河北省衡水中学2018届高三下学期理数6
河北省衡水中学2018届高三数学下学期全国统一联合考试(3月)试题理
河北省衡水中学2018届高三数学下学期全国统一联合考试(3月)试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.A B UB.A B IC.()U C A B ID.()U C A B U2.已知复数z 的实部不为0,且1z =,设1z z ω=+,则ω在复平面上对应的点在( )A.实轴上B.虚轴上C.第三象限D.第四象限3.将()2nx -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( ) A.4B.5C.6D.74.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )33B.6πC.9π435.设1F ,2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( ) 233131+6.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上是单调减函数,则a 和θ的值是( )A.1a =,3πθ=B.1a =-,3πθ=C.1a =,6πθ=D.1a =-,6πθ=7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c-的值是( ) A.4-B.4C.2-D.28.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A.3B.4C.5D.610.已知向量()cos ,sin AB αα=u u u r ,()cos ,sin BC ββ=u u u r ,()cos ,sin CA γγ=u u u r,其中02αβγπ<<<<,则AB BC ⋅u u u r u u u r的值是( )A.12B.12-C.3-D.3 11.设函数()f x 定义如下表: x1 2 3 4 5 ()f x14253执行如图所示的程序框图,则输出的x 的值是( )A.4B.5C.2D.312.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线a 上运动,动点Q 在直线b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是( )A.2B.4C.8D.12二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线24y x=-的焦点到它的准线的距离是____________.14.若实数x,y满足1x yxy+≥-⎧⎪≤⎨⎪≤⎩,则2z x y=+取得最大值时对应的最优解是____________.15.已知在ABC△中,角,,A B C的对边分别是,,a b c,5cos A=,10cos B=,2c=,则a=____________.16.已知函数()xxf xe=,关于x的方程()()220f x f x c-+=⎡⎤⎣⎦有以下四个结论:①当0c=时,方程有3个实根;②当221cce-=时,方程有3个实根;③当2211ece-<<时,方程有2个实根;④当221ece-<时,方程有4个实根.以上结论中正确的有____________(填序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项等比数列{}n a满足()*14nn na a n N+=∈.(1)求数列{}n a的通项公式;(2)设2211log lognn nba a+=,求数列{}n b的前n项和n S.18.如图,在三棱柱111ABC A B C-中,1AC BC AB AA===,过1AA的平面分别交BC,11B C于点D,1D.(1)求证:四边形11ADD A为平行四边形;(2)若1AA⊥平面ABC,D为BC中点,E为1DD中点,求二面角1A C E C--的余弦值.19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表:根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数). (题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线$y x aβ=+的斜率和截距的最小二乘估计分别为µ()()()121nii i nii xx y yxxβ==--=-∑∑,$µay x β=-. ②参考数据:20.已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为1F ,且直线2AF 的斜率为(1)求椭圆E 的离心率;(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足2QM QN QP ⋅=u u u u r u u u r u u u r ,求点P 的横坐标0x 的取值范围.21.已知函数()ln f x x =.(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.22.已知圆C 的极坐标方程为2sin 104πρθ⎛⎫+++= ⎪⎝⎭,直角坐标系xOy 的坐标原点O 与极点重合,x轴的正半轴与极轴重合.(1)求圆C的标准方程和它的一个参数方程;(2)设()P x y是圆C上的任意一点,求xy的最大值.,23.已知函数()1=+-.f x x x(1)解不等式()3f x≥;(2)若()()2f x f y+≤,求x y+的取值范围.------------------------------------------------------------------------怎样才能学好数学一、把握好课堂的每一分钟如今的数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。
河北省衡水中学2018届高三下学期猜题卷理数试题 含解
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“1m =±”是“复数2(1)(1)m m i -++(其中i 是虚数单位)为纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B. 【解析】试题分析:由题意得,2(1)(1)m m i -++是纯虚数210110m m m ⎧-=⇔⇔=⎨+≠⎩,故是必要不充分条件,故选B.考点:1.复数的概念;2.充分必要条件.2.设全集U R =,函数()lg(|1|1)f x x =+-的定义域为A ,集合{}|sin 0B x x π==,则()U C A B 的元素个数为( )A .1B .2C .3D .4 【答案】C.考点:1.对数函数的性质;2.三角函数值;3.集合的运算. 3.若点55(sin,cos )66ππ在角α的终边上,则sin α的值为( )A .2-B .12- C .12 D .2 【答案】A. 【解析】试题分析:根据任意角的三角函数的定义,5cos 6sin 1πα==,故选A. 考点:任意角的三角函数.4.如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的i a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n = 【答案】B.考点:1.统计的运用;2.程序框图.5.如图所示的是函数()sin 2f x x =和函数()g x 的部分图象,则函数()g x 的解析式是( )A .()sin(2)3g x x π=-B .2()sin(2)3g x x π=+C .5()cos(2)6g x x π=+D .()cos(2)6g x x π=- 【答案】C. 【解析】试题分析:由题意得,(0)0g <,故排除B ,D ;又∵17()()sin 24842g f πππ===除A ,故选C.考点:三角函数的图象和性质. 6.若函数2(2)()m xf x x m-=+的图象如图所示,则m 的范围为( )A .(,1)-∞-B .(1,2)-C .(0,2)D .(1,2) 【答案】D.考点:函数性质的综合运用.7.某多面体的三视图如图所示,则该多面体各面的面积中最大的是( )A .1B .2C .2D 【答案】C.考点:1.三视图;2.空间几何体的表面积.8.已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .201421+ C .201521- D .201521+【答案】A.考点:数列的通项公式.9.已知非零向量a ,b ,c ,满足||||4a b b -==,()()0a c b c -⋅-=,若对每个确定的b ,||c 的最大值和最小值分别为m ,n ,则m n -的值为( )A .随||a 增大而增大B .随||a 增大而减小C .是2D .是4 【答案】D. 【解析】试题分析:∵()()0a c b c -⋅-=,∴2()0c a b c a b -+⋅+⋅=,即2||||||cos ,0c a b c a b c a b -+⋅⋅<+>+⋅=,∵1cos ,1a b c -≤<+>≤,∴22||||||0||||||0c a b c a b c a b c a b ⎧-+⋅+⋅≤⎪⎨++⋅+⋅=⎪⎩,解得||||2||222a b a b c ++-≤≤+,(||||||||2222a b a b a bb b +--=+≥-=),故min ||||22a bc +=-,max ||||22a b c +=+, ∴4m n -=,故选D. 考点:平面向量数量积.10.已知在三棱锥P ABC -中,1PA PB BC ===,AB =AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( ) AB .3π CD .2π【答案】B. 【解析】考点:空间几何体的外接球.【名师点睛】外接球常用的结论:长方体的外接球:1.长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,2R =;2.棱长为a 的正方体的体对角线长2R =;棱长为a ,内切球的半径为12a ; 11.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q ,若60PAQ ∠=,且3OQ OP =,则双曲线C 的离心率为( )A C D 【答案】C. 【解析】试题分析:如下图所示,设AOQ α∠=,∴tan cos b a a c αα=⇒=,sin bcα=,∴2||cos a OH a cα=⋅=,||sin ab AH a c α=⋅=,又∵3OQ OP =,∴2||||||2a OP PH HQ c===,∴2|||22ab a AH PH b c c =⇒=⇒=,∴e ==C.考点:双曲线的标准方程及其性质.【名师点睛】要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解,要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征以及平面几何知识的运用,如12||||2PF PF c +≥等.12.已知函数()()()()()52log 11221x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程1(2)f x a x +-=的实根个数不可能为( )A .5个B .6个C .7个D .8个 【答案】A.当2a =时,方程()f x a =有两个正根,一个小于4-的负根,∴1(2)f x a x+-=有六个根,当2a >时,方程()f x a =有一个正根一个小于4-的负根,∴1(2)f x a x+-=有四个根,∴1(2)f x a x+-=根的个数可能为2,3,4,6,7,8,故选A.考点:1.函数与方程;2.分类讨论的数学思想.【名师点睛】要判断函数零点或方程根的个数,一般需结合函数在该区间的单调性、极值等性质进行判断,对于解析式较复杂的函数的零点,可根据解析式特征,利用函数与方程思想化为()()f x g x =的形式,通过考察两个函数图象的交点来求,通过图形直观研究方程实数解的个数,是常用的讨论方程解的一种方法.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上.)13.已知0a >6)x展开式的常数项为15,则2(a ax x dx -+=⎰____________.【答案】223π++考点:定积分的计算及其性质.14.设a ,b R ∈,关于x ,y 的不等式||||1x y +<和48ax by +≥无公共解,则ab 的取值范围是__________. 【答案】[16,16]-.考点:线性规划.15.设抛物线()220y px p =>的焦点为F ,其准线与x 轴交于点C ,过点F 作它的弦AB ,若90CBF ∠=,则AF BF -=________. 【答案】2p .考点:抛物线焦点弦的性质.【名师点睛】若AB 为抛物线22(0)y px p =>的焦点弦,F 为抛物线焦点,A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,则:2124p x x =,212y y p =-,以AB 为直径的圆与抛物线的准线相切, 112||||AF BF p+=. 16.已知数列{}n a 满足12a =,210n n a a n +++=,则31a =_____________.【答案】463-.考点:数列的通项公式.【名师点睛】已知递推关系求通项,掌握先由1a 和递推关系求出前几项,再归纳、猜想n a 的方法,以及“累加法”,“累乘法”等:1.已知1a 且1()n n a a f n --=,可以用“累加法”得:12()nn k a a f k ==+∑,2n ≥;2.已知1a 且1()nn a f n a -=,可以用“累乘法”得:1(2)(3)(1)()n a a f f f n f n =⋅⋅⋅⋅⋅-⋅,2n ≥. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图,在ABC ∆中,已知点D 在边BC 上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =(1)求AD 长; (2)求cos C . 【答案】(1)3;(2)3. 【解析】试题分析:(1)利用已知条件首先求得cos BAD ∠的值,再在ABD ∆中,利用余弦定理即可求解;(2)在ABD ∆中利用正弦定理即可求解.试题解析:(1)∵0AD A C ⋅=,则A D A C ⊥,∴s i n s i n ()c o s 2B AC B AD B A Dπ∠=+∠=∠,即cos 3BAD ∠=,在ABD ∆中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-∠,即28150AD AD -+=,解得5AD =,或3AD =,∵AB AD >,∴3AD =;……6分(2)在ABD ∆中,由正弦定理,可知sin sin BD ABBAD ADB=∠∠.又由cos 3BAD ∠=,可知1sin 3BAD ∠=,∴sin sin AB BAD ADB BD ∠∠==.∵2ADB DAC C C π∠=∠+=+,∴cos C =…………12分 考点:正余弦定理解三角形. 18.(本小题满分12分)已知矩形ABCD ,22AD AB ==,点E 是AD 的中点,将DEC ∆沿CE 折起到D EC '∆的位置,使二面角D EC B '--是直二面角.(1)证明:BE CD '⊥;(2)求二面角D BC E '--的余弦值.【答案】(1)详见解析;(2.在Rt D MF '∆中,122D M EC '==,11,tan 22D M MF AB D FM MF ''==∠==cos D FM '∠=,∴二面角D BC E '--…………12分考点:1.面面垂直的判定与性质;2.二面角的求解. 19.(本小题满分12分)2018年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[]0,2000,(]2000,4000,(]4000,6000,(]6000,8000,(]8000,10000五组,并作出如下频率分布直方图:(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望; (3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求b ,c ,a b +,c d +,a c +,b d +,a b c d +++的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?0.00.18附:临界值表参考公式:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++.【答案】(1)3360;(2)详见解析;(3)详见解析.ξ的分布列为()0123535355E ξ=⨯+⨯+⨯=;…………8分 (3)解得9b =,5c =,39a b +=,11c d +=,35a c +=,15b d +=,50a b c d +++=,()225030695 4.046 3.84139113515K ⨯⨯-⨯==>⨯⨯⨯,∴有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关.…………12分考点:1.古典概型;2.频率分布直方图;3.独立性检验. 20.(本小题满分12分)已知椭圆()2222:10x y E a b a b +=>>的两个焦点1F ,2F ,且椭圆过点,,且A 是椭圆上位于第一象限的点,且12AF F ∆的面积12AF F S ∆(1)求点A的坐标;(2)过点(3,0)B的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点5(,0)2C,则||||CM CN是否为定值,如果是定值,求出这个定值,如果不是请说明理由.【答案】(1)(2,1)A;(2)详见解析.法二:设11(,)P x y ,22(,)Q x y ,3(,0)M x ,4(,0)N x ,直线l ,AP ,AQ 的斜率分别为k ,1k ,2k ,由()22326y k x x y ⎧=-⎨+=⎩,得()222212121860k x k x k +-+-=,()()4221444121860k k k ∆=-+->,可得21k <,21221212k x x k +=+,212218612k x x k -=+,考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.椭圆中的定值问题. 【名师点睛】求解定值问题的方法一般有两种:1.从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;2.直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 21.(本小题满分12分)已知函数221()()(1)(22),2xf x ax bx a b e x x x a R =++---++∈,且曲线()y f x =与x 轴切于原点O .(1)求实数a ,b 的值;(2)若2()()0f x x mx n ⋅+-≥恒成立,求m n +的值. 【答案】(1)0a =,1b =;(2)1m n +=-. 【解析】试题分析:(1)求导,利用导数的几何意义即可求解;(2)将不等式作进一步化简,可得21(1)(1)(1)2x x e x x x ->-++,分类讨论,构造函数21()(1)2x g x e x x =-++,求导研究其单调性即可得到0x =,和1x =是方程20x mx n +-=的两根,从而求解.考点:导数的综合运用.【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明;2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值;3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论;4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,PA 为四边形ABCD 外接圆的切线,CB 的延长线交PA 于点P ,AC 与BD 相交于点M ,且//PA BD .(1)求证:ACD ACB ∠=∠;(2)若3PA =,6PC =,1AM =,求AB 的长.【答案】(1)详见解析;(2)2.考点:1.切线的性质;2.相似三角形的判定与性质.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知点()1,2P -,直线1:2x t l y t =+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B .(1)求直线l 和曲线C 的普通方程;(2)求PA PB +.【答案】(1)直线l 的普通方程是30x y --=,曲线C 的普通方程是22y x =;(2)联立直线方程与抛物线方程,利用参数的几何意义结合韦达定理即可求解.【解析】考点:1.参数方程,极坐标方程与直角方程的相互转化;2.直线与抛物线的位置关系.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x a =--,()2g x x m =-+,a ,m R ∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-2.(1)求整数m 的值;(2)若函数()y f x =的图象恒在函数1()2y g x =的上方,求实数a 的取值范围. 【答案】(1)4;(2)(,3)-∞.【解析】试题分析:(1)解不等式()1g x ≥-,根据整数解为2-,即可求解;(2)问题等价于()()102f xg x ->恒成立,分类讨论将绝对值号去掉即可求解. 试题解析:(1)由()1g x ≥-,即21x m -+≥-,21x m +≤, 得1122m m x ---+≤≤,∵不等式的整数解为2-,∴11222m m ---+≤-≤,解得35m ≤≤, 又∵不等式仅有一个整数解2-,∴4m =;…………4分 (2)函数()y f x =的图象恒在函数()12y g x =的上方,故()()102f x g x ->, ∴212a x x <-++对任意x R ∈恒成立,设()212h x x x =-++,则3,2()4,213,1x xh x x xx x-≤-⎧⎪=--<≤⎨⎪>⎩,则()h x在区间(),1-∞上是减函数,考点:1.绝对值不等式;2.分类讨论的数学思想;3.恒成立问题.。
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)教学内容
时, 取得最大值 .
即
,
当
或 时,
.
当
时,
.
所以
,解得
.
点睛:线性规划的实质是把代数问题几何化,即数形结合的思想
.需要注意的是:一、准确无误地作出可行
域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般
情况下,目标函数的最大或最小会在可行域的端点或边界上取得
芝麻向硬币内投掷 100 次,其中恰有 30 次落在军旗内,据此可估计军旗的面积大约是
()
只供学习交流用
此文档来源于网络,如有侵权请联系网站删除
A.
B.
C.
D.
【答案】 B
【解析】根据题意,可估计军旗的面积大约是
.
故选 B.
5. 已知双曲线 :
的渐近线经过圆 :
的圆心,则双曲线 的离心率为
()
A.
此文档来源于网络,如有侵权请联系网站删除
2018 届河北省衡水金卷全国高三大联考
理科数学试题(解析版)
第Ⅰ卷 一、选择题:本大题共 12 个小题 , 每小题 5 分 , 在每小题给出的四个选项中,只有一项是符合 题目要求的 .
1. 已知集合 A.
, B.
,则 ( )
C.
D.
【答案】 C
【解析】
.
所以 故选 C.
射出,经过抛物线上的点 反射后,再经抛物线上的另一点
射出,则
的周长
A.
B.
C.
D.
【答案】 B
【解析】令
,得 ,即
.
由抛物线的光学性质可知
经过焦点 ,设直线 的方程为
消去 ,得
河北省衡水中学2018届高三数学下学期全国统一联合考试3月试题理无答案
河北省衡水中学2018届高三数学下学期全国统一联合考试(3月)试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.ABB.ABC.()U C ABD.()U C A B2.已知复数z 的实部不为0,且1z =,设1z z ω=+,则ω在复平面上对应的点在( )A.实轴上B.虚轴上C.第三象限D.第四象限3.将()2nx -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( )4.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )33B.6πC.9π435.设1F ,2F 分别是双曲线()2222:10,0x y C a b a b -=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( ) 233131+6.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上是单调减函数,则a 和θ的值是( )A.1a =,3πθ=B.1a =-,3πθ=C.1a =,6πθ=D.1a =-,6πθ=7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c -的值是( ) A.4-B.4C.2-8.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( )10.已知向量()cos ,sin AB αα=,()cos ,sin BC ββ=,()cos ,sin CA γγ=,其中02αβγπ<<<<,则AB BC ⋅的值是( )A.12B.12-C.3-D.3 11.设函数()f x 定义如下表: x1 2 3 4 5 ()f x14253执行如图所示的程序框图,则输出的x 的值是( )12.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线a 上运动,动点Q 在直线b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是( )二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.抛物线24y x =-的焦点到它的准线的距离是____________.14.若实数x ,y 满足100x y x y +≥-⎧⎪≤⎨⎪≤⎩,则2z x y =+取得最大值时对应的最优解是____________.15.已知在ABC △中,角,,A B C 的对边分别是,,a b c ,5cos A =,10cos B =,2c =,则a =____________.16.已知函数()xxf x e =,关于x 的方程()()220f x f x c -+=⎡⎤⎣⎦有以下四个结论: ①当0c =时,方程有3个实根;②当221c c e -=时,方程有3个实根;③当2211e c e -<<时,方程有2个实根;④当221e c e -<时,方程有4个实根. 以上结论中正确的有____________(填序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项等比数列{}n a 满足()*14n n n a a n N +=∈. (1)求数列{}n a 的通项公式; (2)设2211log log n n n b a a +=,求数列{}n b 的前n 项和n S .18.如图,在三棱柱111ABC A B C -中,1AC BC AB AA ===,过1AA 的平面分别交BC ,11B C 于点D ,1D .(1)求证:四边形11ADD A 为平行四边形;(2)若1AA ⊥平面ABC ,D 为BC 中点,E 为1DD 中点,求二面角1A C E C --的余弦值.19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表: x1 2 3 4 5 6 7 y611213466114210根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数). (题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y x a β=+的斜率和截距的最小二乘估计分别为()()()121nii i nii xx y yxxβ==--=-∑∑,a y x β=-.②参考数据: lg2lg3lg6lg11lg 21lg34lg66lg114lg 2100.30 0.48 0.78 1.04 1.32 1.53 1.82 2.06 2.3220.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为1F ,且直线2AF 的斜率为3(1)求椭圆E 的离心率;(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足2QM QN QP ⋅=,求点P 的横坐标0x 的取值范围. 21.已知函数()ln f x x =.(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.22.已知圆C 的极坐标方程为222sin 104πρρθ⎛⎫+++= ⎪⎝⎭,直角坐标系xOy 的坐标原点O 与极点重合,x轴的正半轴与极轴重合.(1)求圆C的标准方程和它的一个参数方程;(2)设()P x y是圆C上的任意一点,求xy的最大值.,23.已知函数()1=+-.f x x x(1)解不等式()3f x≥;(2)若()()2f x f y+≤,求x y+的取值范围.。
河北省衡水中学2018届高三下学期第6周周考数学(理)试题(精校Word版含答案)
理数周日测试6 一、选择题1.已知集合{}{}2,,1,0,2,3,4,8A x x n n Z B ==∈=-,则()R A B ⋂=ð( ) A. {}1,2,6 B. {}0,1,2 C. {}1,3- D.{}1,6- 2.已知i 是虚数单位,则2331i i i -⎛⎫-= ⎪+⎝⎭( )A. 32i --B. 33i --C. 24i -+D. 22i -- 3.已知2sin 3α=,则()3tan sin 2ππαα⎛⎫++= ⎪⎝⎭( ) A. 23-B. 23C.4.已知椭圆()222210x y a b a b+=>>的离心率为12,且椭圆的长轴与焦距之差为4,则该椭圆为方程为( )A. 22142x y +=B. 22184x y +=C. 221164x y +=D.2211612x y += 5.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为( ) A.2831 B. 1921 C. 2231 D.1721 6.运行如图所示的程序,输出的结果为( )A. 8B. 6C. 5D.47.已知某几何体的三视图如图所示,则该几何体的表面积为( )A. 6πB. 8πC. 6π+6D.8π+48.已知直线1:1l y x =+与2:l y x m =+之间的距离为2,则直线2l 被圆()22:18C x y ++=截得的弦长为( )A. 4B.3C.2D.19.已知实数,x y 满足不等式组10201x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则目标函数3z x y =-的最大值为( )A.1B.2C.53 D. 7310.在边长为1的正ABC ∆中,点D 在边BC 上,点E 是AC 中点,若316AD BE =-,则BDBC=( ) A.14 B. 12 C. 34 D. 7811.已知定义在R 上的函数()f x ,满足()()()f m x f m x x R +=-∈,且1x ≥时,()22x n f x -+=,图象如图所示,则满足()2n mf x -≥的实数x 的取值范围是( ) A. []-1,3 B. 1322⎡⎤⎢⎥⎣⎦, C. []0,2 D. 15,22⎡⎤-⎢⎥⎣⎦12.已知函数()()23sin cos 4cos 0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭( ) A. 52-B. 92-C. 112-D. 132- 二、填空题13.在正方体1111ABCD A BC D -中,点M 是11C D 的中点,则1A M 与AB 所成角的正切值为. 14.已知双曲线()222210,0x y a b a b-=>>的离心率为2,过双曲线的右焦点垂直于x 轴的直线被双曲线截得的弦长为m ,则ma=. 15.已知函数()()()()ln 0ln 0x x f x x x >⎧⎪=⎨--<⎪⎩,若()()()20,0f a f b a b =><,且224a b +的最小值为m ,则()22log mab +-=.16.已知ABC ∆的三个内角所对的边分别为,,a b c ,且cos cos 2cos b C c B a B +=,sin 3sin B A =,则a c=. 三、解答题17.(12分)已知等比数列{}n a 满足:112a =,且895618a a a a +=+. (1)求{}n a 的通项公式及前n 项和; (2)若n nb na =,求{}n b 的前n 项和n T .18.(12分)如图,三棱锥P ABC -中,PAB ABC ⊥平面平面,PA PB =,且AB PC ⊥.(1)求证:CA CB =;(2)若2,PA PB AB PC ====P ABC -的体积.19.(12分)某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x ,每小时点击次数为y ,则点(x ,y )近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y 关于x 的回归直线ˆˆˆybx a =+.(附:回归方程系数公式:1221ˆˆˆ,ni ii nii x y nxybay bx xnx =-=-==--∑∑) 20.(12分)如图,直线10l y ++=与y 轴交于点A ,与抛物线()2:20C x py p =>交于P ,Q ,点B 与点A 关于x 轴对称,连接QB ,BP 并延长分别与x 轴交于点M ,N. (1)若PQ =,求抛物线C 的方程;(2)若3MN =,求BMN ∆外接圆的方程.21.(12分)已知函数()()2ln f x x axa R =+∈.(1)若()y f x =在2x =处的切线与x 轴平行,求()f x 的极值;(2)若函数()()1g x f x x =--在()0∞,+上单调递增,求实数a 的取值范围. 选考题22.(10分)选修4-4坐标系与参数方程以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()253cos28ρθ-=,直线l的参数方程为22x m t y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数).(1)把曲线C 的极坐标方程化为普通方程;(2)若直线l 与曲线C 有两个公共点,求实数m 的取值范围.23.(10分)选修4-5不等式选讲 已知函数()12f x x x =-+.(1)关于x 的不等式()2f x <的解集为M ,且(),12m m M -⊆,求实数m 的取值范围; (2)求()()22g x f x x x =-+-的最小值,及对应的x 的取值范围. 附加题. 已知函数()()()2ln f x x g x ax bx a b ==-,、为常数.(Ⅰ)求函数()f x 在点()()1,1f 处的切线方程;(Ⅱ)当函数()2g x x =在处取得极值-2,求函数()g x 的解析式;(Ⅲ)当12a=时,设()()()h x f x g x=+,若函数()h x在定义域上存在单调减区间,求实数b的取值范围.河北衡水中学2018届高三数学复习 周日测答案1.【答案】C 【解析】由条件可知A 为偶数集,故(){}R 1,3A B =-I ð.2.【答案】B 【解析】()()()22231i 3i 3i i i 12i i 33i 1i 2轾--骣-÷犏ç-=+=-+=--÷ç÷犏ç桫+臌. 3.【答案】A 【解析】()()32tan sin tan cos sin 23p p a a a a a 骣÷ç++=-=-=-÷ç÷ç桫. 4.【答案】D 【解析】设椭圆的焦距为2c ,由条件可得12c a =,故2a c =,由椭圆的长轴与焦距之差为4可得()24a c -=,即2a c -=,所以,4a =,2c =,故22212b a c =-=,故该椭圆的方程为2211612x y +=.5.【答案】A 【解析】从1,4,1,5,9,2,6这7位数字中任选两位数字的不同情况有:14,11,15,19,12,16,41,45,49,42,46,59,52,56,92,96,26,51,91,21,61,54,94,24,64,95,25,65,29,69,62,共31种不同情况,其中使得到的数字不大于3.14的情况有3种不同情况,故所求概率为32813131-=. 6.【答案】D 【解析】所给程序的运行过程如下:1b =,3a =;2b =,7a =;3b =,15a =;4b =,31a =,不满足30a <,输出b 的值为4.7.【答案】C 【解析】由三视图可知,该几何体是一个圆柱的34,故表面积为()232123213664p p p ??创=+.8.【答案】A 【解析】由条件可知,直线1l 过圆心():1,0C -,则圆心C 到直线2l 的距离等于直线1l 与2l 之间的距离2,故直线2l 被圆C 截得的弦长为4. 9.【答案】B 【解析】不等式组表示的平面区域如下图中的阴影部分所示:且点12,33A 骣÷ç-÷ç÷ç桫,()1,2B ,()1,2C -,易得目标函数3z x y =-在点C 处取得最大值5.10.【答案】C 【解析】设AB =uu u r a ,AC =uuu r b ,BD BC l =uu u r uu u r,则()()1AD AB BD l l l =+=+-=-+u u u r u u u r u u u r a b a a b ,12BE AE AB =-=-u u u r u u u r u u u r b a ,则()()()()()()2211111312221133131142416AD BE l l l l l l l l l 骣÷ç轾?-+?=-?-+÷ç臌÷ç桫=-+-+=-=-uuu r uu u r a b b a a b a b故34l =,即34BD BC =. 11.【答案】B 【解析】由条件可知,()f x 的图象关于直线1x =对称,结合()()()f m x f m x x +=-?R 可得1m =,而()11f =,即221n -+=,解之得2n =,由()2n m f x -≥可得()12f x ≥,当1x ≥时,由22122x -+≥,解之得32x ≤,所以,312x ≤≤,再结合对称性可得x 的取值范围是13,22轾犏犏臌.12.【答案】B 【解析】()()2353sin cos 4cos sin 22cos22sin 2222f x x x x x x x w w w w w w j =-=--=--,其中4sin 5j =,3cos 5j =,由()12f q =可得()sin 21wq j -=,即()f x 关于x q =对称,而2x p q =+与x q =的距离为12个周期,故sin 212p w q j 轾骣÷ç犏+-=-÷ç÷ç犏桫臌,所以,592222f p q 骣÷ç+=--=-÷ç÷ç桫. 13.【答案】2【解析】11MA B Ð即为1A M 与AB 所成角,取11A B 中点N ,连接MN ,则11MN A B ^,则111tan 2MNMA B A N?=. 14.【答案】6【解析】设双曲线的焦距为2c ,则2ca=,即2c a =,则b =2x c a==代入双曲线可得2b y a =?,故22b m a =,所以,2226m b a a==.15.【答案】3【解析】由()()()20,0f a f b a b =><可得()ln ln 2a b =--,即21ab -=,∴12ab =-,则2242242a b a bab +?=≥,当且仅当122ab a b ìïï=-ïíïï=-ïî,即112a b ì=ïïïíï=-ïïî时,224a b +取得最小值2.故()22212log 2log 32m ab +=+=.16.cos cos 2cos b C c B a B +=及正弦定理可得sin cos sin 2sin cos B C Ccos B A B +=,即()sin 2sin cos B C A B +=,而()sin sin 0A B C =+>,∴1cos 2B =.由sin 3sin B A =可得3b a =,由余弦定理可得2222cos b a c ac B =+-,即2229a a c ac =+-,解之得a c=(舍去负值). 17.【解析】(1)设{}n a 的公比为q ,由895618a a a a +=+可得318q =,∴12q =,∴12n n a =,∴11112211212n n n S 骣÷ç-÷ç÷ç桫==--.(5分) (2)由(1)可得2n n n b =,则231232222n n nT =++++L ① 所以,2341112322222n n nT +=++++L ②由①-②可得2311111111111222112222222212n n n n n n n n n T +++骣÷ç-÷ç÷ç桫+=++++-=-=--L , 所以,222n nn T +=-.(12分) 18.【解析】(1)取AB 的中点O ,连接PO ,PC .∵PA PB =,∴PO AB ^, ∵AB PC ^,PC PO P =I ,PC ,PO Ì平面POC , ∴AB ^平面POC ,又∵OC Ì平面POC ,∴AB OC ^, 而O 是AB 的中点,∴CA CB =.(6分)(2)∵平面PAB ^平面ABC ,PO Ì平面PAB ,平面PAB I 平面ABC AB =, ∴PO ^平面ABC,由条件可得PO =OC =.则11222ABC S AB OC =?创V ∴三棱锥P ABC -的体积为:1133ABC V S PO =?V .(12分)19.【解析】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10. 甲公司每小时点击次数的平均数为:9578768677710x +++++++++==甲,乙公司每小时点击次数的平均数为:24687789071091x +++++++++==乙.甲公司每小时点击次数的方差为:()()222222122212140 1.210S 轾=+-+??+?犏臌甲;乙公司每小时点击次数的方差为:()()()22222222153******** 5.410S 轾=-+-+-+??+?犏臌乙,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定.(6分)(2)根据折线图可得数据如下:则3x =, 5.4y =,则5152215 1.4i i i ii x y xy b x n x=-=-==-åå$, 1.2a =$, ∴所求回归直线方程为: 1.4 1.2y x =+$.(12分)20.【解析】(1)由2102y x py++=ï=ïî可得220x p ++=, 设点()11,P x y ,()22,Q x y,则()280p D=->,即1p >,12x x +=-,122x x p =,故12PQ x =-=.由2p =(舍去负值), ∴抛物线C 的方程为24x y =.(5分)(2)设直线BN ,BM 的斜率分别为1k ,2k 点,21221111212111111122222x y x p x x x x x p k x x px px p-----=====,22222221221222221122222x y x p x x x x x p k x x px px p-----=====, ∴120k k +=.直线BN 的方程为:11y k x =+,直线BM 的方程为:21y k x =+,则11,0N k 骣÷ç÷-ç÷ç÷桫,21,0M k 骣÷ç÷-ç÷ç÷桫,则12211211k k MN k k k k -=-==,由120k k +=可得12k k =-,∴1212k k =,∴1k =2k =120k k <,故tan tan BNM BMN ??, 即BMN V 是等腰三角形,且1OB =,则BMN V 的外接圆的圆心一定在y 轴上,设为()0,t ,由圆心到点M ,B 的距离相等可得()2221t t -=+桫,解之得16t =-,外接圆方程为22149636x y 骣÷ç++=÷ç÷ç桫.(12分) 21.【解析】(1)∵()2ln f x x ax =+,∴()()120f x ax x x ¢=+>, 由条件可得()11402f a ¢=+=,解之得18a =-, ∴()21ln 8f x x x =-,()()()()2211044x x f x x x x x --+¢=-=>, 令()0f x ¢=可得2x =或2x =-(舍去)当02x <<时,()0f x ¢>;当2x >时,()0f x ¢<即()f x 在()0,2上单调递增,在()2,+?上单调递减,故()f x 有极大值()12ln 22f =-,无极小值(5分) (2)()2ln 1g x x ax x =+--,则()()2121210ax x g x ax x x x-+¢=+-=> 设()221h x ax x =-+,①当0a =时,()1x g x x-¢=-,当01x <<时,()0g x ¢>, 当1x >时,()0g x ¢<,即()g x 在()0,1上单调递增,在()1,+?上单调递减,不满足条件;②当0a <时,()221h x ax x =-+是开口向下的抛物线,方程2210ax x -+=有两个实根,设较大实根为0x .当0x x >时,有()0h x <,即()0g x ¢<,∴()g x 在()0,x +?上单调递减,故不符合条件(8分)③当0a >时,由()0g x ¢≥可得()221h x ax x =-+在()0,+?上恒成立,故只需()0010400h a a ìïïïï-ïï-ïíïïD >ïïïï>ïî≥≤或0D ≤,即101041800a a a ìïïïïïïïíïï->ïïïï>ïî≥≤或1800a a ì-ïïíï>ïî≤,解之得18a ≥. 综上可知,实数a 的取值范围是1,8轹÷ê+?÷÷êøë.(12分) 22.【解析】(1)方程()253cos28r q -=可化为()22532cos 18r q 轾--=犏臌,即22243cos 4r r q -=,把222c o s x x y r r q ìï=+ïíï=ïî代入可得()222434x y x +-=,整理可得2214x y +=.(5分)(2)把x m y ìïï=-ïïïíïïï=ïïî代入2214x y +=可得225280t m -+-=,由条件可得()()2220280m D =--->,解之得m -<即实数m的取值范围是(-.(10分)23.【解析】(1)当1x ≤时,不等式()2f x <可变为()122x x --+<,解之得1x <,∴1x <;当1x >时,不等式()2f x <可变为()122x x -+<,解之得1x <,∴x 不存在. 综上可知,不等式()2f x <的解集为(),1M =-?.由(),12m m M -?,可得12121m m m ì<-ïïíï-ïî≤,解之得103m <≤,即实数m 的取值范围是10,3轹÷ê÷÷êøë.(5分)(2)()()()()2212121g x f x x x x x x x =-+-=-+----=≥,当且仅当()()120x x --≤,即12x ≤≤时,()g x 取得最小值1,此时,实数x 的取值范围是[]1,2.(10分)附加题(1)1y x =-(2)()2122g x x x =-(3)()2,b ∈+∞ 试题解析:(Ⅰ)由()ln f x x =(0x >),可得()1'f x x =(0x >), ∴()f x 在点()()1,1f 处的切线方程是()()()111y f f x '-=-,即1y x =-,所求切线方程为1y x =-. (Ⅱ)∵又()2g x ax bx =-可得()2g x ax b '=-,且()g x 在2x =处取得极值2-. ∴()()20,22,g g '⎧=⎪⎨=-⎪⎩可得40,422,a b a b -=-=-⎧⎨⎩解得12a =,2b =. 所求()2122g x x x =-(x R ∈). (Ⅲ)∵()()()21ln 2h x f x g x x x bx =+=+-,()21x bx h x x -+'=(0x >). 依题存在0x >使()210x bx h x x-+'=<,∴即存在0x >使210x bx -+<, 不等式210x bx -+<等价于1b x x >+(*) 令()1x x x=+λ(0x >),∵()()()221111(0)x x x x x x λ+-'=-=>. ∴()x λ在()0,1上递减,在[)1,+∞上递增,故()[)12,x x x=+∈+∞λ, ∵存在0x >,不等式(*)成立,∴2b >,所求()2,b ∈+∞.。
河北省衡水中学2017-2018学年高三下学期第六次调研考试理数试题(A卷) Word版含解析
2017-2018学年一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数122ii+-的共轭复数是( ) A .35iB .35i -C .iD . i -【答案】D 【解析】 试题分析:由于122i i +-i ii ii =-+=)2()21(,因此应选D . 考点:复数的运算. 2.已知集合()(){}240,2101x A x RB x R x a x a x ⎧-⎫=∈≤=∈---<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .{}[)12,+∞D .()1,+∞ 【答案】C考点:二次不等式的解法和集合的运算.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为:5:3k ,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( ) A .24B .30C .36D .40 【答案】C 【解析】试题分析:因120248=+k k ,故36120103,2=⨯=k ,应选C.考点:抽样方法及计算. 4.如图给出的是计算111124620+++⋅⋅⋅+的值的一个框图,其中菱形判断框内应填入的条件是( ) A .8?i >B .9?i >C .10?i >D .11?i >【答案】C 【解析】试题分析:从所给算法流程可以看出当10=i 时仍在运算,当1011>=i 时运算就结束了,所以应选C.考点:算法流程图的识读和理解.5.已知把函数()sin f x x x =+的图像向右平移4π个单位,再把横坐标扩大到原来的2倍,得到函数()g x ,则函数()g x 的一条对称轴为( ) A .6x π=B .76x π=C .12x π=D .56x π=【答案】D考点:三角函数的图象和性质.6.已知等比数列{}n a 的前n 项的和为12n n S k -=+,则()3221f x x kx x =--+的极大值为( ) A .2B .3C .72D .52【答案】D 【解析】试题分析:因k a S S k a a S k a S +=+=+=+=+==4,2,132321211,即2,1,1321==+=a a k a ,故题设21,1)1(2-==+k k ,所以1221)(23+-+=x x x x f ,由于)1)(23(23)(2/+-=-+=x x x x x f ,因此当)1,(--∞∈x 时, )(,0)(/x f x f >单调递增;当)32,1(-∈x 时, )(,0)(/x f x f <单调递减,所以函数)(x f 在1-=x 处取极大值2512211)1(=+++-=-f ,应选D. 考点:等比数列的前n 项和与函数的极值.7.已知身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有( ) A .48种B .72种C .78种D .84种 【答案】A考点:排列组合数公式及两个计数原理的运用.8.已知椭圆221167x x +=的左、右焦点12,F F 与双曲线()222210x x a b a b-=>>的焦点重合.且直线10x y --=与双曲线右支相交于点P ,则当双曲线离心率最小时的双曲线方程为( )A .2218x x -= B .22163x x -= C .22172x x -= D .22154x x -= 【答案】D 【解析】试题分析:因3716=-=c ,故)0,3(2F ,设交点)0)(1,(>-t t t P ,则2PF =,右准线方程为32a x =,点P 到这条直线的距离为32a t d -=,所以31082322a t t t a-+-=,即2222221082)3(a t a t a a t +-=-,也即0102)92(42222=-+--a a t a t a ,该方程有正根,所以0)10)(92(444224≥---=∆a a a a ,解之得52≤a 或92≥a ,所以当52=a 时,双曲线的离心率最小,此时4592=-=b ,应选D. 考点:双曲线的几何性质.【易错点晴】本题考查的是圆锥曲线的基本量的计算问题.解答这类问题的一般思路是依据题设条件想方设法建构含c b a ,,的方程,然后再通过解方程或方程组使问题获解.解答本题的难点是如何建立和求出关于离心率的目标函数,再进一步探求该函数取得最小值时的条件,从而求出双曲线的标准方程中的b a ,的值.本题中的函数是运用两点之间的距离公式建立的,求解时是解不等式而求出b a ,的值.9.一个长方体的四个顶点构成一个四面体EFHG ,在这个长方体中把四面体EFHG 截出如图所示,则四面体EFHG 的侧视图是( )A .B .C .D .【答案】D考点:三视图的识读和理解.10.已知函数()321f x x ax =++的对称中心的横坐标为()000x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(),0-∞B .,2⎛⎫-∞- ⎪ ⎪⎝⎭C .()0,+∞D .(),1-∞- 【答案】B 【解析】试题分析:由于)32(323)(2/a x x ax x x f +=+=因此函数()321f x x ax =++有两个极值点32,0a -,因01)0(>=f ,故01274)32(3<+=-a a f ,即2233-<a ,应选B.考点:导数在研究函数的零点中的运用.11.已知三棱锥P ABC -的四个顶点都在球O 的球面上,若2PA AB ==,1AC =,120BAC ∠=︒,且PA ⊥平面ABC ,则球O 的表面积为( )A .403πB .503πC .12πD .15π【答案】A考点:球的几何性质与表面积的计算.【易错点晴】本题考查的是多面体的外接球的表面积问题.解答本题的难点是如何求出该四棱锥的外接球的半径,如何确定球心的位置,这对学生的空间想象能力的要求非常高.解答时充分借助题设条件,先求出三角形ABC ∆的外接圆的半径37=r ,再借助PA ⊥平面ABC ,球心O 与ABC ∆的外接圆的圆心1O 的连线也垂直于ABC ∆所在的平面,从而确定球心O 与1,,O A P 共面.求出了球的半径,找到解题的突破口.12.已知函数()21,0,log ,0,kx x f x x x +≤⎧=⎨>⎩下列是关于函数()()1y f f x =+的零点个数的四种判断:①当0k >时,有3个零点;②当0k <时.有2个零点;③当0k >时,有4个零点;④当0k <时,有1个零点.则正确的判断是( ) A .③④B .②③C .①④D .①② 【答案】A 【解析】 试题分析:若xx f x 2log )(,0=>.当log 2>x ,即1>x 时,01)(log log ))((22=+=x x f f ,解得2=x ;当0lo g 2≤x ,即10≤<x 时,011)(log ))((2=++=x k x f f ,当0>k ,解得122<=-kx 适合;当0<k ,解得122>=-kx 不适合.若1)(,0+=≤kx x f x ,若01<+kx ,则011))((2=+++=k x k x f f ,即022=++k x k ,当22,0kk x k +-=>合适,0<k 时不合适;若01>+kx ,则01)1(log ))((2=++=kx x f f ,即211=+kx 也即kx 21-=,当0>k 时适合;当0<k 不合适.因此当0>k 时有四个根k kk k21,2,2,222-+--;当0<k 只有一个根2=x ,应选A. 考点:函数的零点和分类整合思想.【易错点晴】本题考查的是函数零点的个数及求解问题.解答时借助题设条件,合理运用分类整合的数学思想,通过对变量x 的分类讨论,建立了关于函数)(x f 的方程,再通过对参数k 的分类讨论,求解出方程01))((=+x f f 的根,求解时分类务必要求合乎逻辑力争做到不重不漏,要有条理.解答本题的难点是如何转化方程01))((=+x f f ,如何进行分类整合.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知抛物线()220y px p =>的焦点为F ,ABC ∆的顶点都在抛物线上,且满足FA FB FC +=-,则111AB BC CAk k k ++=______. 【答案】0考点:抛物线的几何性质.14.设曲线()1*n y xx N +=∈在点()1,1处的切线与x 轴的交点横坐标为n x ,则 20151201522015320152014log log log log x x x x +++⋅⋅⋅+的值为______.【答案】1- 【解析】试题分析:因n x n x f )1()(/+=,而1)1(/+=n f ,即切线的斜率1+=n k ,故切线方程为)1)(1(1-+=-x n y ,令0=y 得1+=n n x n ,所以11143322121+=+⋅⋅⋅=⋅⋅⋅n n n x x x n ,而20151201522015320152014log log log log x x x x +++⋅⋅⋅+1120141log )(log 20152014212015-=+=⋅⋅⋅=x x x .考点:导数的几何意义.15.已知ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,已知cos 2cos 22cos 2A B C +=,则cos C 的最小值为______. 【答案】21考点:余弦定理和基本不等式的运用.【易错点晴】本题考查的是以三角形中的三角变换为背景,其实是和解三角形有关的最小值问题.求解本题的关键是如何将题设条件cos 2cos 22cos 2A B C +=与cos C 的最小值进行联系,这也是解答好本题的突破口.解答时先运用二倍角公式将其化为C B A 222sin 2sin sin =+,再运用正弦定理将其转化为三角形的边的等式2222c b a =+.然后再借助余弦定理和基本不等式进行联系,从而求出cos C 的最小值. 16.若函数()f x 在定义域D 内的某个区间I 上是增函数,且()()f x F x x=在I 上也是增函数,则称()y f x =是I 上的“完美函数”.已知()ln 1xg x e x x =+-+,若函数()g x 是区间,2m ⎡⎫+∞⎪⎢⎣⎭上的“完美函数”,则整数m 的最小值为______. 【答案】3 【解析】试题分析:令x x x e x G x 1ln )(+-+=,则2//2ln )1()(,11)(x x e x x G x e x g x x -+-=-+=,当2=m 时, 02)(,0)1(//<-=>=x G e g ,不合题设;当3=m 时, 3/231()023g e =+>,32/13ln 2322()0924e G +-=>符合题设,所以所求最小的正整数3=m .考点:导函数的几何意义.【易错点晴】本题以新定义的完美函数为背景,考查的是导函数的与函数的单调性之间的关系的应用问题.解答本题的关键是如何建立满足不等式的实数m 的值.求解时依据题设条件先对函数()ln 1x g x e x x =+-+和xx g x F )()(=求导,建立不等式组,求参数m 的值时运用的是试验验证法,即根据题设条件对适合条件的实数m 的值进行逐一检验,最终获得答案. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,且首项()*113,3n n n a a S n N +≠=+∈. (1)求证:{}3nn S -是等比数列;(2)若{}n a 为递增数列,求1a 的取值范围. 【答案】(1)证明见解析;(2)()()+∞-,33,9 .(2)由(1)得,()11332nn n S a --=-⨯,所以()11323n n n S a -=-⨯+.当2n ≥时,考点:等比数列及递增数列等有关知识的运用.18.(本小题满分12分)有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频率分布如下表:频数假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).(l)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车,A B按(1)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.【答案】(1) 汽车A选择公路1,汽车B选择公路2;(2)汽车B为生产商获得毛利润更大..X=.(Ⅱ)设X表示汽车A选择公路1时,销售商付给生产商的费用,则42,40,38,36X的分布列如下:()420.2400.4380.2360.239.2E X=⨯+⨯+⨯+⨯=.-=(万元).∴表示汽车A选择公路1时的毛利润为39.2 3.236.0设Y 表示汽车B 选择公路2时的毛利润,42.4,40.4,38.4,36.4Y =. 则Y 的分布列如下:0.4()42.40.140.40.438.40.436.40.139.4E Y =⨯+⨯+⨯+⨯=.∵36.039.4<,∴汽车B 为生产商获得毛利润更大.考点:概率和随机变量的分布列与数学期望等有关知识的运用. 19.(本小题满分12分)如图,平面PAC ⊥平面ABC ,AC BC ⊥,PAC ∆为等边三角形,PE BC ,过BC 作平面交AP 、AE 分别于点N 、M .(1)求证:MN PE ;(2)设ANAPλ=,求λ的值,使得平面ABC 与平面MNC 所成的锐二面角的大小为45︒.【答案】(1)证明见解析;(2) 1λ=.考点:空间直线与平面的位置关系及空间向量等有关知识的运用.【易错点晴】空间向量是理科高考的必考的重要内容之一,也是高考的难点之一.解答这类问题的关键是运算求解能力不过关和灵活运用数学知识和思想方法不到位.解答本题的两个问题时,都是通过建立空间直角坐标系,充分借助题设条件和空间向量的有关知识进行推证和求解.第一问中的求证是借助向量共线定理进行推证的;第二问中充分运用向量的数量积公式建立方程的,通过解方程从而求出1λ=.如何通过计算建立方程是解答好本题的难点和关键之所在.20.(本小题满分12分)如图,已知圆(22:16E x y +=,点)F,P 是圆E 上任意一点线段PF 的垂直平分线和半 径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交下,A B 两点,直线,,OA l OB 的斜率分别为12,,k k k (其中0k >).OA B ∆的面积为S ,以,O A O B 为直径的圆的面积分别为12,S S .若12,,k k k 恰好构成等比数列,求12S S S+的取 值范围.【答案】(1) 2214x y +=;(2)5,4π⎡⎫+∞⎪⎢⎣⎭.(2)设直线l 的方程为y kx m =+,()()1122,,,A x y B x y由2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()()222148410k x kmx m +++-=,又22221212144x x y y +=+= 则()222222121122123324444S S x y x y x x ππ⎛⎫+=⋅+++=⋅++ ⎪⎝⎭()212123521624x x x x πππ⎡⎤=+-+=⎣⎦为定值.12分∴125544S S S ππ+=≥当且仅当1m =±时等号成立. 综上:125,4S S S π+⎡⎫∈+∞⎪⎢⎣⎭.14分考点:直线与椭圆的位置关系等有关知识的运用. 21.(本小题满分12分) 已知函数()()1ln 0x f x x a ax-=-≠.(l )求函数()f x 的单调区间;(2)当1a =时,求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值()0.69ln 20.70<<;(3)求证:21ln e x x x+≤. 【答案】(1) 若0a <,函数()f x 的单调减区间为()0,+∞,若0a >,()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)最大值为0,最小值为1ln 2-+;(3)证明见解析.考点:导数在研究函数的单调性和最值中的运用.【易错点晴】本题以探求函数的单调性和不等式的推证为背景,考查的是导函数的与函数的单调性之间的关系的综合应用问题.解答本题的第一问时,是直接依据题设条件运用分类讨论的思想求出单调区间;第二问中的最值求解则是运用导数研究函数在各个区间上的单调性,再依据最值的定义求出最值;第三问中的不等式的证明和推证则是依据题设条件,将问题进行合理有效的转化为求最值问题.体现数学中的化归与转化的数学思想的巧妙运用.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲已知直线AC 与圆O 相切于点B ,AD 交圆O 于F 、D 两点,CF 交圆于,E F ,BD CE ,AB BC =,2AD =,1BD =.(1)求证:BDF FBC ∆∆∽; (2)求CE 的长.【答案】(1)证明见解析;(2)4CE =.考点:圆的有关知识的及运用.23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的方程为()2cos 0a a ρθ=≠,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为31,43x t y t =+⎧⎨=+⎩(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.【答案】(1) 4350x y -+=,()222x a y a -+=;(2) 59a ≤-或5a ≥.考点:极坐标方程和参数方程等有关知识及运用.24.(本小题满分10分)选修4-5:不等式选讲(1)设函数()5,2f x x x a x R =-+-∈,若关于x 的不等式()f x a ≥在R 上恒成立,求实数a 的最大值;(2)已知正数,,x y z 满足231x y z ++=,求321x y z++的最小值.【答案】(1)54;(2)16+【解析】 试题分析:(1)依据题设条件运用绝对值不等式的性质求解;(2)借助题设条件运用柯西不等式求解.试题解析:考点:绝对值不等式和柯西不等式等有关知识及运用.。
河北省衡水市武邑中学2018届高三下学期第六次模拟考试数学(理)试题(精编含解析)
河北武邑中学2018届高三下学期第六次模拟考试数学试题(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.将正确答案填涂在答题卡上.1. 已知,,则( )A. B. C. D.【答案】C【解析】由题意得:,,∴故选:A2. 若复数(,且),且,则的实部为( )A. B. C. D.【答案】A【解析】【分析】利用复数模的公式列方程求出,利用复数乘法的运算法则化简复数,从而可得结果.【详解】因为复数(,且),所以,解得,可得,所以,的实部为,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 已知函数,则的图象大致为( )A. B. C. D.【答案】A【解析】【分析】可以排除法,利用奇偶性可排除选项;利用,可排除选项,从而可得结果.【详解】因为,所以函数是奇函数,其图象关于原点对称,可排除选项;又因为,可排除选项.故选A.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象4. 已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )A. B. C. D.【答案】B【解析】【分析】由题意判断出直线与渐近线垂直,利用相互垂直的直线的斜率之间的关系和离心率公式即可得结果.【详解】双曲线的渐近线方程为,又直线可化为,可得斜率为3,双曲线的一条渐近线与直线垂直,,双曲线的离心率,故选B.【点睛】本题主要考查双曲线的渐近线及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解..5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”,其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”.现若向此三角形内随机投一粒豆子(视为点),则豆子落在其内切圆外的概率是( )A. B. C. D.【答案】B【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为( )A. B. C. D.【答案】C【解析】由题意得,即,把点代入方程可得,所以,可得函数的一个对称中心为,故选C.7. 下图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的值分别为8,10,0,则输出和的值分别为( )A. 2,4B. 2,5C. 0,4D. 0,5【答案】B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的、的值.【详解】模拟执行程序框图,可得,,不满足,不满足;满足;满足;满足;不满足,满足,输出的值为2,的值为,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 已知,,则的值为( )A. B. C. D.【答案】B【解析】【分析】由,可得,由平方关系可得,从而得,进而可得结果.【详解】因为,所以,可得,因为,所以,,,所以的值为,故选B.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9. 若关于的混合组有解,则的取值范围为( )A. B. C. D.【答案】C【解析】【分析】问题等价于函数的图象与条件表示的可行域有交点,作出可行域,由图可知必有且图象在过两点的图象之间,从而可得结果.【详解】关于的混合组有解,等价于函数的图象与条件表示的可行域有交点,画出可行域如图所示,求得,由图可知,欲满足条件必有且图象在过两点的图象之间,当图象过点时,,当图象过点时,,故的取值范围是,故选C.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.10. 已知直线与函数的图象相切,则切点的横坐标为( )A. B. C. 2 D.【答案】A【解析】【分析】设切点坐标为,根据导数的几何意义、点在直线上且在曲线上,列出方程组求出切点坐标.【详解】由可得,设切点坐标为,则,解得,故选A.【点睛】本题主要考查利用导数求切线斜率,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.11. 已知为抛物线的焦点,为抛物线上三点,当时,称为“和谐三角形”,则“和谐三角形”有( )A. 0个B. 1个C. 3个D. 无数个【答案】D【解析】【分析】当时,为的重心,连接并延长至,使,当在抛物线内部时,设,利用“点差法”可证明总存在以为中点的弦,从而可得结果.【详解】抛物线方程为为曲线上三点,当时,为的重心,用如下办法构造,连接并延长至,使,当在抛物线内部时,设,若存在以为中点的弦,设,则则,两式相减化为,,所以总存在以为中点的弦,所以这样的三角形有无数个,故选D.【点睛】本题主要考查平面向量的基本运算以及“点差法”的应用,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解. 12. 祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理: “幂势既同,则积不容异”.意思是:夹在两个乎行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现将曲线绕轴旋转一周得到的几何体叫做椭球体,记为,几何体的三视图如图所示.根据祖暅原理通过考察可以得到的体积,则的体积为( )A. B. C. D.【答案】D【解析】【分析】由三视图可得几何体是一个底面半径为,高为的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,由祖暅原理可得结果.【详解】由三视图可得几何体是一个底面半径为,高为的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,则圆柱的体积为,圆锥的体积,利用祖暅原理可计半椭球的体积为,所以的体积为,故选D.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及几何体的体积,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.二.填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位.13. 设平面向量与向量互相垂直,且,若,则_____________.【答案】5【解析】由平面向量与向量互相垂直可得所以,又,故答案为.【方法点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14. 展开式中,的系数为_____________.【答案】【解析】【分析】根据展开式的通项公式,分两种情况可得展开式的系数.【详解】展开式的通项公式为,故分别令,可得展开式与的系数分别为故展开式的系数为,故答案为.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15. 现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球赢.如果甲先抓,那么下列推断正确的是_____________.(填写序号)①若,则甲有必赢的策略;②若,则乙有必赢的策略;③若,则甲有必赢的策略;④若,则乙有必赢的策略.【答案】③【解析】【分析】如果甲先抓,若甲有必贏的策略,必贏的策略为:甲先抓1球,当乙抓1球时,再抓3球;当乙抓2球时,甲再抓2球;当乙抓3球时,甲再抓1球;这时还有4个小球,轮到乙抓,按规则,乙最少抓1个球,最多抓3个球,无论如何抓,都会至少剩一个球,至多剩3个球;甲再抓走所有剩下的球,从而甲胜.【详解】现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球贏,,如果甲先抓,则甲有必赢的策略,必赢的策略为:(1)甲先抓1球,(2)当乙抓1球时,甲再抓3球;当乙抓2球时,甲再抓2球;当乙抓3球时,甲再抓1球;(3)这时还有4个小球,轮到乙抓,按规则,乙最少抓1个球,最多抓3个球,无论如何抓,都会至少剩一个球,至多剩3个球;(4)甲再抓走所有剩下的球,从而甲胜,故答案为③.【点睛】本题主要考查推理案例,属于难题.推理案例的题型是高考命题的热点,由于条件较多,做题时往往感到不知从哪里找到突破点,解答这类问题,一定要仔细阅读题文,逐条分析所给条件,并将其引伸,找到各条件的融汇之处和矛盾之处,多次应用假设、排除、验证,清理出有用“线索”,找准突破点,从而使问题得以解决.16. 中,角的对边分别为,,面积为,当最大时,_____________.【答案】【解析】,当且仅当,取等号,∴∠C的最大值为75°,此时sinC=,,∴.故答案为:三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 已知数列的前项和.(1)求;(2)求.【答案】(1);(2)【解析】【分析】(1)由可得当时,,两式相减,检验当时是否适合,从而可得结果;(2)利用错位相减法,结合等比数列的求和公式即可得结果.【详解】(1)当时,.当时,,故.(2)①,②,②-①得,.【点睛】本题主要考查数列的通项公式与前项和公式之间的关系以及错误相减法求和,属于中档题. 已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.18. 2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区,消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归方程(保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求的分布列及数学期望.参考公式及数据:,,,.【答案】(1)2000;(2)见解析【解析】试题分析:(1)依据公式计算回归方程,在根据求出的结果得到相应的预测值.(2)是离散型随机变量,它服从超几何分布,故根据公式计算出相应的概率,得到分布列后再利用公式计算期望即可.解析:(1)由已知有,,故变量关于变量的线性回归方程为,所以当时,.(2)由题意可知的可能取值有1,2,3,4.,.所以的分布列为19. 如图,已知平面平面,为线段的中点,,四边形为边长为1的正方形,平面平面,,,为棱的中点.(1)若为线上的点,且直线平面,试确定点的位置;(2)求平面与平面所成的锐二面角的余弦值.【答案】(1)见解析;(2)【解析】【分析】(1)连接,由直线平面,,又为的中点,从而得为的中位线,为的中点;(2)先证明平面,可得两两相垂直,以为坐标原点,分别以所在直线为轴,轴,轴建立空间直角坐标系,平面的一个法向量,利用向量垂直数量积为零列方程求出平面的一个法向量,由空间向量夹角余弦公式可得结果.【详解】(1)连接,直线平面,平面,平面平面,又为的中点,为的中位线,为的中点.(2)则,又为的中点,.又平面平面,平面平面四边形为平行四边形.又,四边形为菱形.又,,,,平面平面平面,两两相垂直以为坐标原点,分别以所在直线为轴,轴,轴建立空间直角坐标系依题意,得,,.设平面的一个法向量则由且得:且令,得.又平面的一个法向量所求锐二面角的余弦值约:.【点睛】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知抛物线和圆的公共弦过抛物线的焦点,且弦长为4.(1)求抛物线和圆的方程;(2)过点的直线与抛物线相交于两点抛物线在点处的切线与轴的交点为,求面积的最小值. 【答案】(1);(2)【解析】试题分析:(1)由题意可知,求得的值,得到抛物线的方程,进而求得圆的方程.(2)设直线的方程为:,联立方程组,求的及,利用导数求得切线方程,得到,利用点到直线的距离公式,求的距离,表示出面积的表达式,利用导数,研究函数的单调性和最值,即可得到结论.试题解析:(1)由题意可知,,所以,故抛物线的方程为.又,所以,所以圆的方程为.(2)设直线的方程为:,并设,联立,消可得,.所以;.,所以过点的切线的斜率为,切线为,令,可得,,所以点到直线的距离,故,分又,代入上式并整理可得:,令,可得为偶函数,当时,,,令,可得,当,,当,,所以时,取得最小值,故的最小值为.点睛:本题主要考查抛物线的方程与性质、直线与圆锥曲线的位置关系,解答此类题目,利用题设条件确定圆锥曲线方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,利用函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21. 已知函数.(1)若函数在区间上为增函数,求的取值范围;(2)当且时,不等式在上恒成立,求的最大值.【答案】(1);(2)3【解析】试题分析:(1)依题意可得,函数在区间上为增函数等价于在上恒成立,即在上恒成立,从而可得的取值范围;(2)不等式在上恒成立等价于对任意恒成立,令,利用导数研究函数的单调性,从而可得的最小值,即可求得的最大值.试题解析:(1)依题意可得.∵函数在区间上为增函数∴在上恒成立,即在上恒成立,即在上恒成立,而.∴,即的取值范围为.(2)当时,.∵∴原不等式可化为,即对任意恒成立.令,则.令,则.∴在上单调递增.∵,∴存在使,即,即当时,,即;当时,,即.∴在上单调递减,在上单调递增.由,得,∴∵∴.点睛:本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.22. 在平面直角坐标系中,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.(1)求曲线的参数方程;(2)过原点且关于轴对称的两条直线与分别交曲线于和,且点在第一象限,当四边形周长最大时,求直线的普通方程.【答案】(1),(为参数);(2)【解析】试题分析:(Ⅰ)首先求得的普通方程,由此可求得的参数方程;(Ⅱ)设四边形的周长为,点,然后得到与的关系式,从而利用辅助角公式求得点的直角坐标点,从而求得的普通方程.试题解析:(Ⅰ),(为参数).(Ⅱ)设四边形的周长为,设点,,且,,所以,当()时,取最大值,此时,所以,,,此时,,的普通方程为.点睛:将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的(它们都是参数的函数)的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.23. 已知函数.(1)解不等式;(2)若,不等式对恒成立,求的取值范围.【答案】(1)或;(2)或【解析】【分析】(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2),恒成立等价于.因为,,所以由原不等式恒成立,得,从而可得结果.【详解】(1),原不等式等价于:或或,解得:,或,或,综上所述,不等式解集是:或;(2),恒成立等价于.因为,所以的最大值为;时,;时,;时,,所以,所以由原不等式恒成立,得:,解得:或.【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)
2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)一、选择题(本大题共12小题,共60.0分)1. 已知x ,y ∈R ,i 为虚数单位,且(x −2)i −y =−1+i ,则(1+i)x+y 的值为( )A. 4B. 4+4iC. −4D. 2i2. 已知集合A ={x|−1≤x ≤1},B ={x|x 2−5x +6≥0},则下列结论中正确的是( )A. A ∩B =BB. A ∪B =AC. A ⊊BD. ∁R A =B3. 已知△ABC 的面积为2,在△ABC 所在的平面内有两点P 、Q ,满足PA ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ =0,QA ⃗⃗⃗⃗⃗ =2BQ⃗⃗⃗⃗⃗⃗ ,则△APQ 的面积为( ) A. 12B. 23C. 1D. 24. 如图,一个空间几何体的正视图、侧视图都是面积为√32,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A. 2√3B. 4√3C. 4D. 85. 七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A. 316B. 38 C. 516D. 7166. 定义运算:∣∣∣a 1a 2a 3a 4∣∣∣=a 1a 4−a 2a 3,将函数f(x)=∣∣∣∣∣√3cos x21sin x 2∣∣∣∣∣的图象向左平移m(m >0)个单位,所得图象对应的函数为偶函数,则m 的最小值是( )A. π3B. 2π3 C. 4π3 D. 7π37. 已知a =3ln2π,b =2ln3π,c =3lnπ2,则下列选项正确的是( )A. a >b >cB. c >a >bC. c >b >aD. b >c >a8. 双曲线C 的左右焦点分别为F 1,F 2,且F 2恰为抛物线y 2=4x 的焦点,设双曲线C与该抛物线的一个交点为A ,若△AF 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为( ) A. √2 B. 1+√2 C. 1+√3 D. 2+√39. 如图①,利用斜二侧画法得到水平放置的△ABC 的直观图△A′B′C′,其中A′B′//y′轴,B′C′//x′轴.若A′B′=B′C′=3,设△ABC 的面积为S ,△A′B′C 的面积为S′,记S =kS′,执行如图②的框图,则输出T 的值( )A. 12B. 10C. 9D. 610. 如图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为a n ,则1a 3+1a 4+1a 5+⋯+1a 99=( )A. 97300B. 97100C. 3100D. 110011. 过椭圆x 29+y 24=1上一点H 作圆x 2+y 2=2的两条切线,点A ,B 为切点,过A ,B 的直线l 与x 轴,y 轴分布交于点P ,Q 两点,则△POQ 面积的最小值为( )A. 12B. 43C. 1D. 2312. 若函数f(x)在其图象上存在不同的两点A(x 1,y 1),B(x 2,y 2),其坐标满足条件:|x 1x 2+y 1y 2|−√x 12+y 12⋅√x 22+y 22的最大值为0,则称f(x)为“柯西函数”,则下列函数:①f(x)=x +1x (x >0); ②f(x)=lnx(0<x <e); ③f(x)=cosx ; ④f(x)=x 2−1.其中为“柯西函数”的个数为( )A. 1B. 2C. 3D. 4 二、填空题(本大题共4小题,共20.0分)13. 已知等比数列{a n }的第5项是二项式(√x −13x )6展开式的常数项,则a 3a 7=______. 14. 已知在平面直角坐标系中,O(0,0),M(1,12),N(0,1),Q(2,3),动点P(x,y)满足不等式0≤OP ⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗ ≤1,0≤OP ⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ ≤1,则W =OQ⃗⃗⃗⃗⃗⃗ ⋅OP ⃗⃗⃗⃗⃗ 的最大值为______. 15. 已知数列{a n }的前n 项和为S n ,且S n +1=2a n ,则使不等式a 12+a 22+⋯+a n 2<5×2n+1成立的n 的最大值为______.16. 若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,则______.(写出所有正确结论的编号)①四面体ABCD 每个面的面积相等②四面体ABCD每组对棱相互垂直③连接四面体ABCD每组对棱中点的线段相互垂直平分④从四面体ABCD每个顶点出发的三条棱的长都可以作为一个三角形的三边长三、解答题(本大题共7小题,共84.0分)17.设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,.且sinAsinC=34(Ⅰ)求角B的大小;,1),当m⃗⃗ ⋅n⃗取最小值时,判断△ABC的(Ⅱ)设向量m⃗⃗ =(cosA,cos2A),n⃗=(−125形状.18.在四棱锥P−ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF//平面PAD,求AF的长;(3)求二面角A−PC−B的余弦值.19.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05269370602235851513920351597759567806835291057074079710882309984299646171629915065129169358 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和: (3)若采用分层轴样,按照学生选择A 题目或B 题目,将成绩分为两层,且样本中A 题目的成绩有8个,平均数为7,方差为4:样本中B 题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.20. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,∠F 1MF 2=60°,P 为椭圆上任意一点,且△PF 1F 2的面积的最大值为√3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点A ,B 为椭圆C 上的两个不同的动点,且OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =t(O 为坐标原点),则是否存在常数t ,使得O 点到直线AB 的距离为定值?若存在,求出常数t 和这个定值;若不存在,请说明理由.21. 已知函数f(x)=alnx −x 2.(1)当a =2时,求函数y =f(x)在[12,2]上的最大值;(2)令g(x)=f(x)+ax ,若y =g(x))在区间(0,3)上为单调递增函数,求a 的取值范围;(3)当a =2时,函数ℎ(x)=f(x)−mx 的图象与x 轴交于两点A(x 1,0),B(x 2,0),且0<x 1<x 2,又ℎ′(x)是ℎ(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较与0的关系,并给出理由.22. 选修4−4:参数方程选讲已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P点的极坐标为(2√3,π6),曲线C 的极坐标方程为ρ2+2√3ρsinθ=1. (Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;(Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :{x =3+2ty =−2+t (t 为参数)距离的最小值.23. 设函数f(x)=|x +1|+|x −5|,x ∈R .(Ⅰ)求不等式f(x)≤x +10的解集;(Ⅱ)如果关于x 的不等式f(x)≥a −(x −2)2在R 上恒成立,求实数a 的取值范围.答案和解析1.【答案】C【解析】解:∵x ,y ∈R ,i 为虚数单位,且(x −2)i −y =−1+i , ∴{x −2=1−y =−1,解得x =3,y =1, ∴(1+i)x+y =(1+i)4=(2i)2=−4. 故选:C .利用复数相等的性质求出x ,y ,再利用复数的代数形式的乘除运算法则能求出结果. 本题考查实数值的求法,涉及到复数相等、复数的代数形式的乘除运算法则等基础知识,考查推理论证能力、运算求解能力,是基础题. 2.【答案】C【解析】解:由x 2−5x +6≥0,化为(x −2)(x −3)≥0,解得x ≥3,x ≤2,∴B ={x|x ≥3,x ≤2}, ∴A ⊊B , 故选:C .由x 2−5x +6≥0,解得x ≥3,x ≤2,本题考查了一元二次不等式的解法、集合之间的关系,考查了推理能力与计算能力,属于基础题. 3.【答案】B【解析】解:由题意PA ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ =0可知,P 为AC 的中点,QA⃗⃗⃗⃗⃗ =2BQ ⃗⃗⃗⃗⃗⃗ ,可知Q 为AB 的一个三等分点,如图: 因为S △ABC =12AB ⋅ACsinA =2.所以S △APQ =12AP ⋅AQsinA =12×12AB ⋅23ACsinA =23.故选:B .画出△ABC ,通过足PA ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0,QA ⃗⃗⃗⃗⃗ =2BQ⃗⃗⃗⃗⃗⃗ ,标出满足题意的P 、Q 位置,利用三角形的面积公式求解即可.本题考查向量在几何中的应用,三角形的面积的求法,考查转化思想与计算能力. 4.【答案】C【解析】解:一个空间几何体的正视图、侧视图都是面积为√32,且一个内角为60°的菱形,所以菱形的边长为:1,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成, 底面边长为1,侧棱长为:√52,所以几何体的表面积为:8×12×1×1=4.故选:C .由题意求出菱形的边长,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,求出正四棱锥侧面积,即可求解.本题是基础题,考查三视图推出几何体的判断,几何体的表面积的求法,注意视图的应用.5.【答案】D【解析】【分析】本题主要考查几何概型的概率的计算,结合面积之比是解决本题的关键. 根据几何概型的概率公式转化为对应面积之间的关系进行求解即可. 【解答】解:以最小的等腰三角形为基本单位,则大正方体有16个小等腰直角三角形构成, 则阴影部分对应的有7个小等腰直角三角形, 则对应概率P =716, 故选D .6.【答案】C【解析】解:定义运算:∣∣∣a 1a 2a3a 4∣∣∣=a 1a 4−a 2a 3,将函数f(x)=∣∣∣∣∣√3cos x21sin x 2∣∣∣∣∣化为: f(x)=√3sin x 2−cos x 2=2sin(x −π6)再向左平移m(m >0)个单位即为:g(x)=f(x +m)=2sin(x+m 2−π6);又因为新函数g(x)为偶函数,由三角函数图象的性质可得,即x =0时函数值为最大或最小值,即:sin (m2−π6)=1;或sin (m2−π6)=−1; 所以:m2−π6=kπ+π2,k ∈Z ;即m =2kπ+4π3,k ∈Z ;又m >0,所以m 的最小值是:4π3 故选:C .由题表达函数f(x)=√3sin x2−cos x2=2sin(x −π6);向左平移m(m >0)个单位即为:g(x)=f(x +m)=2sin(x+m 2−π6);利用新函数g(x)为偶函数,由三角函数图象的性质可得答案.本题考查对三角函数定义的理解能力,三角函数恒等变性,三角函数图象及性质. 7.【答案】D【解析】【分析】 由a6π=ln22,b 6π=ln33,c 6π=lnππ,则a ,b ,c 的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f(x)=lnx x,则f′(x)=1−lnx x 2,根据对数的运算性质,导数和函数的单调性,即可比较.本题考查了不等式的大小比较,导数和函数的单调性,属于难题. 【解答】 解:a6π=ln22,b 6π=ln33,c 6π=lnππ,∵6π>0,∴a,b,c的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f(x)=lnxx,则,当x=e时,,当x>e时,,当0<x<e时,0'/> ∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4,∴ln33>lnππ>ln44=ln22,∴b>c>a,故选:D.8.【答案】B【解析】解:抛物线的焦点坐标(1,0),所以双曲线中,c=1,又由已知得|AF2|=|F1F2|=2,而抛物线准线为x=−1,根据抛物线的定义A点到准线的距离=|AF2|=2,因此A点坐标为(1,2),由此可知是△AF1F2是以AF1为斜边的等腰直角三角形,因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,所以双曲线的离心率e=ca =2c2a=|F1F2||AF1−AF2|=2√2−2=√2+1.故选:B.求出抛物线的焦点坐标,即可得到双曲线C的值,利用抛物线与双曲线的交点以及△AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a的值,然后求出离心率.本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.9.【答案】A【解析】解:∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′=12A′B′⋅B′C′⋅sin45°=9√24由斜二侧画法的画图法则,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S=12AB⋅BC=9则由S=kS′得k=2√2,则T=T=√22k(m−1)=2(m−1)故执行循环前,S=9,k=2√2,T=0,m=1,满足进行循环的条件,执行循环体后,T=0,m=2当T=0,m=2时,满足进行循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进行循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进行循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进行循环的条件,退出循环后,T=12,故输出的结果为12故选:A.由斜二侧画法的画图法则,结合已知可求出S及k值,模拟程序的运行过程,分析变量T的值与S值的关系,可得答案.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模. 10.【答案】A【解析】解:a 3=12,a 4=20,a 5=30,猜想a n =n(n +1)(n ≥3,n ∈N +), 所以1a n=1n(n+1)=1n −1n+1,所以1a 3+1a 4+1a 5+⋯+1a 99=(13−14)+(14−15)+(15−16)+⋯+(199−1100)=13−1100=97300,故选:A .先观察图形再结合归纳推理可得解.本题考查了观察能力及归纳推理,属中档题. 11.【答案】D【解析】解:∵点H 在椭圆x 29+y 24=1上,∴H(3cosθ,2sinθ),∵过椭圆x 29+y 24=1上一点H(3cosθ,2sinθ)作圆x 2+y 2=2的两条切线,点A ,B 为切点,∴直线AB 的方程为:(3cosθ)x +(2sinθ)y =2,∵过A ,B 的直线l 与x 轴,y 轴分布交于点P ,Q 两点, ∴P(23cosθ,0),Q(0,1sin θ),∴△POQ 面积S =12×23cosθ×1sin θ=23×1sin2θ,∵−1≤sin2θ≤1,∴当sin2θ=1时,△POQ 面积取最小值23. 由点H 在椭圆x 29+y 24=1上,知H(3cosθ,2sinθ),由过椭圆x 29+y 24=1上一点H(3cosθ,2sinθ)作圆x 2+y 2=2的两条切线,点A ,B 为切点,知直线AB 的方程为:(3cosθ)x +(2sinθ)y =2,由此能求出△POQ 面积最小值.本题考查三角形面积的最小值的求法,具体涉及到椭圆、圆、直线方程、三角函数、参数方程等基本知识点,解题时要认真审题,注意等价转化思想的合理运用. 12.【答案】B【解析】解:由柯西不等式得:对任意实数x 1,y 1,x 2,y 2:|x 1x 2+y 1y 2|−√x 12+y 12⋅√x 22+y 22≤0恒成立(当且仅当存在实数k ,使得x 1=kx 2,y 1=ky 2取等号),又函数f(x)在其图象上存在不同的两点A(x 1,y 1),B(x 2,y 2),满足条件:|x 1x 2+y 1y 2|−√x 12+y 12⋅√x 22+y 22的最大值为0, 则函数f(x)在其图象上存在不同的两点A(x 1,y 1),B(x 2,y 2),使得OA ⃗⃗⃗⃗⃗ 、OB⃗⃗⃗⃗⃗⃗ 共线,即存在点A 、B 与点O 共线;设AB 的方程为y =kx ,对于①,由于y =kx(x >0)与f(x)=x +1x 只有一个交点,所以①不是柯西函数;对于②,由于y =kx 与f(x)=lnx(0<x <e)最多只有一个交点,所以②不是柯西函数;对于③,取A(0,0),点B 任意,均满足定义,所以③是柯西函数; 对于④,取A(−1,0),B(1,0),均满足定义,所以④是柯西函数. 故选:B .由“柯西函数”得函数f(x)在其图象上存在不同的两点A(x 1,y 1),B(x 2,y 2由),使得OA⃗⃗⃗⃗⃗ 、OB ⃗⃗⃗⃗⃗⃗ 共线,即存在点A 、B 与点O 共线,判断满足条件即可. 本题考查了函数的新定义与应用问题,也考查了函数性质与应用问题,是中档题.13.【答案】259【解析】解:二项式(√x −13x )6展开式的通项公式为T r+1=C 6r ⋅(−13)r ⋅x 3−3r2,令3−3r 2=0,求得r =2,故展开式的常数项为C 62⋅19=53.等比数列{a n }的第5项a 5=53,可得a 3a 7=(a 5)2=259,故答案为:259.先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.再根据该项是等比数列{a n }的第5项,再利用等比数列的性质求得a 3a 7的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,等比数列的定义和性质,属于基础题. 14.【答案】4【解析】解:由题得:OM ⃗⃗⃗⃗⃗⃗⃗ =(1,12),OP ⃗⃗⃗⃗⃗ =(x,y),ON ⃗⃗⃗⃗⃗⃗ =(0,1),OQ ⃗⃗⃗⃗⃗⃗ =(2,3). ∵0≤OP⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗ ≤1,0≤OP ⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ ≤1. ∴{0≤ x +12y ≤ 10≤y ≤1⇒{0≤2x +y ≤20≤y ≤1 ∵OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =2x +3y =(2x +y)+2y ; ∴OP⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ ∈[0,4]. ∴所求最大值为4. 故答案为:4.利用向量的坐标求法求出各个向量的坐标,利用向量的数量积公式求出各个数量积代入已知不等式得到P 的坐标满足的不等式,将 OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ 的值用不等式组中的式子表示,利用不等式的性质求出范围.本题考查向量的坐标形式的数量积公式、不等式的性质. 15.【答案】4【解析】解:当n =1时,a 1+1=2a 1,解得a 1=1.当n ≥2时,∵S n +1=2a n ,S n−1+1=2a n−1,∴a n =2(a n −a n−1),∴ana n−1=2.∴数列{a n }是以1为首项,2为公比的等比数列.∴a n =2n−1,∴a n 2=4n−1.∴a 12+a 22+⋯+a n 2=1+4+42+⋯+4n−1=4n −14−1=13(4n −1).∴13(4n −1)<5×2n+1.∴2n (2n −30)<1,可知使得此不等式成立的n 的最大值为4.利用a n ={S 1,n =1S n −S n−1,n ≥2及等比数列的通项公式即可得出a n ,利用等比数列的前n 项和公式即可得出a 12+a 22+⋯+a n2,再化简即可得出答案. 熟练掌握a n ={S 1,n =1S n −S n−1,n ≥2及等比数列的通项公式、等比数列的前n 项和公式、不等式的解法等是解题的关键.16.【答案】①③④【解析】解:由题意可知四面体ABCD 为长方体的面对角线组成 的三棱锥,如图所示;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,则①正确; 当四面体棱长都相等时,四面体的每组对棱互相垂直, 则②错误;由长方体的性质可知四面体的对棱中点连线 必经过长方体的中心,由对称性知连接四面体ABCD 每组对棱中点的线段相互垂直平分,则③正确; 由AC =BD ,AB =CD ,AD =BC ,可得过四面体任意一点的三条棱的长为△ABD 的三边长,则④正确. 故答案为:①③④.由对棱相等知四面体为长方体的面对角线组成的三棱锥,借助长方体的性质判断各结论是否正确即可.本题考查了棱锥的结构特征与命题真假的判断问题,解题的关键是把三棱锥放入长方体中,是基础题.17.【答案】解:(Ⅰ)因为a 、b 、c 成等比数列,则b 2=ac.由正弦定理得sin 2B =sinAsinC . 又sinAsinC =34, 所以sin 2B =34. 因为sinB >0, 则sinB =√32.因为B ∈(0,π), 所以B =π3或2π3.又b 2=ac ,则b ≤a 或b ≤c ,即b 不是△ABC 的最大边, 故B =π3.(Ⅱ)因为向量m ⃗⃗ =(cosA,cos2A),n ⃗ =(−125,1),所以m⃗⃗ ⋅n ⃗ =−125cosA +cos2A =−125cosA +2cos 2A −1=2(cosA −35)2−4325,所以当cosA=35时,m⃗⃗ ⋅n⃗取的最小值−4325.因为12<cosA=35<√32,所以π6<A<π3.因为B=π3,所以A+B>π2.从而△ABC为锐角三角形.【解析】(Ⅰ)根据正弦定理和等比数列的关系建立方程关系即可求角B的大小;(Ⅱ)根据向量的数量积公式进行计算,然后利用三角函数的图象和性质即可判断三角形的性质.本题主要考查三角形的形状的判断,利用正弦定理和三角函数的公式是解决本题的关键,考查学生的运算能力.18.【答案】(1)证明:∵△ABC是正三角形,M是AC中点,∴BM⊥AC,即BD⊥AC.又∵PA⊥平面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.∴BD⊥PC.(2)解:取DC中点G,连接FG,则EG//平面PAD,∵直线EF//平面PAD,EF∩EG=E,∴平面EFG//平面PAD,∵FG⊂平面EFG,∴FG//平面PAD∵M为AC中点,DM⊥AC,∴AD=CD.∵∠ADC=120°,AB=4,∴∠BAD=∠BAC+∠CAD=90°,AD=CD=4√33,∵∠DGF=60°,DG=2√33,∴AF=1(3)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C(2,2√3,0),D(0,4√33,0),P(0,0,4). DB⃗⃗⃗⃗⃗⃗ =(4,−4√33,0)为平面PAC 的法向量. 设平面PBC 的一个法向量为n⃗ =(x,y ,z),则 ∵PC⃗⃗⃗⃗⃗ =(2,2√3,−4),PB ⃗⃗⃗⃗⃗ =(4,0,−4), ∴{2x +2√3y −4z =04x −4z =0, 令z =3,得x =3,y =√3,则平面PBC 的一个法向量为n ⃗ =(3,√3,3), 设二面角A −PC −B 的大小为θ,则cosθ=n⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DB ⃗⃗⃗⃗⃗⃗ |=√77. ∴二面角A −PC −B 余弦值为√77.【解析】(1)利用线面垂直的判定定理,证明BD ⊥平面PAC ,可得BD ⊥PC ;(2)设取DC 中点G ,连接FG ,证明平面EFG//平面PAD ,可得FG//平面PAD ,求出AD =CD ,即可求AF 的长;(3)建立空间直角坐标系,求出平面PAC 、平面PBC 的法向量,利用向量的夹角公式,即可求二面角A −PC −B 的余弦值.本题考查线面垂直的判定定理与性质,考查二面角,考查学生分析解决问题的能力,考查向量法的运用,确定平面的法向量是关键.19.【答案】解:(1)根据题意,读出的编号依次是: 512,916(超界),935(超界),805,770,951(超界), 512(重复),687,858,554,876,647,547,332. 将有效的编号从小到大排列,得332,512,547,554,647,687,770,805,858,876, 所以中位数为12×(647+687)=667;(2)由题易知,按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,所以样本编号之和即为该数列的前10项之和, 即S 10=10×8+10×9×902=4130;(3)记样本中8个A 题目成绩分别为x 1,x 2,…x 8,2个B 题目成绩分别为y 1,y 2,由题意可知∑x i 8i=1=8×7=56,∑(8i=1x i −7)2=8×4=32,∑y i 2i=1=16,∑(2i=1y i −8)2=2×1=2,故样本平均数为x −=18+2×(∑x i 8i=1+∑y i 2i=1)=110×(56+16)=7.2;样本方差为s 2=18+2×[∑(8i=1x i −7.2)2+∑(2i=1y i −7.2)2]=110×{∑[8i=1(x i −7)−0.2]2+∑[2i=1(y i −8)+0.8]2} =110×[∑(8i=1x i −7)2−0.4∑(8i=1x i −7)+8×0.22+∑(2i=1y i −8)2+1.6∑(2i=1y i −8)+2×0.82]=110×(32−0+0.32+2+0+1.28) =3.56;所以估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.【解析】(1)由题取出十个编号,先将编号从小到大排列再求中位数(2)按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,求该数列的前10项和.(3)分别求出样本的平均数和方差,900名考生选做题得分的平均数与方差和样本的平均数与方差相等.本题考查了随机数表法抽样应用问题,也考查了系统抽样和平均数、方差的计算问题,是中档题. 20.【答案】解:(Ⅰ)由题得,{ca=1212×2c ×b =√3a 2=b 2+c 2,解得a 2=4,b 2=3,∴椭圆的标准方程为x 24+y 23=1.(Ⅱ)设A(x 1,y 1)、B(x 2,y 2),当直线AB 的斜率存在时, 设其直线方程为:y =kx +n , 则原点O 到直线AB 的距离为d =√1+k 2,联立方程{x 24+y 23=1y =kx +n, 化简得,(4k 2+3)x 2+8knx +4n 2−12=0, 由△>0得4k 2−n 2+3>0, 则x 1+x 2=−8kn4k 2+3,x 1x 2=4n 2−124k 2+3,∴OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+n)(kx 2+n)=(k 2+1)x 1x 2+kn(x 1+x 2)+n 2=t即(7d 2−12−4t)k2+7d 2−12−3t =0对任意的k ∈R 恒成立,则{7d 2−12−4t =07d 2−12−3t =0,解得t =0,d =2√217,当直线AB 斜率不存在时,也成立.故当t =0时,O 点到直线AB 的距离为定值d =2√217.【解析】(Ⅰ)由题得,{ca=1212×2c ×b =√3a 2=b 2+c 2,解得a 2=4,b 2=3,即可求出椭圆方程, (Ⅱ)设A(x 1,y 1)、B(x 2,y 2),当直线AB 的斜率存在时,设其直线方程为:y =kx +n ,由得由此利用韦达定理、向量知识,结合已知条件能求出结果.本题考查椭圆方程的求法,考查满足向量的数量积之和为定值的实数值的求法,考查直线方程、椭圆性质、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(1)∵f(x)=2lnx −x 2, 可得f′(x)=2x−2x =2−2x 2x,函数f(x)在[12,1]是增函数,在[1,2]是减函数, 所以f(1)取得最大值,且为−1; (2)因为g(x)=alnx −x 2+ax , 所以g′(x)=ax −2x +a ,因为g(x)在区间(0,3)上单调递增, 所以在(0,3)上恒成立, 即有a ≥2x 2x+1在(0,3)的最大值,由y =2x 2x+1的导数为y′=2x 2+4x (x+1)2>0,则函数y =2x 2x+1在(0,3)递增,可得y <92,则a ≥92;(3)由题意可得,ℎ′(x)=2x −2x −m ,又f(x)−mx =0有两个实根x 1,x 2,∴2lnx 1−x 12−mx 1=0,2lnx 2−x 22−mx 2=0,两式相减,得2(lnx 1−lnx 2)−(x 12−x 22)=m(x 1−x 2), ∴m =2(lnx 1−lnx 2)x 1−x 2−(x 1+x 2),于是=2αx 1+βx 2−2(αx 1+βx 2)−2(lnx 1−lnx 2)x 1−x 2+(x 1+x 2)=2αx1+βx 2--2(lnx 1−lnx 2)x 1−x 2+(2α−1)(x 2−x 1),∵β≥α,∴2α≤1,∴(2α−1)(x 2−x 1)≤0.可得ℎ′(αx 1+βx 2)<0. 要证:ℎ′(αx 1+βx 2)<0, 只需证:2αx1+βx 2−2(lnx 1−lnx 2)x 1−x 2<0,只需证:x 1−x 2αx 1+βx 2−ln x 1x 2>0.(∗)令x 1x 2=t ∈(0,1), ∴(∗)化为1−tαt+β+lnt <0, 只证u(t)=1−t αt+β+lnt 即可. ∵u′(t)=1t +−(αt+β)−(1−t)α(αt+β)2=1t−1(αt+β)2=α2(t−1)(t−β2α2)t(αt+β)2,又∵β2α2≥1,0<t <1,∴t −1<0,∴u′(t)>0,∴u(t)在(0,1)上单调递增,故有u(t)<u(1)=0,∴1−tαt+β+lnt <0,即x 1−x 2αx 1+βx 2−ln x1x 2>0.∴ℎ′(αx 1+βx 2)<0.【解析】(1)当a =2时,利用导数的符号求得函数的单调性,再根据函数的单调性求得函数y =f(x)在[12,2]上的最大值;(2)先求得g′(x)=a x −2x +a ,因为g(x)在区间(0,3)上单调递增,所以在(0,3)上恒成立,运用参数分离和函数的单调性,求得右边函数的范围,由此可得a 的范围; (3)ℎ′(αx 1+βx 2)<0.理由:由题意可得,f(x)−mx =0有两个实根x 1,x 2,化简可得m =2(lnx 1−lnx 2)x 1−x 2−(x 1+x 2),可得--2(lnx 1−lnx 2)x 1−x 2+(2α−1)(x 2−x 1),由条件知(2α−1)(x 2−x 1)≤0,再用分析法证明ℎ′(αx 1+βx 2)<0.本题主要考查利用导数研究函数的单调性,利用函数的单调性求函数在闭区间上的最值,用分析法证明不等式,体现了转化的数学思想,属于难题.22.【答案】解 (1)∵P 点的极坐标为(2√3,π6),∴x P =2√3cos π6=2√3×√32=3,y P =2√3sin π6=2√3×12=√3.∴点P 的直角坐标(3,√3)把ρ2=x 2+y 2,y =ρsinθ代入ρ2+2√3ρsinθ=1可得x 2+y 2+2√3y =1,即x 2+(y +√3)2=4∴曲线C 的直角坐标方程为x 2+(y +√3)2=4.(2)曲线C 的参数方程为{x =2cosθy =−√3+2sinθ(θ为参数),直线l 的普通方程为x −2y −7=设Q(2cosθ,−√3+2sinθ),则线段PQ 的中点M(32+cosθ,sinθ). 那么点M 到直线l 的距离d =|32+cosθ−2sinθ−7|√12+22=|cosθ−2sinθ−112|√5=√5sin (θ−φ)+112√5.≥−√5+112√5=11√510−1,∴点M 到直线l 的最小距离为11√510−1.【解析】(1)利用x =ρcosθ,y =ρsinθ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.23.【答案】解:(Ⅰ)∵f(x)={−2x +4(x ≤−1)6(−1<x ≤5)2x −4(x >5),当x ≤−1时,应有−2x +4≤x +10,解不等式得−2≤x ≤−1, 当−1<x ≤5时,应有6≤x +10,解不等式得−1<x ≤5, 当x >5时,应有2x −4≤x +10,解不等式得5<x ≤14, 综上可得,不等式f(x)≤x +10的解集为[−2,14].(Ⅱ)设g(x)=a −(x −2)2,由函数f(x)与g(x)的解析式,可得f(x)在x ∈[−1,5]上取最小值为6,g(x)在x =2时取最大值为a , 若f(x)≥g(x)恒成立,则a ≤6.【解析】本题主要考查带有绝对值的函数,函数的恒成立问题,属于中档题. (Ⅰ)化简f(x)的解析式,分类讨论求得不等式f(x)≤x +10的解集. (Ⅱ)由题意可得f(x)在x ∈[−1,5]上的最小值大于或等于g(x)的最大值.。
2018届河北省衡水中学高三下学期期中考试理科数学试题及答案精品
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示语文成绩
与数学成绩,若在该样本中,数学成绩优秀率是 30%,求 a、b 的值;
( 3)在语文成绩为及格的学生中,已知
a 10,b 8 ,设随机变量
a b ,求① 的分布列、期望 ; ②数学成绩为优秀的人数比及格的
24. (本小题满分 10 分)选修 4-5 ,不等式选讲 在平面直角坐标系中,定义点 P(x1, y1) 、 Q( x2 , y2 ) 之间的直角距离
为 L( P,Q ) | x1 x2 | | y1 y2 |,点 A(x,1) , B(1,2) , C (5, 2) (1)若 L ( A, B) L( A,C) ,求 x 的取值范围; (2)当 x R 时,不等式 L ( A, B) t L( A, C ) 恒成立,求 t 的最小值 .
∴ O 为 B1C 中点又 D 为 AC 中点 , 从而 DO // AB1 (4 分)
∵ AB1 平面 BDC 1 , DO 平面 BDC1 ∴ AB1 // 平面 BDC1 (6 分) (Ⅱ)建立空间直角坐标系 B xyz 如图所示 ,
33
则 B(0,0,0) , A(
3,1,0) ,
C (0,2,0)
4
D.2k 或 2k 一 1 ( k∈Z)
4
C. 0
第Ⅱ卷(非选择题 共 90 分) 二、 填空题(每题 5分,共 20分。把答案填在答题纸的横线上)
13.设等比数列 { an} 满足公比 q N * ,a n N * ,且 { a n } 中的任意两项之积
也 是 该 数 列 中 的 一 项 , 若 a1 281 , 则 q 的 所 有 可 能 取 值 的 集 合
【水印已去除】2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)
2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.(5分)已知x,y∈R,i为虚数单位,且(x﹣2)i﹣y=﹣1+i,则(1+i)x+y的值为()A.4B.4+4i C.﹣4D.2i2.(5分)已知集合A={x|﹣1≤x≤1},B={x|x2﹣5x+6≥0},则下列结论中正确的是()A.A∩B=B B.A∪B=A C.A⊊B D.∁R A=B3.(5分)已知△ABC的面积为2,在△ABC所在的平面内有两点P、Q,满足,=2,则△APQ的面积为()A.B.C.1D.24.(5分)如图,一个空间几何体的正视图、侧视图都是面积为,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.4D.85.(5分)七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.B.C.D.6.(5分)定义运算:=a1a4﹣a2a3,将函数f(x)=的图象向左平移m(m>0)个单位,所得图象对应的函数为偶函数,则m的最小值是()A.B.C.D.7.(5分)已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a8.(5分)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C 的离心率为()A.B.1C.1D.29.(5分)如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A′B′C′,其中A′B′∥y′轴,B′C′∥x′轴.若A′B′=B′C′=3,设△ABC的面积为S,△A′B′C的面积为S′,记S=kS′,执行如图②的框图,则输出T的值()A.12B.10C.9D.610.(5分)如图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n边形“扩展”而来的多边形的边数为a n,则=()A.B.C.D.11.(5分)过椭圆上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,Q两点,则△POQ面积的最小值为()A.B.C.1D.12.(5分)若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称f(x)为“柯西函数”,则下列函数:①f(x)=x+(x>0);②f(x)=lnx(0<x<e);③f(x)=cos x;④f(x)=x2﹣1.其中为“柯西函数”的个数为()A.1B.2C.3D.4二、填空题(每题5分,共20分.把答案填在答题纸的横线上)13.(5分)已知等比数列{a n}的第5项是二项式(﹣)6展开式的常数项,则a3a7=.14.(5分)已知在平面直角坐标系中,O(0,0),M(1,),N(0,1),Q(2,3),动点P(x,y)满足不等式0≤•≤1,0≤•≤1,则W=•的最大值为.15.(5分)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式a12+a22+…+a n2<5×2n+1成立的n的最大值为.16.(5分)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则.(写出所有正确结论的编号)①四面体ABCD每个面的面积相等②四面体ABCD每组对棱相互垂直③连接四面体ABCD每组对棱中点的线段相互垂直平分④从四面体ABCD每个顶点出发的三条棱的长都可以作为一个三角形的三边长三、解答题(本大题共5小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sin A sin C=.(Ⅰ)求角B的大小;(Ⅱ)设向量=(cos A,cos2A),=(﹣,1),当•取最小值时,判断△ABC 的形状.18.在四棱锥P﹣ABCD中,P A⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又P A=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面P AD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.19.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A 题目的成绩有8个,平均数为7,方差为4:样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为M,∠F1MF2=60°,P为椭圆上任意一点,且△PF1F2的面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点A,B为椭圆C上的两个不同的动点,且•=t(O为坐标原点),则是否存在常数t,使得O点到直线AB的距离为定值?若存在,求出常数t和这个定值;若不存在,请说明理由.21.已知函数f(x)=alnx﹣x2.(1)当a=2时,求函数y=f(x)在[,2]上的最大值;(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;(3)当a=2时,函数h(x)=f(x)﹣mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4一4:坐标系与参数方程选讲]22.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.[选修4-5:不等式选讲]23.设函数f(x)=|x+1|+|x﹣5|,x∈R.(Ⅰ)求不等式f(x)≤x+10的解集;(Ⅱ)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)参考答案与试题解析一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.【解答】解:∵x,y∈R,i为虚数单位,且(x﹣2)i﹣y=﹣1+i,∴,解得x=3,y=1,∴(1+i)x+y=(1+i)4=(2i)2=﹣4.故选:C.2.【解答】解:由x2﹣5x+6≥0,化为(x﹣2)(x﹣3)≥0,解得x≥3,x≤2,∴B={x|x ≥3,x≤2},∴A⊊B,故选:C.3.【解答】解:由题意可知,P为AC的中点,=2,可知Q为AB的一个三等分点,如图:因为S△ABC==2.所以S△APQ===.故选:B.4.【解答】解:一个空间几何体的正视图、侧视图都是面积为,且一个内角为60°的菱形,所以菱形的边长为:1,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为1,侧棱长为:,所以几何体的表面积为:=4.故选:C.5.【解答】解:以最小的等腰三角形为基本单位,则大正方体有16个小等腰直角三角形构成,则阴影部分对应的有7个小等腰直角三角形,则对应概率P=,故选:D.6.【解答】解:定义运算:=a1a4﹣a2a3,将函数f(x)=化为:f(x)=sin﹣cos=2sin(x﹣)再向左平移m(m>0)个单位即为:g(x)=f(x+m)=2sin(﹣);又因为新函数g(x)为偶函数,由三角函数图象的性质可得,即x=0时函数值为最大或最小值,即:sin(﹣)=1;或sin(﹣)=﹣1;所以:﹣=kπ+,k∈Z;即m=2kπ+,k∈Z;又m>0,所以m的最小值是:故选:C.7.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)>0,当0<x<e时,f′(x)<0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.8.【解答】解:抛物线的焦点坐标(1,0),所以双曲线中,c=1,又由已知得|AF2|=|F1F2|=2,而抛物线准线为x=﹣1,根据抛物线的定义A点到准线的距离=|AF2|=2,因此A点坐标为(1,2),由此可知是△AF1F2是以AF1为斜边的等腰直角三角形,因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,所以双曲线的离心率e=====+1.故选:B.9.【解答】解:∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′=A′B′•B′C′•sin45°=由斜二侧画法的画图法则,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S=AB•BC=9则由S=kS′得k=2,则T=T=(m﹣1)=2(m﹣1)故执行循环前,S=9,k=2,T=0,m=1,满足进行循环的条件,执行循环体后,T =0,m=2当T=0,m=2时,满足进行循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进行循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进行循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进行循环的条件,退出循环后,T=12,故输出的结果为12故选:A.10.【解答】解:a3=12,a4=20,a5=30,猜想a n=n(n+1)(n≥3,n∈N+),所以==,所以+…=())+()+…+()==,故选:A.11.【解答】解:∵点H在椭圆上,∴H(3cosθ,2sinθ),∵过椭圆上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,∴直线AB的方程为:(3cosθ)x+(2sinθ)y=2,∵过A,B的直线l与x轴,y轴分布交于点P,Q两点,∴P(,0),Q(0,),∴△POQ面积S==×,∵﹣1≤sin2θ≤1,∴当sin2θ=1时,△POQ面积取最小值.12.【解答】解:由柯西不等式得:对任意实数x1,y1,x2,y2:|x1x2+y1y2|≤0恒成立(当且仅当存在实数k,使得x1=kx2,y1=ky2取等号),又函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),满足条件:|x1x2+y1y2|的最大值为0,则函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),使得、共线,即存在点A、B与点O共线;设AB的方程为y=kx,对于①,由于y=kx(x>0)与f(x)=x+只有一个交点,所以①不是柯西函数;对于②,由于y=kx与f(x)=lnx(0<x<e)最多只有一个交点,所以②不是柯西函数;对于③,取A(0,0),点B任意,均满足定义,所以③是柯西函数;对于④,取A(﹣1,0),B(1,0),均满足定义,所以④是柯西函数.故选:B.二、填空题(每题5分,共20分.把答案填在答题纸的横线上)13.【解答】解:二项式(﹣)6展开式的通项公式为T r+1=••,令3﹣=0,求得r=2,故展开式的常数项为•=.等比数列{a n}的第5项a5=,可得a3a7==,故答案为:.14.【解答】解:由题得:,=(x,y),=(0,1),=(2,3).∵0≤≤1,0≤≤1.∴⇒∵=2x+3y=(2x+y)+2y;∴∈[0,4].∴所求最大值为4.故答案为:4.15.【解答】解:当n=1时,a1+1=2a1,解得a1=1.当n≥2时,∵S n+1=2a n,S n﹣1+1=2a n﹣1,∴a n=2(a n﹣a n﹣1),∴.∴数列{a n}是以1为首项,2为公比的等比数列.∴,∴.∴=1+4+42+…+4n﹣1==.∴.∴2n(2n﹣30)<1,可知使得此不等式成立的n的最大值为4.16.【解答】解:由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,如图所示;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,则①正确;当四面体棱长都相等时,四面体的每组对棱互相垂直,则②错误;由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,由对称性知连接四面体ABCD每组对棱中点的线段相互垂直平分,则③正确;由AC=BD,AB=CD,AD=BC,可得过四面体任意一点的三条棱的长为△ABD的三边长,则④正确.故答案为:①③④.三、解答题(本大题共5小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.【解答】解:(Ⅰ)因为a、b、c成等比数列,则b2=ac.由正弦定理得sin2B=sin A sin C.又sin A sin C=,所以sin2B=.因为sin B>0,则sin B=.因为B∈(0,π),所以B=或.又b2=ac,则b≤a或b≤c,即b不是△ABC的最大边,故B=.(Ⅱ)因为向量=(cos A,cos2A),=(﹣,1),所以•=﹣cos A+cos2A=﹣cos A+2cos2A﹣1=2(cos A﹣)2﹣,所以当cos A=时,•取的最小值﹣.因为cos A=,所以.因为B=,所以A+B.从而△ABC为锐角三角形.18.【解答】(1)证明:∵△ABC是正三角形,M是AC中点,∴BM⊥AC,即BD⊥AC.又∵P A⊥平面ABCD,∴P A⊥BD.又P A∩AC=A,∴BD⊥平面P AC.∴BD⊥PC.(2)解:取DC中点G,连接FG,则EG∥平面P AD,∵直线EF∥平面P AD,EF∩EG=E,∴平面EFG∥平面P AD,∵FG⊂平面EFG,∴FG∥平面P AD∵M为AC中点,DM⊥AC,∴AD=CD.∵∠ADC=120°,AB=4,∴∠BAD=∠BAC+∠CAD=90°,AD=CD=,∵∠DGF=60°,DG=,∴AF=1(3)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C(2,2,0),D(0,,0),P(0,0,4).=(4,﹣,0)为平面P AC的法向量.设平面PBC的一个法向量为=(x,y,z),则∵=(2,2,﹣4),=(4,0,﹣4),∴,令z=3,得x=3,y=,则平面PBC的一个法向量为=(3,,3),设二面角A﹣PC﹣B的大小为θ,则cosθ==.∴二面角A﹣PC﹣B余弦值为.19.【解答】解:(1)根据题意,读出的编号依次是:512,916(超界),935(超界),805,770,951(超界),512(重复),687,858,554,876,647,547,332.将有效的编号从小到大排列,得332,512,547,554,647,687,770,805,858,876,所以中位数为×(647+687)=667;(2)由题易知,按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,所以样本编号之和即为该数列的前10项之和,即S10=10×8+=4130;(3)记样本中8个A题目成绩分别为x1,x2,…x8,2个B题目成绩分别为y1,y2,由题意可知x i=8×7=56,=8×4=32,y i=16,=2×1=2,故样本平均数为=×(x i+y i)=×(56+16)=7.2;样本方差为s2=×[+]=×{+}=×[﹣0.4(x i﹣7)+8×0.22++1.6(y i﹣8)+2×0.82]=×(32﹣0+0.32+2+0+1.28)=3.56;所以估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.20.【解答】解:(Ⅰ)由题得,,解得a2=4,b2=3,∴椭圆的标准方程为+=1.(Ⅱ)设A(x1,y1)、B(x2,y2),当直线AB的斜率存在时,设其直线方程为:y=kx+n,则原点O到直线AB的距离为d=,联立方程,化简得,(4k2+3)x2+8knx+4n2﹣12=0,由△>0得4k2﹣n2+3>0,则x1+x2=﹣,x1x2=,∴•=x1x2+y1y2=x1x2+(kx1+n)(kx2+n)=(k2+1)x1x2+kn(x1+x2)+n2=t 即(7d2﹣12﹣4t)k2+7d2﹣12﹣3t=0对任意的k∈R恒成立,则,解得t=0,d=,当直线AB斜率不存在时,也成立.故当t=0时,O点到直线AB的距离为定值d=.21.【解答】解:(1)∵f(x)=2lnx﹣x2,可得,函数f(x)在[,1]是增函数,在[1,2]是减函数,所以f(1)取得最大值,且为﹣1;(2)因为g(x)=alnx﹣x2+ax,所以g′(x)=﹣2x+a,因为g(x)在区间(0,3)上单调递增,所以g'(x)≥0在(0,3)上恒成立,即有a≥在(0,3)的最大值,由y=的导数为y′=>0,则函数y=在(0,3)递增,可得y<,则a≥;(3)由题意可得,h′(x)=﹣2x﹣m,又f(x)﹣mx=0有两个实根x1,x2,∴2lnx1﹣x12﹣mx1=0,2lnx2﹣x22﹣mx2=0,两式相减,得2(lnx1﹣lnx2)﹣(x12﹣x22)=m(x1﹣x2),∴m=﹣(x1+x2),于是h'(αx1+βx2)=﹣2(αx1+βx2)﹣m=﹣2(αx1+βx2)﹣+(x1+x2)=﹣﹣+(2α﹣1)(x2﹣x1),∵β≥α,∴2α≤1,∴(2α﹣1)(x2﹣x1)≤0.可得h′(αx1+βx2)<0.要证:h′(αx1+βx2)<0,只需证:﹣<0,只需证:﹣ln>0.(*)令=t∈(0,1),∴(*)化为+lnt<0,只证u(t)=+lnt即可.∵u′(t)=+=﹣=,又∵≥1,0<t<1,∴t﹣1<0,∴u′(t)>0,∴u(t)在(0,1)上单调递增,故有u(t)<u(1)=0,∴+lnt<0,即﹣ln>0.∴h′(αx1+βx2)<0.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4一4:坐标系与参数方程选讲]22.【解答】解(1)∵P点的极坐标为,∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y ﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)∵,当x≤﹣1时,应有﹣2x+4≤x+10,解不等式得﹣2≤x≤﹣1,当﹣1<x≤5时,应有6≤x+10,解不等式得﹣1<x≤5,当x>5时,应有2x﹣4≤x+10,解不等式得5<x≤14,综上可得,不等式f(x)≤x+10的解集为[﹣2,14].(Ⅱ)设g(x)=a﹣(x﹣2)2,由函数f(x)与g(x)的解析式,可得f(x)在x∈[﹣1,5]上取最小值为6,g(x)在x=2时取最大值为a,若f(x)≥g(x)恒成立,则a≤6.。
2018年届河北省衡水中学高中高三下学期期初中中考试理科数学试卷试题及答案
河北省衡水中学 2018届高三下期期中考试数学(理)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前。
考生务势必自己的姓名、准考据号填写在答题卡上.2.答第Ⅰ卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号.写在本试卷上无效.3.答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知i为虚数单位,则复数13i1iA.2i B.2i C.12i D.2.已知会合P0,1,2,Q y|y3x,则PQA.0,1B.1,2C.0,1,2D.3.已知cos k k R,,则sin,,2A.1k2k 12i4.以下说法中,不.正确的选项是A.已知a,b,m R,命题“若am2bm2,则a b”为真命题;B.命题“x0R,x02x00”的否认是“x R,x2x0”;C.命题“p 或”为真命题,则命题p和命题q均为真命题;qD.“x>3”是“x>2”的充足不用要条件.5.已知偶函数f(x),当x[0,2)时,f(x)=2sinx,当x [2,)时,fxlog2x,则f f43A.32B.1C.3D.326.履行下边的程序框图,假如输入的挨次是1,2,4,8,则输出的为A.2B.22C.4D.67.如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角的大小为A.B.C.D.64328.已知O、A、B三地在同一水平面内,A地在O地正东方向2km 处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘.O地为一磁场,距离其不超出3km的范围内会对测绘仪等电子仪器形成扰乱,使丈量结果不正确.则该测绘队员可以获得正确数据的概率是A.1B.2C.13D.12 22229.已知抛物线y22pxp0的焦点F恰巧是双曲线x2y21a0,b0的一个焦点,两条曲线的交点的连线经过a2b2点F,则双曲线的离心率为A.C.2B.12D.31310.一个几何体的三视图如下图,则该几何体的体积是A.64B.72C.80D.11211.已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则四边形ABCD面积S的最大值为A.30B.230C.430D.63012.已知函数fx lnx,x0,若对于x的方程x24x1,x0f2xbfx c0b,cR 有8个不一样的实数根,则由点(,)bc确立的平面地区的面积为A.1B.1C.1D.2 6323第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每题5分.13.已知平面向量a,b的夹角为23|a+b|=.,|a|=2,|b|=1,则14.将甲、乙、丙、丁四名学生疏到两个不一样的班,每个班起码分到一名学生,且甲、乙两名学生不可以分到同一个班,则不同的分法的种数为(用数字作答).15.设过曲线f x e x x(e为自然对数的底数)上随意一点处的切线为 l1,总存在过曲线gx ax 2cosx上一点处的切线l2,使得l1l2,则实数a的取值范围为.22F 1,F 2,设P 为椭圆16.已知椭圆x2y21ab0的两个焦点分别为a b上一点,F 1PF 2的外角均分线所在的直线为 l ,过F 1,F 2分别作l的垂线,垂足分别为、,当 P在椭圆上运动时, 、 所形RSRS成的图形的面积为.三、解答题:本大题共6小题,共 70分.解答应写出文字说明, 证明过程或演算步骤.17.(本小题满分 12分)设数列a n 的前n 项和为S n ,a 11,a n1S n 1nN*,1,且a 1、2a 2、a 33为等差数列b n 的前三项.1)求数列a n 、b n 的通项公式;2)求数列a n b n 的前n 项和.18.(本小题满分 12分)集成电路 E 由3个不一样的电子元件构成,现因为元件老化,三个电子元件能正常工作的概率分别降为1、1 、2,且每个电子2 2 3元件可否正常工作互相独立.若三个电子元件中起码有2个正常工作,则 E 能正常工作,不然就需要维修,且维修集成电路 E 所需花费为 100元. 1)求集成电路E 需要维修的概率;2)若某电子设施共由2个集成电路E 构成,设X 为该电子设备需要维修集成电路所需的花费,求X 的散布列和希望.19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,AP=AD=AB=2,BC=t,∠PAB=∠PAD=.(1)当t32时,试在棱PA上确立一个点E,使得PC∥平面BDE,并求出此时AE的值;EP(2)当60时,若平面PAB⊥平面PCD,求此时棱BC的长.20.(本小题满分12分)在平面直角坐标系xOy 中,一动圆经过点切,设该动圆圆心的轨迹为曲线E.1,0且与直线x1相22(1)求曲线E的方程;(2)设P 是曲线E上的动点,点、在y轴上,△的内切BC PBC圆的方程为x12y21,求△面积的最小值.PBC21.(本小题满分12分)已知函数fx x22alnx.x(1)若f(x)在区间[2,3]上单一递加,务实数a的取值范围;(2)设f ()的导函数f'x的图象为曲线,曲线C上的不一样x C两点Ax 1,y 1、Bx 2,y 2所在直线的斜率为k ,求证:当 a ≤4时,|k |>1.请考生在第 22~24三题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分 10分)选修4-1:几何证明选讲如图,已知O 和M 订交于 、 B两点,为 M 的直径,延伸AADDB 交O 于C ,点G 为弧BD 的中点,连接AG 分别交O 、BD于点E 、F ,连接CE .(1)求证:AGEFCEGD ;(2)求证:GFEF 22 . AGCE23.(本小题满分 10分)选修4-4:坐标系与参数方程已知曲线C 1的参数方程为x2cos(为参数),以坐标原点Oy3sin为极点,x 轴的正半轴为极轴成立极坐标系,曲线C 2的极坐标方程为2.1)分别写出C1的一般方程,C2的直角坐标方程.2)已知M、N分别为曲线C1的上、下极点,点P为曲线C2上随意一点,求|PM|+|PN|的最大值.24.(本小题满分10分)选修4-5:不等式选讲已知函数fxx1x3m的定义域为.R(1)务实数m的取值范围.(2)若m的最大值为,当正数、知足21n时,求n ab3ab a2b7a4b的最小值.精选介绍强力介绍值得拥有。
2018衡水中学高三六调理科数学试题及答案
2017—2018学年度上学期高三年级六调考试数学(理科)试卷本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.已知数集«Skip Record If...»,设函数f(x)是从A到B的函数,则函数f(x)的值域的可能情况的个数为A.1 B.3 C.7 D.82.已知i为虚数单位,且«Skip Record If...»A.1 B.«Skip Record If...»C.«Skip Record If...»D.2 3.已知等差数列«Skip Record If...»的前n项和为«Skip Record If...»A.18 B.36 C.54 D.724.已知«Skip Record If...»为第二象限角,«Skip Record If...»A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»5.已知双曲线«Skip Record If...»轴交于A,B两点,«Skip Record If...»,则«Skip Record If...»的面积的最大值为A.1 B.2 C.4 D.86.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有A.120种B.156种C.188种D.240种7.在等比数列«Skip Record If...»中,«Skip Record If...»为A.64 B.81 C.128 D.2438.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为72,27,则输出的«Skip Record If...»A.18 B.9 C.6 D.39.已知点M在抛物线«Skip Record If...»上,N为抛物线的准线l上一点,F为该抛物线的焦点,若«Skip Record If...»,则直线MN的斜率为A.±«Skip Record If...»B.±l C.±2 D.±«Skip Record If...»10.规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上;再以每三个随机数作为一组,代表一轮的结果.经随机模拟实验产生了如下20组随机数:据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»11.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,«Skip Record If...»平面BCD,且«Skip Record If...»,则球O的表面积为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»12.若对任意的实数t,函数«Skip Record If...»在R上是增函数,则实数a的取值范围是A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.曲线«Skip Record If...»和直线«Skip Record If...»所围成的图形的面积是_________.14.若«Skip Record If...»的值为_________.15.某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大面的面积为_________.16.已知函数«Skip Record If...»,数列«Skip Record If...»为等比数列,«Skip Record If...»«Skip Record If...»____________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.(本小题满分12分)如图,在«Skip Record If...»的平分线BD交AC于点D,设«Skip Record If...»,其中«Skip Record If...»是直线«Skip Record If...»的倾斜角.(1)求sin A;(2)若«Skip Record If...»,求AB的长.18.(本小题满分12分)如图,在三棱柱«Skip Record If...»«Skip Record If...»分别为«Skip Record If...»的中点.(1)在平面ABC内过点A作AM∥平面«Skip Record If...»交BC于点M,并写出作图步骤。
2018-2019 学年河北省衡水中学高三(下)一调数学试卷及答案(理科)
2018-2019学年河北省衡水中学高三(下)一调数学试卷(理科)(4月份)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)已知集合A={x|x2﹣x﹣2≤0},B={x|1≤2x≤8,x∈Z},则A∩B=()A.[﹣1,3]B.{0,1}C.[0,2]D.{0,1,2} 2.(3分)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则|a+bi|=()A.B.2C.D.53.(3分)给出下列四个结论:①命题“∃x0∈N,x02”的否定是“∀x∈N,x2≤2x”;②命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则ab≠0”;③命题“若ab=0,则a=0或b=0”的否命题是“若ab≠0,则a≠0或b≠0”;④若“p∧q是假命题,p∨q是真命题”,则命题p,q一真一假.其中正确结论的个数为()A.1B.2C.3D.44.(3分)函数f(x)=ln(x2+2)﹣e x﹣1的图象可能是()A.B.C.D.5.(3分)下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图示①②③中的双曲线的离心率分别为e1,e2,e3、则e1,e2,e3的大小关系为()A.e1>e2>e3B.e1<e2<e3C.e2=e3<e1D.e1=e3>e2 6.(3分)如图所示的程序框图输出的结果是()A.2018B.﹣1010C.1009D.﹣10097.(3分)某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的表面积为()A.65B.C.D.608.(3分)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.9.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2=2017c2,则=()A.B.C.D.10.(3分)抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|,则∠AFB的最大值为()A.B.C.D.11.(3分)已知当α,β∈(﹣,)时,cosα﹣cosβ<tan|α|﹣tan|β|,则以下判断正确的是()A.α<βB.α>βC.α2>β2D.α2<β212.(3分)若存在一个实数t,使得F(t)=t成立,则称t为函数F(x)的一个不动点.设函数g(x)=e x+(1﹣)x﹣a(a∈R,e为自然对数的底数),定义在R上的连续函数f(x)满足f(﹣x)+f(x)=x2,且当x≤0时,f′(x)<x.若存在x0∈{x|f(x)+f (1﹣x)+x},且x0为函数g(x)的一个不动点,则实数a的取值范围为()A.()B.[)C.(]D.()二、填空题:本题共4小题.13.(3分)抛物线y=x2的准线方程是.14.(3分)三棱锥A﹣BCD中,,AC=BD=2,,则该几何体外接球的表面积为.15.(3分)已知O在△ABC内,且S△AOB:S△BOC:S△AOC=4:3:2,,则λ+μ=16.(3分)设实数λ>0,若对任意的x∈(e2,+∞),关于x的不等式λeλx﹣lnx≥0恒成立,则λ的最小值为.三、解答题.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和S n满足=0,a1=1.(1)求数列{a n}的通项公式;(2)在数列{a n}的前100项中,是否存在两项a m,a t(m,t∈N*,且m<t),使得,,三项成等比数列?若存在,求出所有的m,t的取值;若不存在,请说明理由.18.某企业为了解年广告费x(单位:万元)对年销售额y(单位:万元)的影响,对近4年的年广告费x i和年销售额y i(i=1,2,…4)的数据作了初步整理,得到下面的表格:年广告费x/万元2345年销售额y/万元26394954(1)用年广告费x作解释变量,年销售额y作预报变量,在所给坐标系中作出这些数据的散点图,并判断=x与y=c1e哪一个更适合作为年销售额y关于年广告费x 的回归方程类型(给出判断即可,不必说明理由).(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知商品的年利润z与x,y的关系为=1.8﹣x.根据(2)的结果,计算年广告费x约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直=x的斜率和截距的最小二乘估计分别为=,=.19.如图①,在五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°,将△EAD沿AD折起到△P AD的位置,得到如图②所示的四棱锥P﹣ABCD,M为线段PC的中点,且BM⊥平面PCD.(1)求证:BM∥平面P AD.(2)若直线PC与AB所成角的正切值为,求直线BM与平面PDB所成角的正弦值.20.如图所示,在△ABC中,AB=2,AB的中点为O,点D在AB的延长线上,且BD=﹣1.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点P(﹣2,0)的直线l与曲线Γ交于不同的两点S,R,直线SB,RB分别交曲线Γ于点E,F.设=λ,=,求λ+μ的取值范围.21.已知函数f(x)=xlnx﹣x2有两个不同的极值点x1,x2(x1<x2).(Ⅰ)求实数a的取值范围;(Ⅱ)设g(x)=f(x)﹣,讨论函数g(x)的零点个数.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ,曲线C1、C2的公共点为A、B.(Ⅰ)求直线AB的斜率;(Ⅱ)若点C、D分别为曲线C1、C2上的动点,当|CD|取最大值时,求四边形ACBD的面积.[选修4-5:不等式选讲]23.设f(x)=|x﹣1|+2|x+1|的最小值为m.(1)求m的值;(2)设a、b∈R,a2+b2=m,求+的最小值.2018-2019学年河北省衡水中学高三(下)一调数学试卷(理科)(4月份)参考答案与试题解析一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)已知集合A={x|x2﹣x﹣2≤0},B={x|1≤2x≤8,x∈Z},则A∩B=()A.[﹣1,3]B.{0,1}C.[0,2]D.{0,1,2}【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得A∩B.【解答】解:因为集合A={x|x2﹣x﹣2≤0}={x|﹣1≤x≤2},B={x|1≤2x≤8,x∈Z}={x|0≤x≤3,x∈Z}={0,1,2,3},所以A∩B={0,1,2}.故选:D.【点评】本题考查交集的求法,考查有关集合的运算、不等式性质等基础知识,考查运算求解能力,是基础题.2.(3分)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则|a+bi|=()A.B.2C.D.5【分析】根据复数相等的充要条件,构造关于a,b的方程组,解得a,b的值,进而可得答案.【解答】解:因为(1+i)(1﹣bi)=1+b+(1﹣b)i=a,结合a,b∈R,所以有,解得,所以|a+bi|=|2+i|==,故选:C.【点评】本题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件等基础知识,考查运算求解能力,是基础题.3.(3分)给出下列四个结论:①命题“∃x0∈N,x02”的否定是“∀x∈N,x2≤2x”;②命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则ab≠0”;③命题“若ab=0,则a=0或b=0”的否命题是“若ab≠0,则a≠0或b≠0”;④若“p∧q是假命题,p∨q是真命题”,则命题p,q一真一假.其中正确结论的个数为()A.1B.2C.3D.4【分析】①写出命题“”的否定,可判断①的正误;②写出命题“若a2+b2=0,则a=0且b=0”的否定,可判断②的正误;写出命题“若ab=0,则a =0或b=0”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【解答】解:①命题“∃x0∈N,x02”的否定是“∀x∈N,x2≤2x”;所以①正确;②命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则a≠0或b≠0”,所以②不正确;③命题“若ab=0,则a=0或b=0”的否命题是“若ab≠0,则a≠0且b≠0”;所以③不正确;④“p∧q是假命题,p∨q是真命题”,则命题p,q一真一假,所以④正确;故正确命题的个数为2,故选:B.【点评】本题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.(3分)函数f(x)=ln(x2+2)﹣e x﹣1的图象可能是()A.B.C.D.【分析】分析四个图象的不同,从而判断函数的性质,利用排除法求解.【解答】解:当x→+∞时,f(x)→﹣∞,故排除D;易知f(x)在R上连续,故排除B;且f(0)=ln2﹣e﹣1>0,故排除C,故选:A.【点评】本题考查了函数的性质的判断与数形结合的思想方法应用.5.(3分)下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图示①②③中的双曲线的离心率分别为e1,e2,e3、则e1,e2,e3的大小关系为()A.e1>e2>e3B.e1<e2<e3C.e2=e3<e1D.e1=e3>e2【分析】根据题设条件,分别建立恰当的平面直角坐标系,求出图示①②③中的双曲线的离心率e1,e2,e3,然后再判断e1,e2,e3的大小关系.【解答】解:①设等边三角形的边长为2,以底边为x轴,以底边的垂直平分线为y轴,建立平面直角坐标系,则双曲线的焦点为(±1,0),且过点(,),∵(,)到两个焦点(﹣1,0),(1,0)的距离分别是和,∴,c=1,∴.②正方形的边长为,分别以两条对角线为x轴和y轴,建立平面直角坐标系,则双曲线的焦点坐标为(﹣1,0)和(1,0),且过点().∵点()到两个焦点(﹣1,0),(1,0)的距离分别是和,∴,c=1,∴.③设正六边形的边长为2,以F1F1所在直线为x轴,以F1F1的垂直平分线为y轴,建立平面直角坐标系,则双曲线的焦点为(﹣2,0)和(2,0),且过点(1,),∵点(1,)到两个焦点(﹣2,0)和(2,0)的距离分别为2和2,∴a=﹣1,c=2,∴.所以e1=e3>e2.故选:D.【点评】恰当地建立坐标系是正确解题的关键.6.(3分)如图所示的程序框图输出的结果是()A.2018B.﹣1010C.1009D.﹣1009【分析】模拟执行题目中的程序框图,得出该程序运行后输出的S值.【解答】解:执行如图所示的程序框图知,该程序运行后是计算并输出S=﹣1+2﹣3+4+…+(﹣1)i•i,当i=2018时,终止循环,此时输出S=(2﹣1)×=1009.故选:C.【点评】本题考查了程序框图的应用问题,是基础题.7.(3分)某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的表面积为()A.65B.C.D.60【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积.【解答】解:由三视图可知,该几何体为如下图所示的多面体ABC﹣DEF,它是由直三棱柱ABC﹣DGF截去三棱锥E﹣DGF后所剩的几何体,其中AB⊥AC,所以其表面积S=+=60;故选:D.【点评】本题考查了由几何体的三视图求几何体的表面积;关键是正确还原几何体的形状.8.(3分)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.【分析】求出基本事件的个数,即可求出没有相邻的两个人站起来的概率.【解答】解:五个人的编号为1,2,3,4,5.由题意,所有事件,共有25=32种,没有相邻的两个人站起来的基本事件有(1),(2),(3),(4),(5),(1,3),(1,4),(2,4),(2,5),(3,5),再加上没有人站起来的可能有1种,共11种情况,∴没有相邻的两个人站起来的概率为,故选:C.【点评】本题考查没有相邻的两个人站起来的概率,考查列举法的运用,比较基础.9.(3分)在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2=2017c2,则=()A.B.C.D.【分析】1首先利用余弦定理整理出sin A sin B cos C=1008sin2C,进一步利用三角函数关系式的恒等变换,根据关系式的转换求出结果.【解答】解:在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2=2017c2,所以:cos C==,则:sin A sin B cos C=1008sin2C,所以:,,,=,=,故选:C.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.(3分)抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=|,则∠AFB的最大值为()A.B.C.D.【分析】利用余弦定理,结合基本不等式,即可求出∠AFB的最大值.【解答】解:因为,|AF|+|BF|=x1+x2+4,所以.在△AFB中,由余弦定理得:=.又.所以,∴∠AFB的最大值为,故选:D.【点评】本题考查抛物线的定义,考查余弦定理、基本不等式的运用,属于中档题.11.(3分)已知当α,β∈(﹣,)时,cosα﹣cosβ<tan|α|﹣tan|β|,则以下判断正确的是()A.α<βB.α>βC.α2>β2D.α2<β2【分析】根据题意,得出cos|α|﹣tan|α|<cos|β|﹣tan|β|,设f(x)=cos|x|﹣tan|x|,x∈(﹣,),根据f(x)的奇偶性和单调性,即可得出结论.【解答】解:cosα﹣cosβ<tan|α|﹣tan|β|,∴cosα﹣tan|α|<cosβ﹣tan|β|,又余弦函数是偶函数,∴cos|α|﹣tan|α|<cos|β|﹣tan|β|;设f(x)=cos|x|﹣tan|x|,x∈(﹣,),∴f(x)在x∈(﹣,)上是偶函数,且在[0,)上是减函数;又f(α)<f(β),∴|α|>|β|,即α2>β2.故选:C.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化思想,是中档题.12.(3分)若存在一个实数t,使得F(t)=t成立,则称t为函数F(x)的一个不动点.设函数g(x)=e x+(1﹣)x﹣a(a∈R,e为自然对数的底数),定义在R上的连续函数f(x)满足f(﹣x)+f(x)=x2,且当x≤0时,f′(x)<x.若存在x0∈{x|f(x)+f (1﹣x)+x},且x0为函数g(x)的一个不动点,则实数a的取值范围为()A.()B.[)C.(]D.()【分析】构造函数F(x)=f(x)﹣x2,结合条件证明F(x)是奇函数,求函数的导数,研究函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【解答】解:∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣x2,∴f(x)﹣x2=﹣f(﹣x)+x2,∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x≤0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣x2≥f(1﹣x)+x﹣x2,即F(x)≥F(1﹣x),∴x≤1﹣x,即x0≤,∵x0为函数g(x)的一个不动点∴g(x0)=x0,即h(x)=e x﹣x﹣a在(﹣∞,]有解.∵h′(x)=e x﹣≤0∴h(x)在R上单调递减.∴h(x)min=h()=﹣﹣a≤0可,∴a≥.故选:B.【点评】本题主要考查函数与方程的应用,已知函数有零点求参数取值范围常用的方法和思路,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.(3分)抛物线y=x2的准线方程是4y+1=0.【分析】先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.【解答】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=1,即p=,所以:=,∴准线方程y=﹣=﹣,即4y+1=0.故答案为:4y+1=0.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.14.(3分)三棱锥A﹣BCD中,,AC=BD=2,,则该几何体外接球的表面积为6π.【分析】由题意,把三棱锥A﹣BCD放到长方体中,利用长方体外接球性质即可得解.【解答】解:三棱锥A﹣BCD中,,AC=BD=2,,三棱锥A﹣BCD放到长方体:(如图).不难发现:AB,AC,AD分别是长方体的三个面的对角线,即长方体的对角线的平方:=6,∴长方体外接球2R=,即R=∴几何体外接球的表面积S=4πR2=6π.故答案为:6π.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15.(3分)已知O在△ABC内,且S△AOB:S△BOC:S△AOC=4:3:2,,则λ+μ=【分析】本题可以采用特值法,设△ABC为以AB=4,AC=3,BC=5的直角三角形,建立坐标系进行计算.【解答】解:如图,根据题意不妨设△ABC的边,AB=4,AC=2,BC==2,建立如图坐标系,则BC的方程为x+2y﹣4=0,则3a﹣4<0,设O点坐标为(a,a),点O在三角形内,则O到BC的距离d==,则根据S△AOB:S△BOC:S△AOC=4:3:2,得(•4a):(2×):(×2a),解得a=,∴=(,),=(4,0),=(0,2),由,得,解得,,所以:λ+μ=,故填:【点评】如何将面积比转化为边的关系是解决问题的关键.本题属难题.16.(3分)设实数λ>0,若对任意的x∈(e2,+∞),关于x的不等式λeλx﹣lnx≥0恒成立,则λ的最小值为.【分析】首先将不等式λeλx﹣lnx≥0恒成立,转化为(λeλx﹣lnx)的最小值≥0,利用导数研究函数的单调性,从而求得其最值,得到结果.【解答】解:设f(x)=λeλx﹣lnx(x>e2),则f′(x)=λ2eλx﹣,令f′(x)=0,可得:eλx=,由指数函数y=e x与反比例函数y=在第一象限有且只有一个交点,可得:y=eλx与y=的图象在第一象限有且只有一个交点,设交点横坐标为m,当x>m时,f′(x)>0,f(x)单调递增;当0<x<m时,f′(x)<0,f(x)单调递减,且eλm=,令λeλm﹣lnm=0可得eλm﹣=0,λ=,m=e.∴f(x)在(e,+∞)上单调递增,因为x>e2>e,所以f(x)在(e2,+∞)上单调递增,当x>e2时,由λeλx﹣lnx≥0可得:λe≥lne2=2,即e≥,λ=时等号成立,所以λ≥,即λ的最小值为,故答案是:.【点评】该题考查的是有关利用恒成立问题求参数的最值的问题,涉及到的知识点有利用导数研究不等式恒成立问题,属于较难题目.三、解答题.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和S n满足=0,a1=1.(1)求数列{a n}的通项公式;(2)在数列{a n}的前100项中,是否存在两项a m,a t(m,t∈N*,且m<t),使得,,三项成等比数列?若存在,求出所有的m,t的取值;若不存在,请说明理由.【分析】(1)先根据等差数列定义求,再根据项与和的关系求a n;(2)根据条件化简m,n的关系式,再利用范围限制m取法,即得正整数解.【解答】解:(1)∵=0,∴,则,∴.当n≥2时,.又a1=2×1﹣1=1符合,∴a n=2n﹣1(n∈N*);(2)若,,三项成等比数列,则,即,即(2m﹣1)2=3(2t﹣1).∵t≤100,∴(2m﹣1)2≤597,∴2m﹣1≤24,即m≤12.又2m﹣1为3的奇数倍,∴m=2,5,8,11,验证得,,.【点评】本题考查的是有关数列的问题,涉及到的知识点有等差数列的概念,通项公式的求解,数列项与和的关系,关于是否存在类问题的解法,属于中档题.18.某企业为了解年广告费x(单位:万元)对年销售额y(单位:万元)的影响,对近4年的年广告费x i和年销售额y i(i=1,2,…4)的数据作了初步整理,得到下面的表格:年广告费x/万元2345年销售额y/万元26394954(1)用年广告费x作解释变量,年销售额y作预报变量,在所给坐标系中作出这些数据的散点图,并判断=x与y=c1e哪一个更适合作为年销售额y关于年广告费x 的回归方程类型(给出判断即可,不必说明理由).(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知商品的年利润z与x,y的关系为=1.8﹣x.根据(2)的结果,计算年广告费x约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直=x的斜率和截距的最小二乘估计分别为=,=.【分析】(1)根据题中所给的数据画出散点图,可以发现点落在一条直线的周围,从而判断出=x更适合作为年销售额y关于年广告费x的回归方程类型;(2)根据数据,利用公式求得回归直线的方程;(3)根据题意,将相应的量代换,求得结果.【解答】解:(1)作出散点图如图所示,由此判断=x更适合作为年销售额y关于年广告费x的回归方程类型;(2)计算=×(2+3+4+5)=,=×(26+39+49+54)=42,则===9.4,==42﹣9.4×=9.1,所以回归方程为=9.4x+9.1;(3)由(2)可知年利润z的预报值为=1.8﹣x=1.8﹣x,设=t,则x=,可得=﹣t2+1.8t+,t≥0;故当t=﹣=8.46,即x=≈6.65(万元)时,年利润的预报值最大.【点评】本题考查了有关统计的应用问题问题,涉及到的知识点有回归类型的选取,散点图的绘制,回归直线的求解等,是中档题.19.如图①,在五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°,将△EAD沿AD折起到△P AD的位置,得到如图②所示的四棱锥P﹣ABCD,M为线段PC的中点,且BM⊥平面PCD.(1)求证:BM∥平面P AD.(2)若直线PC与AB所成角的正切值为,求直线BM与平面PDB所成角的正弦值.【分析】(1)取PD的中点N,连接AN,MN,可证四边形ABMN为平行四边形,从而应用线面平行的判定定理证得结果;(2)设PD=1,取AD的中点O,连接PO,过O作AB的平行线,建立空间直角坐标系O﹣xyz,求出平面PBD的法向量,计算法向量与的夹角得出结论.【解答】解:(1)证明:取PD的中点N,连接AN,MN.又M为PC的中点,所以MN∥CD,MN=CD.又AB∥CD,AB=CD,所以MN∥AB,MN=AB.则四边形ABMN为平行四边形,所以AN∥BM.因为BM⊄平面P AD,AN⊂平面P AD,所以BM∥平面P AD.(2)解:因为BM⊥平面PCD,AN∥BM,所以AN⊥平面PCD,所以AN⊥PD,AN⊥CD.由ED=EA,即PD=P A及N为PD的中点,可得△P AD为等边三角形,所以∠PDA=60°.又∠EDC=150°,所以∠CDA=90°,即CD⊥AD.因为AD⊂平面P AD,AN⊂平面P AD,AD∩AN=A,所以CD⊥平面P AD.又CD⊂平面ABCD,所以平面P AD⊥平面ABCD.因为AB∥CD,所以∠PCD即为直线PC与AB所成的角,所以tan∠PCD==,所以CD=2PD.设PD=1,则CD=2,P A=AD=AB=1.取AD的中点O,连接PO,过O作OF∥AB交BC于点F,则PO,OF,OA两两垂直.以O为坐标原点,OA,OF,OP的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系,如图所示.则D(﹣,0,0),B(,1,0),C(﹣,2,0),P(0,0,),所以M(﹣,1,).所以=(1,1,0),=(,1,﹣),=(﹣,0,).设平面PDB的法向量为=(x,y,z),则,即,令x=3,则=(3,﹣3,﹣).因为cos<>===﹣.所以直线BM与平面PDB所成角的正弦值为.【点评】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,应用向量法求线面角的正弦值的问题,属于中档题目.20.如图所示,在△ABC中,AB=2,AB的中点为O,点D在AB的延长线上,且BD=﹣1.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点P(﹣2,0)的直线l与曲线Γ交于不同的两点S,R,直线SB,RB分别交曲线Γ于点E,F.设=λ,=,求λ+μ的取值范围.【分析】(I)如图所示,依题意得AB=2,BD=﹣1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,可得AD=AT1,BD=BT2,CT1=CT2,可得AD+BD=AC+BC=AB+2BD=2>AB=2.利用椭圆的定义标准方程即可得出.(Ⅱ)设S,R,E的坐标分别为(x i,y i)(i=1,2,3).B(1,0).由=λ,可得λ=﹣.当直线SB与x轴不垂直时,直线SB的方程为:y=(x﹣1),即x=.代入椭圆方程整理化为:(3﹣2x1)y2+2y1(x1﹣1)y﹣=0.利用根与系数的关系可得λ=﹣=3﹣2x1.当直线SB⊥x轴时,直线SB的方程为:x=1,λ=1,满足上式.同理可得:λ=3﹣2x2.设直线l的方程为:y=k(x+2).代入椭圆方程整理为:(2k2+1)x2+8k2x+8k2﹣2=0.再利用根与系数的关系即可得出.【解答】解:(I)如图所示,依题意得AB=2,BD=﹣1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2,∴AD+BD=AT1+BT2=AC+CT2+BT2=AC+CT2+CT2=AC+BC=AB+2BD=2>AB=2.∴点C轨迹Γ是以A,B为焦点,长轴长为2的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为:=1(y≠0).(Ⅱ)设S,R,E的坐标分别为(x i,y i)(i=1,2,3).B(1,0).∵=λ,∴﹣y1=λy3,可得λ=﹣.当直线SB与x轴不垂直时,直线SB的方程为:y=(x﹣1),即x=.代入椭圆方程整理化为:(3﹣2x1)y2+2y1(x1﹣1)y﹣=0.则y1•y3=,即λ=﹣=3﹣2x1.当直线SB⊥x轴时,直线SB的方程为:x=1,λ=1,满足上式.即λ=3﹣2x1.同理可得:λ=3﹣2x2.设直线l的方程为:y=k(x+2).代入椭圆方程整理为:(2k2+1)x2+8k2x+8k2﹣2=0.由k≠0,△=64k4﹣4(2k2+1)(8k2﹣2)>0,解得:0<k2.由x1+x2=﹣.则λ+μ=6﹣2(x1+x2)=6+=14﹣.∵0<k2,∴λ+μ∈(6,10).【点评】本题考查了圆的标准方程及其切线性质、椭圆的标准方程及其性质、一元二次方程的根与系数的关系、分类讨论方法、转化法,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=xlnx﹣x2有两个不同的极值点x1,x2(x1<x2).(Ⅰ)求实数a的取值范围;(Ⅱ)设g(x)=f(x)﹣,讨论函数g(x)的零点个数.【分析】(Ⅰ)根据函数极值与导数之间的关系,进行求解即可.(Ⅱ)求g(x)的解析式,求函数的导数,根据函数单调性极值关系判断函数零点个数即可.【解答】解:(I)f′(x)=lnx+1﹣ax,因为f(x)有两个不同的极值点,则f′(x)有两个不同的零点.令f′(x)=0,则lnx+1﹣ax=0,即a=,设h(x)=,则直线y=a与函数y=h(x)的图象有两个不同的交点.h′(x)==﹣,由h′(x)>0,得lnx<0,即0<x<1,所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=1.因为当0<x<时,h(x)<0;当x>时,h(x)>0;当x→+∞时,h(x)→0,所以a的取值范围是(0,1).(1I)因为x1,x2为f(x)的两个极值点,则x1,x2为直线y=a与曲线y=h(x)的两个交点的横坐标,由(I)可知<x1<x2,且==a,因为当0<x<x1或x>x2时,a>,即f′(x)<0;当x1<x<x2时,a<,即f′(x)>0,则f(x)在(0,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,所以f(x)的极小值点为x1,极大值点为x2,当0<x≤1时,因为lnx≤0,0<a<1,x2>1,则g(x)=xlnx﹣x2﹣<0,所以g(x)在区间(0,1]内无零点.,因为g(x2)=x2lnx2﹣x22﹣=x2lnx2﹣﹣=,a=h(x2),则①当lnx2>2,即x2>e2时,g(x2)>0.又0<a<1,则>1,所以g()=(ln﹣)﹣=(1﹣)﹣<0.此时,g(x)在(1,x2)和(x2,+∞)内各有1个零点,且a<h(e2)=,②当lnx2=2,即x2=e2时,g(x2)=0,此时g(x)在(1,+∞)内有1个零点,且a=h(e2)=,③当0<lnx2<2,即1<x2<e2时,g(x2)<0,此时g(x)在(1,+∞)内无零点,且a>h(e2)=,综上分祈,当0<a<时,g(x)有2个零点;当a=时,g(x)有1个零点;当<a<1时,g(x)没有零点.【点评】本题主要考查函数零点的判断以及函数极值与单调性之间的关系,利用导数是解决本题的关键.考查学生的运算能力,综合性较强,有一定的难度.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ,曲线C1、C2的公共点为A、B.(Ⅰ)求直线AB的斜率;(Ⅱ)若点C、D分别为曲线C1、C2上的动点,当|CD|取最大值时,求四边形ACBD的面积.【分析】(I)曲线C1的参数方程为(α为参数),利用平方关系消去参数化为普通方程,曲线C2的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式可得普通方程.上述两个方程相减可得直线AB的方程及其斜率.(Ⅱ)当且仅当直线CD经过两个圆的圆心时,线段CD取得最大值,此时|CD|=3+=+3.直线C1•C2的方程为:y=﹣x+1,可得C1•C2⊥AB.利用弦长公式可得|AB|,当|CD|取最大值时,四边形ACBD的面积S=|AB|•|CD|.【解答】解:(I)曲线C1的参数方程为(α为参数),消去参数化为:x2+(y﹣1)2=1.曲线C2的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,化为普通方程:x2+y2=4x.上述两个方程相减可得:2x﹣y=0.则直线AB的斜率为2.(Ⅱ)当且仅当直线CD经过两个圆的圆心时,线段CD取得最大值,此时|CD|=3+=+3.|AB|=2=.直线C1•C2的方程为:y=﹣x+1,可得C1•C2⊥AB.∴当|CD|取最大值时,四边形ACBD的面积S=|AB|•|CD|=××(3+)=2+.【点评】本题考查了直线与圆的参数方程极坐标方程、点到直线的距离公式、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.设f(x)=|x﹣1|+2|x+1|的最小值为m.(1)求m的值;(2)设a、b∈R,a2+b2=m,求+的最小值.【分析】(1)利用零点取绝对值,即可求解最小值;(2)构造基本不等号式,利用乘以“1”法求解即可;【解答】解:(1)由f(x)=|x﹣1|+2|x+1|=根据图象可知f(x)最小值为m=2.(2)由a2+b2=2,可得a2+1+b2+1=4,∴那么:+=(+)()=(当且仅当4(a2+1)=b2+1时取等号)即+的最小值为.【点评】本题主要考查函数最值的求解,根据基本不等式的性质以及零点分段法是解决本题的关键.。
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)
2018届河北省衡水金卷全国高三大联考理科数学试题(解析版)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A. B.C. D.【答案】C【解析】.所以,.故选C.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 3【答案】B【解析】.故的虚部为-3,即.故选B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选C.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.【解析】根据题意,可估计军旗的面积大约是.故选B.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.【答案】A【解析】圆:的圆心为,双曲线的渐近线为.依题意得.故其离心率为.故选A.6. 已知数列为等比数列,且,则( )A. B. C. D.【答案】A【解析】依题意,得,所以.由,得,或(由于与同号,故舍去).所以..故选A.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.【答案】C【解析】由图,可知.故①中应填.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A. B. C. D.【答案】D【解析】根据题意得,令.则为内的偶函数,当时,.所以在内单调递减.又,,.故,选D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A. B. C. D.【答案】A【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( )A. 为真B. 为假C. 为真D. 为真【答案】D【解析】由,可得.解得.因为,所以,故为真命题;将图象所有点向右平移个单位,..............................所以为假,为真,为假,为真.故选D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A. B. C. D.【答案】B【解析】令,得,即.由抛物线的光学性质可知经过焦点,设直线的方程为,代入.消去,得.则,所以..将代入得,故.故.故的周长为.故选B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.【答案】B【解析】当时,,解得或.由得.由,得.两式相减得.所以.因为,所以.即数列是以3为首项,3为公差的等差数列,所以.所以.所以.要使恒成立,只需.故选B.点睛:由和求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.【答案】1【解析】依题意,得,故是以为底边的等腰三角形,故,所以.所以.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.【答案】16【解析】显然.令,得.所以.当且仅当.即时,取等号,此时的最小值为16.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.【答案】【解析】作出可行域如图所示(如图阴影部分所示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值.即,当或时,.当时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.【答案】【解析】设的中点为,如图,由,且为直角三角形,得.由等体积法,知.即,解得.故该鳖臑的外接球与内切球的表面积之和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.【答案】(1)最小正周期,对称轴方程为;(2).【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得,由正弦定理及,得,利用即可得解. 试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数图象的对称轴方程为,.(2)由(1),知,因为,所以.又,故得,解得.由正弦定理及,得.故.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接交于点,连接通过证得,即可证得平面;(2)取的中点,连接,可得两两垂直,建立空间直角坐标系,设与平面所成的角为,则,为平面的一个法向量.试题解析:(1)当时,平面.证明如下:连接交于点,连接.∵,∴.∵,∴.∴.又∵平面,平面,∴平面.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,∴可得.∴,,.设平面的一个法向量为,则有即令,得,.即.设与平面所成的角为,则.∴当时,直线与平面所成的角的正弦值为.点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)①,②见解析.【解析】试题分析:(1)计算的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.试题解析:(1)由列联表可知的观测值,.所以不能在犯错误的概率不超过的前提下认为市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的3人中至少有2人经常使用网络外卖的概率为.②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为.由题意得,所以;.20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由,及,可得方程;(2)易知直线不能平行于轴,所以令直线的方程为与椭圆联立得,令直线的方程为,可得,进而由是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得,,又,故解得,所以椭圆的标准方程为.(2)由(1),知,如图,易知直线不能平行于轴.所以令直线的方程为,,.联立方程,得,所以,.此时,同理,令直线的方程为,,,此时,,此时.故.所以四边形是平行四边形.若是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于的方程显然没有实数解,故四边形不可能是菱形.21. 已知函数,其中为自然对数的底数. (Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和演技单调性及极值即可;(2)当时,在内单调递增,可知在内不恒成立,当时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当,即时,,在内单调递增,没有极值.当,即,令,得,当时,,单调递减;当时,,单调递增,故当时,取得最小值,无极大值.综上所述,当时,在内单调递增,没有极值;当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.(2)由(1),知当时,在内单调递增,当时,成立.当时,令为和中较小的数,所以,且.则,.所以,与恒成立矛盾,应舍去.当时,,即,所以.令,则.令,得,令,得,故在区间内单调递增,在区间内单调递减.故,即当时,.所以.所以.而,所以.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线上的点到直线的距离,,利用三角函数求最值即可;(2)曲线上的所有点均在直线的下方,即为对,有恒成立,即(其中)恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线上的点到直线的距离,,当时,,即曲线上的点到直线的距离的最大值为.(2)∵曲线上的所有点均在直线的下方,∴对,有恒成立,即(其中)恒成立,∴.又,∴解得,∴实数的取值范围为.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,.∵,∴,.∴.∴.。