多面体外接球半径常见的求法整理.pdf

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.16
B. 20
C. 24
D. 32
小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.
三、补形法
例 3 若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是 .
小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a、b、c ,则就可以将这个三棱
锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为
R ,则有 2R = a2 + b2 + c2 .
-1-
变式 1:
变式 2:三棱锥 O − ABC 中,OA,OB,OC 两两垂直,且 OA = OB = 2OC = 2a ,则三棱锥 O − ABC
外接球的表面积为( )
多面体外接球半径常见求法
知识回顾: 定义 1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个 球是这个多面体的外接球。
定义 2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个 球是这个多面体的内切球。
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。
A. 2
B. 5
C. 2
D. 21 3
1.如图,已知四棱锥 P—ABCD,PB⊥AD.,侧面 PAD 为边长等于 2 的正三角形,底面 ABCD 为菱形,侧面 PAD 与底 面 ABCD 所成的二面角为 120°. (I)求点 P 到平面 ABCD 的距离, (II)求面 APB 与面 CPB 所成二面角的余弦值.
一、公式法
例 1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,
且该六棱柱的体积为 9 ,底面周长为3,则这个球的体积为
.
8
小结 本题是运用公式 R2 = r2 + d 2 求球的半径的,该公式是求球的半径的常用公式.
二、多面体几何性质法
例 2 已知各顶点都在同一个球面上的正四棱柱的高为 4,体积为 16,则这个球的表面积是
A. 6 a2
Leabharlann Baidu
B. 9 a2
C.12 a2
D. 24 a2
四、寻求轴截面圆半径法
例 4 正四棱锥 S − ABCD 的底面边长和各侧棱长都为 2 ,
S、A、B、C、D 都在同一球面上,则此球的体积为
.
S
D
C
O1 A 图3 B
小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该 圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法 的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等 价转化的数学思想方法值得我们学习.
个直二面角 B − AC − D ,则四面体 ABCD 的外接球的体积为
A. 125 12
B. 125 9
C. 125 D. 125
6
3
D
AO
C
图4 B
变式 1:三棱锥 P − ABC 中,底面 ABC 是边长为 2 的正三角形, PA ⊥底面 ABC ,且 PA = 2 ,
则此三棱锥外接球的半径为( )
变式 1:求棱长为 a 的正四面体 P – ABC 的外接球的表面积
变式 2:正三棱锥的高为 1,底面边长为 2 6 。求棱锥的内切球的表面积。
-2-
变式 1:底面边长为 3 的正三棱柱外接球的体积为 32 ,则该三棱柱的体积为 3
五、确定球心位置法
例 5 在矩形 ABCD 中, AB = 4, BC = 3,沿 AC 将矩形 ABCD 折成一
-3-
-4-
相关文档
最新文档