酸 脱氢酶
内酯酶
葡萄糖-6-磷酸
6-磷酸葡萄糖酸-δ-内酯
6-磷酸葡萄糖酸 脱氢酶
戊 的糖 氧磷 化酸 阶途 段径

第六章 糖代谢

第六章     糖代谢

2,32,3-二磷酸甘油酸支路
COO ~ P COCO-OH CH2O- P
ADP
磷酸甘油酸变位酶
ห้องสมุดไป่ตู้
COOH
磷酸甘油酸激酶
ATP COOH COCO-OH CH2O- P 2,32,3-二磷酸甘油酸磷酸酶 Pi H2O
CH-O- P CHCH2O- P
红细胞中含有较高浓度的2,3-二磷酸甘油酸, 红细胞中含有较高浓度的2,3-二磷酸甘油酸,与血红蛋 中含有较高浓度的2,3 白结合,降低血红蛋白与氧的亲和力, 白结合,降低血红蛋白与氧的亲和力,促进氧合血红蛋白 释放氧,保证组织细胞对氧的需要。 释放氧,保证组织细胞对氧的需要。
COOH CH O CH2 OH
2-磷酸甘油酸
COOH P
烯醇化酶 H2O
C O~ P CH2
磷酸烯醇式丙酮酸
(5)丙酮酸的生成
在丙酮酸激酶的催化下,磷酸烯醇式丙酮酸转 丙酮酸激酶的催化下, 的催化下 变为烯醇式丙酮酸,后者自发地转变为丙酮酸。 变为烯醇式丙酮酸,后者自发地转变为丙酮酸。 这是酵解途径中第二次底物水平磷酸化反应 第二次底物水平磷酸化反应。 这是酵解途径中第二次底物水平磷酸化反应。 丙酮酸激酶为第三个限速酶 丙酮酸激酶为第三个限速酶
二、糖的有氧氧化
(一)有氧氧化的概念
葡萄糖在有氧条件下彻底分解生成 葡萄糖在有氧条件下彻底分解生成 有氧 并释放大量能量的过程。 大量能量的过程 CO2和H20并释放大量能量的过程。
磷酸葡萄糖转化为6 (2) 6-磷酸葡萄糖转化为6-磷酸果糖
参与。 为磷酸已糖异构酶催化的可逆反应,需Mg2+参与。 磷酸已糖异构酶催化的可逆反应, 催化的可逆反应
P
O CH2 O H H H OH H OH OH H OH

(优选)第六章葡萄糖

(优选)第六章葡萄糖
不同异构体的反应性质也存在差别。例如,葡萄糖 氧化酶能氧化葡萄糖成葡萄糖酸,但对β-异构体的 氧化速度大大快于α-异构体。β-异构体的氧化速度 为100。α-异构体只有0.64。
工业上生产的葡萄糖产品除这3种外,还有 “全糖”,为省掉结晶工序由酶法糖浆直接 制成的产品。
酶法所得淀粉糖化液的纯度高,甜味纯正, 能够喷雾干燥直接制成颗粒状全糖,也可凝 固成块状,再粉碎成粉末状全糖。
这 3种异构体是呈动态平衡状态存在,α-和 件异构体的比例为36% 和64%。
这种平衡比例受浓度和温度的影响很小。
异构体转变的速度受温度、 H+离子及OH-离 子浓度影响.
温度上升则速度快,温度每上升10℃,速度 增快2.5倍;
在pH3-7之间转变速度低,在低于或高于这 个 pH 范围,表示如 图
酶法葡萄糖生产工艺流程表示如下:
第一节 葡萄糖水溶液的平衡体系
在淀粉分子中,葡萄糖单位是呈α-构型存在, 经酸催化水解,生成的葡萄糖是α-构型,但 在水溶液中,向β-异构体转变,最后达到平 衡。这两种异构体呈动态平衡状态存在。
应用酶法糖化工艺,使用葡萄糖酶催化水解, 生成的葡萄糖是β-构型,在酶水解的过程中 构型发生了转变,生成的β-葡萄糖在水溶液 中向α-构型转变,最后这两种异构体达到动 态平衡。无论采用酸法糖化或酶法糖化工艺,
葡萄糖的溶解度随温 度的升高而增加,见 表7-2,表中数据都是 指平衡状态的溶解度。
根据溶解度绘制的葡 萄糖溶液的相图,见 图7-1。
由溶解度和相图都可以看 出,在饱和状态下,固体 相的葡萄糖随温度的不同, 以不同的异构体存在。
在50℃以下,固体相是含 水α-葡萄糖,50℃以上是 无水α-葡萄糖,115℃以上 是无水β-葡萄糖。不同葡 萄糖异构体的生产工艺便 是根据这种性质而确定的。

生化检验第六章体液葡萄糖检验PPT课件

生化检验第六章体液葡萄糖检验PPT课件

糖尿病:
酮体形 成过多 的原因
糖摄取不足:脂肪动员 糖原贮积病:脂肪动员 碱中毒:代偿
.
26
2、酮体的生成:
糖代谢障碍 脂肪酸分解
3、酮体的测定及临床意义: (不能同时检测酮体三种成分)
测定
乙酰乙酸 丙酮
Gerhardt’s 氧化铁试验 硝普纳反应
临床意义:1、如有酮体存在,需确定酮酸中毒状态 2、酮血症的诊断对指导胰岛素治疗最有价值。
.
18
(一)高血糖症与糖尿病 1、高血糖症:空腹血浆血糖(FPG)>6.11 mmol/L(130mg/dl)
生理性:包括饮食性(高糖 饮食)或情感性(情绪紧张, 肾上腺分泌增加)
病理性:见于糖尿病;内分泌腺(甲 状腺、肾上腺皮质或髓质、胰岛细胞 功能亢进);颅内压升高刺激血糖中 枢;呕吐、腹泻、高热等引起的脱水。
.
11
胰岛素结构:51个氨基酸残基的蛋白类激素
胰岛β细胞(核糖体)
前胰岛素原(100个氨基酸残基)
胰岛素原(86个氨基酸)
切掉4个氨基酸残基
胰岛素(51个氨基酸) 等摩尔 C肽(31个氨基酸)
有活性
无活性.12 Nhomakorabea胰岛素作用于靶细胞的机制
.
13
胰岛素的生物活性效应取决于:
1、靶细胞上胰岛素受体的绝对或相对数量
第六章 体液葡萄糖检验
.
1
本章内容概要:
第一节 概述 第二节 体液葡萄糖测定
.
2
本章教学要求:
1、掌握血糖、糖化血红蛋白、糖化血清蛋白测定的推荐方法 及临床意义,口服葡萄糖耐量试验的程序和临床应用。 2、熟悉糖尿病的实验室检测项目和诊断程序 3、了解血糖浓度的调节机制、糖代谢紊乱。。

【微生物生物学】第六章考点总结2

【微生物生物学】第六章考点总结2

【微⽣物⽣物学】第六章考点总结2微⽣物的营养要求:碳源—⽆机碳源,有机碳源;氮源—⽆机氮源,有机氮源;⽆机盐—主要元素,微量元素⽣长因⼦—维⽣素,⽣物素;⽔;能源微⽣物的六类营养要素:碳源,氮源,⽆机盐,⽣长因⼦,能源,⽔营养物质及其⽣理功能:⽔分—功能:(1)溶剂与运输介质(吸收与分泌)(2)参与细胞内⽣化反应(3)维持蛋⽩、核酸等⽣物⼤分⼦稳定的天然构象及细胞正常形态(4)⽐热⼤,控制细胞内温度变化(5)通过⽔合与脱⽔控制多亚基组成的结构,如酶、微管、鞭⽑的组装与分离碳源—有机碳源:糖类(单糖,寡糖,多糖),有机酸,醇,脂类,烃类,芳⾹族化合物⽆机碳源:⼆氧化碳,碳酸氢钠,碳酸钠—功能:构成细胞物质的主要成分(⾻架)能源(分解代谢过程中产⽣)氮源—有机氮:蛋⽩及其降解物(胨、肽、氨基酸),核酸、尿素、嘌呤、嘧啶等⽆机氮:N2,硝酸盐,铵盐—功能:提供微⽣物⽣长、繁殖所需氮素营养;合成细胞含氮化合物,能源(⾃养菌)能源—化学物质:有机、⽆机化合物辐射能:光⽆机盐—⼤量元素: P, S, K, Mg, Ca, Na微量元素(≤ 0.1mg/L): Mn, Cu, Co, Zn, Mo , Fe—功能:(1)维持⽣物⼤分⼦和细胞结构的稳定;(2)酶活性中⼼的组成部分;(3)调节细胞渗透压平衡;(4)控制细胞氧化还原电位;(5)某些⾃养微⽣物的能源⽣长因⼦—种类:维⽣素(B族为主)、⽣物素、烟酰胺、氨基酸、胺类、甾醇、嘌呤、嘧啶—功能:参与新陈代谢,促进微⽣物⽣长光能⽆机营养型:具有光合⾊素,利⽤光能并以⽔或还原态⽆机物为供氢体来同化CO2光合⾊素:主要⾊素:叶绿素,菌绿素辅助⾊素:类胡萝⼘素,藻胆素(捕获光能,强光下保护作⽤)产氧光合作⽤:利⽤光能分解⽔⽽产⽣O2,还原CO2为有机物(藻类、蓝细菌内含叶素)光能CO2+H2O———→[CH2O]+O2↑叶绿素不产氧光合作⽤:吸收光能, 以还原态⽆机硫化物(H2S)为氢或电⼦供体同化CO2(光合细菌:紫⾊细菌,绿⾊细菌等)光能CO2+2H2S——→*CH2O]+H2O+S菌绿素⽣活环境:光照,厌氧,富含有机质,H2,硫化物⾮环式光合磷酸化系统PSII→PSI:P680--P680*--Ph--Q A--Q B--Qpool--Cyt bf-P700--P700*--FeS--Fd--Fp--NAD(P)HQ B—Qpool:⾮环式电⼦流(产⽣质⼦动⼒)Cyt bf—Fd:环式电⼦流(产⽣质⼦动⼒)环式光合磷酸化系统(紫⾊细菌)P870—P870*--Bph--Q A--Q B—Qpool—Cyt bc1---Cyt c2—P870---NAD(P)HQpool---NAD(P)H:反向电⼦流(耗能)光能有机营养型:利⽤光能,以简单有机物(醇、有机酸)为供氢体同化CO2CH3光能│CO2+2CH2-CHOH——→*CH2O]+2CH3COCH3+H2O菌绿素化能⽆机营养型:通过氧化⽆机物取得能量,并以CO2为唯⼀或主要碳源1. 硝化细菌(亚硝化细菌群,硝化细菌群)2.硫(化)细菌(通过氧化还原态的⽆机硫化物(H2S、S、S2O32-、SO32-)获得能量, 同化CO2)3. 铁细菌(氧化Fe2+为Fe3+获取能量并同化CO2)4. 氢细菌(具有氢化酶,从氢的氧化获取能量,同化CO2)**区别于异养型的产氢细菌,具有氢酶,氧化氢获得能量,但不能同化CO2化能有机营养型:⼤多数微⽣物以有机物为碳源和能源腐⽣型,寄⽣型,兼性寄⽣营养类型能源供氢体基本碳源实例光能⽆机光⽆机物⼆氧化碳蓝细菌, 光合细菌光能有机光有机物⼆氧化碳红螺菌科细菌,简单有机物化能⽆机⽆机物⽆机物⼆氧化碳硝化细菌等化能有机有机物有机物有机物⼤多数细菌和真菌影响物质进⼊细胞的因素:1. 营养物质本⾝的性质(分⼦量、溶解性、电负性等);2. 微⽣物所处环境(温度、pH、离⼦强度);3. 微⽣物细胞的透过屏障(细胞壁、细胞膜、荚膜、粘液层等的孔径⼤⼩,松紧程度)微⽣物吸收营养物质的⽅式:1、膜泡运输(吞噬作⽤)—吸附期,膜伸展期,膜泡迅速形成期,附着膜泡形成期,膜泡释放期特点:1. 主要存在于原⽣动物(变形⾍)中;2. 细胞膜内陷包裹营养物,由胞外进⼊胞内;2、被动扩散—由细胞质膜内外营养物的浓度差⽽产⽣的物理扩散作⽤。

生物化学第六章糖类代谢

生物化学第六章糖类代谢

一、单糖
单糖只含有一个羰基,不能再水解为更简单 的糖。最简单的单糖是甘油醛和二羟丙酮。
D-甘油醛
二羟丙酮
含有醛基的单糖叫醛糖,如甘油醛、葡萄糖、 核糖等;
含有酮基的单糖叫酮糖,如二羟丙酮、果糖、 核酮糖等。
单糖又根据C原子数分为三、四、五、六、 七碳糖,习惯也称为丙、丁、戊、己、庚糖。 例如三碳糖也称为丙糖,六碳糖称为己糖。
图6-4 乳糖的结构
三、多糖
(一)多糖的特征
多糖是由多个单糖通过糖苷键聚合成的高分 子聚合物。单糖数目随机而不固定,所以多 糖没有固定的分子质量和确定的物理常数。 多糖是自然界存在量最大的一类有机物质。 也是人类重要的食物来源和工业原料。
多糖一般难溶于水或根本不溶于水,也不 能形成晶体,没有甜味,旋光性不明显, 化学性质比较稳定,除了在一定条件下发 生降解反应外,很难发生氧化、还原、成 苷、成酯等反应,尤其是构成动植物骨架 的多糖如纤维素、几丁质等,化学性质更 为稳定。
麦芽糖是由两分子α–D葡萄糖缩合组成,为α (14)糖苷键连接。麦芽糖保留了半缩 醛羟基,属于还原糖(图6-3)。
生物体内麦芽糖含量极少,几乎测不到(包 括动物和植物),但并非不存在。植物种 子在萌发时贮藏的淀粉水解,麦芽糖含量 略有增多,然后迅速由麦芽糖酶水解为葡 萄糖。
图6-3 麦芽糖的结构
另一种是五肽,一般是五聚甘氨酸,将两条 多糖链上的四肽侧链之间以五肽桥连接 (图6-10)。革兰氏阳性菌与革兰氏阴性 菌的肽聚糖交联方式略有不同。
溶菌酶可作用于肽聚糖的多糖链,使多糖链 断裂导致菌体吸水膨胀破裂而杀死细菌。 青霉素类抗生素可抑制肽聚糖短肽之间的 交联,无法合成完整的细胞壁而发挥抑菌 作用。
(二)麦芽糖的降解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在淀粉分子中,葡萄糖单位是呈 α- 构型存在,
应用酶法糖化工艺,使用葡萄糖酶催化水解,
生成的葡萄糖是 β- 构型,在酶水解的过程中 构型发生了转变,生成的 β- 葡萄糖在水溶液 中向 α- 构型转变,最后这两种异构体达到动 态平衡。无论采用酸法糖化或酶法糖化工艺, 所得淀粉糖化液中的葡萄糖都是不同异构体 的平衡体系,如投影结构式所表示:
物料的浓缩流程:
逆流或错流.
高温加热面上浓溶液的局部过热有引起结焦和 营养物质破坏的危险.适宜处理黏度随温度和浓 度变化较大的溶液,不宜处理热敏性物料。
顺逆流并用。此法对黏度相当高的料 液很有用处。特点:在料液黏度随浓 度显著增加的场合下,可采用混流。
二、结晶
根据葡萄糖水溶液的相图,在50℃以下含水α-
2)糖浆的粘度对于扩散速度有影响,降低
晶体的生长速度。
粘度低则扩散速度高。一定浓度的糖浆,其粘度在
较高温度是较低的,但是葡萄糖溶解度随温度的上
升增高很多,在较高温度的浓度高,饱和状态或一 定过饱和状态糖浆的粘度较高,如图7—2的曲线所
表示。
图中下方为饱和溶液的粘度曲线,随温度上升而增
第二节 含水α—葡萄糖
一、蒸 二、结 三、分 四、干 发 晶 蜜 燥
一、糖液的蒸发
经过净化的糖液,浓度比较低,这种糖液必
须经过蒸发浓缩成为74-77%才能进行冷却结 晶生产含水α -葡萄糖。
一、蒸发方式的选择 淀粉糖浆为热敏性物料,受热易着色,所以
在真空状态下进行蒸发,以降低液体的沸点。
在水溶液中,葡萄糖主要是以六环结构存在,
但也有微量的开链异构体。 根据用极谱分析测定,在pH7.0,25℃, 0.25mol的葡萄糖溶液中,开链葡萄糖异构体 的量只有0.024% (摩尔分数)。开链异构体的 量虽少,但作用并不小,α -和β -异构体的 相互转变都是经过它为中间体。
这 3种异构体是呈动态平衡状态存在,α-和
件异构体的比例为36% 和64%。
这种平衡比例受浓度和温度的影响很小。 异构体转变的速度受温度、 H+离子及OH-离
子浓度影响. 温度上升则速度快,温度每上升10℃,速度 增快2.5倍;
在pH3-7之间转变速度低,在低于或高于这 个 pH 范围,转变速度都很快。
在工业生产所得淀粉糖化液中,葡萄糖异构
(二)结晶形状

完美的含水α—葡萄糖晶体为单斜、半面晶形 的薄片,六角形,见图7—3。这种晶体的强度高, 易于用离心机分蜜和水洗。
蒸发操作有间歇式、连续式和循环三种。 采用间歇式蒸发,糖液受热时间长,不利于糖浆的浓缩,但
设备简单,最终浓度容易控制,有的小型工厂采用。
采用连续式蒸发,糖液受热时间短,适用于糖液浓缩,处理
量大,设备利用率高。
膜式蒸发器是,溶液通过加热罐的速度快,或只通过加热管
一次,不做循环,溶液在加热罐壁上呈膜状蒸发速度快(液 体在罐内只停留几秒或几十秒),但传热效率高,对处理热 敏性物料特别适宜。现已成为国内外广泛应用的先进蒸发设 备。
葡萄糖的固相稳定,工业上生产含水α-葡萄糖 采用冷却结晶法,在40~20℃进行(因为4520℃,溶解度差值大;
且若使糖液在真空下处于沸腾状态的温度为
45℃,相应的真空度很高,不宜使用蒸发达 到过饱和状态)。
含水α-葡萄糖由溶液中结晶出来,破坏异构
体间的平衡,一部分β异构体向α-异构体转变, 达到新的平衡,α-异构体继续结晶出来,β异构体存留在母液中。
于生产含水 α- 葡萄糖,需要重新溶解含水 α葡萄糖,用所得糖液经精制后生产无水 α- 或 β -葡萄糖。
用酸法糖化液制得的全糖,因质量差,甜味
不纯,不适于食品工业用。
酸法糖化产生复合糖类多,结晶后复合糖类
存在于母液中,一般是再用酸水解一次,将 复合糖类转变成葡萄糖,再结晶。
酶法糖化基本避免了复合反应,不需要再糖
酶法糖化液结晶,一般保持过饱和度在1.10 ~ 1.15
之间.
3、温度
对于葡萄糖结晶的影响是多方面的。
一颗晶体的周围被过饱和的糖浆所包围,紧靠颗粒的一薄层糖
1)在较高的温度,糖浆的扩散速度高,能促进结晶。
浆因为葡萄糖的析出,过饱和度降低到接近零的程度,换言之, 由过饱和状态转变成饱和状态,在这种情况下晶体不能再继续 生长,因为葡萄糖不能由饱和糖浆中析出。这一薄层以外的糖 浆仍是过饱和状态,由于浓度的差别,其中的葡萄糖向较低浓 度的薄层移动,这种现象称为“扩散”,其速度在高温度较高。
若溶解α-葡萄糖于水中,向α-异构体转变,
比旋光度逐渐升高,达到平衡状态时,比旋 光度达到相同的平衡值+52.5。 。
这个平衡比旋光度不属于α-或β-异构体,是
两种异构体旋光的总和,如下面方程式所表 示:
122.2 X 36/100 十 18.7 X 64/100 = 52.5
不同异构体具有不同的水溶解度,在 25℃,
化。酶法糖化液结晶以后所剩母液的纯度仍 高,甜味纯正,适于食品工业应用,但酸法 母液的纯度差,甜味不正,只能当作废糖蜜 处理。
酸法生产含水a-葡萄糖的工艺流程表示如 图
酶法葡萄糖生产工艺流程表示如下:
第一节 葡萄糖水溶液的平衡体系
经酸催化水解,生成的葡萄糖是 α- 构型,但 在水溶液中,向 β- 异构体转变,最后达到平 衡。这两种异构体呈动态平衡状态存在。
这种产品的生产工艺简单,时间快,成本较
低,虽然质量不及结晶葡萄糖,但适于多种 食品工业和化学艺和产品
方面都存在差别。
酶法糖化所得淀粉糖化液的纯度高,除适于
生产含水 α- 、无水 α- 、无水 β- 结晶葡萄糖以 外,也适于生产全糖。
酸法糖化所得淀粉糖化液的纯度较低,只适
高。糖浆纯度降低,粘度增高。粘度高,则扩散速
度低,降低晶体的生长速度。
3)在较高的温度,异构体转变的速度快,
又有促进结晶的作用。
综合,在较高的温度,结晶速度快。
用90%纯度糖浆,1.4过饱和度,在40~20℃不同 温度下试验,结果见表7—5。 40℃的结晶速度约为 20℃的2.3倍。
4、搅拌 适当的搅拌能助长结晶颗粒脱离晶体面上
(一)影响结晶的因素
糖浆的纯度、过饱和度、温度等都影响葡萄 糖的结晶。
1、糖浆纯度与结晶速度关系
见表7—3。糖浆纯度降低,结晶速度降低很多,
纯度在60%以下,葡萄糖不能结晶出来。
2、过饱和度
葡萄糖的结晶需要保持一定的过饱和度(过饱和度 α=H/H1,H—被测糖液在分水中溶解的糖量, H1 ---同温度下该糖液的溶解度),在较高的过饱和度,结 晶速度快。见表7-4。
含水 α- 、无水 α- 和无水 β- 葡萄糖分别为 30% 、 62%和72%。 但是溶解结晶葡萄糖于水后,立即发生异构 体的转变,影响溶解度。异构体转变达到动 态平衡后,在 25℃的溶解度为 51% ,这个溶 解度不属于那个异构体,而是平衡体系的溶 解度。因为在生产过程中,各工序的葡萄糖 溶液中异构体的转变已经达到平衡状态,应 当使用这个溶解度。
第六章 葡


工业上生产的结晶葡萄糖有含水α-葡萄糖、
无水α-葡萄糖和无水β-葡萄糖3种。前1种的 生产最为普遍,产量也最大,后两种的产量 较小,α-葡萄糖现在很少生产。这3种产品在 若干性质方面存在差别,简单地表示于表7-1。
含水α-葡萄糖含有一个分子水,理论含水量为9.1%, 工业上生产一般干燥到含水量约 8.5%。
无水α-葡萄糖在25℃,空气相对湿度约 80% 以下 稳定,但相对湿度在85%- 89%时,则向含水α-葡萄 糖异构体转变,相对湿度在 90% 以上时,吸水量
超过含水α-异构体。无水α-葡萄糖对水分最敏感, 很少量水分存在(1% 以下) 即转变成α-异构体。
不同异构体的反应性质也存在差别。例如,葡萄糖
饱和状态薄层糖浆的包围,而与过饱和状 态的糖浆接触,有利于晶体的继续生长。
但是,过快的搅拌并不能促进结晶,因为
这样只是搅拌糖膏整体,结晶颗粒与母液 的相对地位变更小。
葡萄糖由糖浆析出放热,每摩尔含水α—葡萄
糖结晶放出的热量为20.84kJ。此热量需要循 环冷却水排除,以避免糖膏温度增高,降低 过饱和度,影响结晶速度。
体间的转变都已达到这动态平衡。
α-葡萄糖异构体的 比旋光度为+122.2。,β-
葡萄糖异构体的比旋光度为+18.7。随着异构 体的转变,比旋光度也随着转变,这种现象 称为“变旋光” 现象。
若溶解α-葡萄糖于水中,向β-异构体转变,
比旋光度逐渐降低,达到平衡状态时,比旋 光度为+52.5。,不再变化。
表中数据是纯度90%的酸法淀粉糖化液在40℃的试验结果。过饱和度虽能促进结晶速度, 但工业生产却不能用过高的过饱和度,因为结晶速度快,易于产生伪晶,颗粒细小,分蜜 困难,也影响产品的质量。由酸法糖化液结晶,一般保持过饱和度在1.15一1.25之间,母液 再结晶,因为纯度较低,一般保持稍高的过饱和度,在1.20~1.40之间。
葡萄糖的溶解度随温
度的升高而增加,见 表7-2,表中数据都是 指平衡状态的溶解度。
根据溶解度绘制的葡
萄糖溶液的相图,见 图7-1。
由溶解度和相图都可以看
出,在饱和状态下,固体 相的葡萄糖随温度的不同, 以不同的异构体存在。
在50℃以下,固体相是含
水α-葡萄糖,50℃以上是 无水α-葡萄糖,115℃以上 是无水β-葡萄糖。不同葡 萄糖异构体的生产工艺便 是根据这种性质而确定的。
表中数据是纯度90%的酸法淀粉糖化液在40℃的试
验结果。过饱和度虽能促进结晶速度,但工业生产 却不能用过高的过饱和度,因为结晶速度快,易于 产生伪晶,颗粒细小,分蜜困难,也影响产品的质 量。
相关文档
最新文档