博弈论概述ppt课件

合集下载

第六讲博弈论课件

第六讲博弈论课件
❖ 对于矩阵博弈,其主要的任务就是求出矩阵 博弈的Nash均衡解-----双方尽可能满意的结 果。
例12.1 智猪博弈模型
❖ 每次踩出6个单位的食物,按者支付2个单位 成本,小踩,(1,5)大踩(4,2)同时 (2,4)
大猪
小猪

踩 2,4 等待 4,2
等待
1,5 0,0
小猪的收入矩阵
A
2, 4,
❖ 20世纪50年代以来,纳什、泽尔腾、海萨尼 等人使博弈论最终成熟并进入实用。
三位大师主要的贡献
❖ 1950年和1951年纳什的两篇关于非合作博弈 论的重要论文,彻底改变了人们对竞争和市 场的看法。他证明了非合作博弈及其均衡解, 并证明了均衡解的存在性,即著名的纳什均 衡。从而揭示了博弈均衡与经济均衡的内在 联系。因为在现实世界中,非合作博弈要比 合作博弈普遍得多。
囚徒困境的意义
❖ “囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。
❖ 他们两人都是在坦白与抵赖策略上首先想到 自己,这样他们必然要服长的刑期。只有当 他们都首先替对方着想时,或者相互合谋(串 供)时,才可以得到最短时间的监禁的结果。
顺序和信息
❖ 博弈论非常强调时间和信息的重要性,认为 时间和信息是影响博弈均衡的主要因素。
❖ 在博弈过程中,参与者之间的信息传递决定 了其行动空间和最优战略的选择;
❖ 同时,博弈过程中始终存在一个先后问题 Sequence order,参与人的行动次序对博弈 最后的均衡有直接的影响。
分类
❖ 博弈的划分可以从参与人行动的次序和参与 人对其它参与人的特征、战略空间和支付的 知识、信息,是否了解两个角度进行。

第一章 博弈论概述PPT课件

第一章 博弈论概述PPT课件
博弈论与信息经济学
Game Theory and Information Economics 天津大学管理与经济学部
授课:XXX
1
第一章 博弈论概述 (Game Theory)
授课:XXX
2
一、博弈论的定义
又称对策论,是研究决策主体的行为发生直 接相互作用时的决策以及这种决策的均衡问 题的学科。
➢ 博弈分析的基本假设 (1)个人理性 假设当事人在决策时能够充分考虑他所面临 的局势,并能做出合乎理性的选择。
(2)最大化自己的收益 假设当事人在决策时通常选择使自己收益最
大化的策略。
授课:XXX
12
坦白 抵赖
➢ 博弈问题的基本要素
坦白
(1)局中人(Players)
抵赖
参与对抗的各方;不一定指自然人
若二人均不坦白,则只能因藏有枪支而被判刑1年; 若有一人坦白而另一个不坦白,则坦白者无罪释放,
不坦白者 被判刑10年; 若二人都坦白了,则同判8年。 此二人确系抢劫犯,请分析他们的抉择。

坦白

抵赖
坦白 -8,-8 -10,0
抵赖 0,-10 -1,-1
授课:XXX
均衡解: 二人均坦白
11
相关概念介绍
他的故事被好莱坞拍成了电影《美丽心灵》,该影片获 得了2002年奥斯卡金像奖的四项大奖
授课:XXX
7
2002年 北京国际数学家大会(ICM)
授课:XXX
8
• 主演
罗素·克劳,Russell Crowe
詹妮弗·康纳利, Jennifer Connelly
授课:XXX
9
1. 囚犯困境(Prisoners’ dilemma

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

博弈论简介PPT

博弈论简介PPT

1.3博弈论的理论体系
核心是策略选择
非合作博弈理论
博 弈 论
承诺的强制力不同 不 完 全 信 息 静 态 博 弈 不 完 全 信 息 动 态 博 弈
合作博弈理论
完 全 信 息 静 态 博 弈
完 全 信 息 动 态 博 弈
核心是利益分配
二、完全信息静态博弈
在博弈论中由抽象出来现实博弈中的最基本要素所构成的模型就 是所谓的策略型,或称标准型博弈。是整个博弈论的基石
多种定义:
(1)以严格的数学模型对人类斗智现象进行规范描述,并加 以数学分析。 (2)博弈论是关于策略相互作用的理论,就是说,它是关于 社会形势中理性行为的理论,其中每个局中人对自己行动的选择必须 以他对其他局中人将如何反应的判断为基础。——豪尔绍尼,1994诺 贝尔经济学奖得主 (3)博弈论研究的是人与人之间利益相互制约下策略选择时 的理性行为及相应结局。
引入市场进入博弈事例:
一种行业有两个相关企业,一个是垄断者(局中人1),另一个 是潜在的进入者(局中人2),局中人1决定是否建立一个新工厂, 而同时局中人 2决定是否进入这一行业。其中存在着不完全信息,局 中人2不知道局中人1的建厂成本是3还是1,而局中人1知道自己的成 本。这样形成的不完全信息博弈局势如下图。
豪尔 绍尼 转换
3.2联合概率分布实例
内容:
两个企业在一种产品市场竞争,它们彼此不清楚对方对 于相关事务的真实力量,而只知道自己的力量,双方力量的 不同会导致双方使用策略不变的情况下最终结局的不同。这 种局势的简化描述为:双方均有两种类型,即力量的强与 弱。
联合概率分布:
强 强 弱 0.3 0.1 弱 0.2 0.4
如果企业1为“强”类型,那么它对企业2的类型判断依据贝叶斯推断 原则有:企业2为“强”类型的概率为0.3/(0.3+0.2)=0.6;企业2为 “弱”类型的概率为0.2/(0.3+0.2)=0.4.而当企业1为“弱”时,它对企业2 类型的主观判断为企业2为强与弱的概率分别为0.2和0.8。以此类推。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

博弈论最全完整ppt-讲解

博弈论最全完整ppt-讲解
能提供万无一失的应对办法。
例1:无谓竞争(The GPA Rat Race)
你所注册的一门课程按照比例来给分:无论 卷面分数是多少,只有40%的人能够得优秀, 40%的人能得良好。
所有学生达成一个协议,大家都不要太用功, 如何?想法不错,但无法实施!稍加努力即可 胜过他人,诱惑大矣。
问题是,大家都这么做。这样一来,所有人 的成绩都不比大家遵守协议来得高。而且, 大家还付出了更多的功夫。
约翰·纳什 1928年生于美国
莱因哈 德·泽尔 腾, 1930 年生于 德国
约翰· 海萨尼 1920年 生于美 国
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和美国人威廉-维克瑞 (William Vickrey)
获奖理由:前者在信息经济学理论领域做 出了重大贡献,尤其是不对称信息条件 下的经济激励理论的论述;后者在信息 经济学、激励理论、博弈论等方面都做 出了重大贡献。
博弈论为众多学科提供了分析的概念和方 法:经济学和商学,政治科学,生物学, 心 理学和哲学。
如何在“博弈”中获胜?
日常生活中的博弈(“游戏”)往往指的是 诸如赌博和运动这样的东西: 赌抛硬币 百米赛跑 打网球/橄榄球
How can you win such games? 许多博弈都包含着运气、技术和策略。 策略是为了获胜所需要的一种智力的技巧。
没有某个这样的暗示,默契的合作就完 全不可能。
例3:为什么教授如此苛刻?
许多教授强硬地规定,不进行补考,不 允许迟交作业或论文。
教授们为何如此苛刻? 如果允许某种迟交,而且教授又不能辨
别真伪,那么学生就总是会迟交。 期限本身就毫无意义了。 避免这一“滑梯”通常只有一种办法,

博弈论课件

博弈论课件

博弈论强调参与者之间的互动关系,通过数学模型和理论分析来研究 策略选择和均衡结果。
博弈论的发展历程
博弈论的起源可以追溯到20世纪初,当时数学家和经 济学家开始研究游戏中的策略和均衡。
1944年,冯·诺依曼和摩根斯坦合著的《博弈论与经济 行为》标志着博弈论的诞生。
随后,纳什、泽尔腾和哈萨尼等学者进一步发展了博弈 论,形成了现代博弈论的基础。
商业竞争与合作
商业竞争
博弈论可以用于分析商业竞争中的策略和行为,例如价格战、广告战等。通过 博弈论,企业可以更好地理解竞争对手的策略,制定出更有效的竞争策略。
商业合作
博弈论也可以用于分析商业合作中的策略和行为,例如供应链管理、合资企业 等。通过博弈论,企业可以更好地理解合作伙伴的需求和期望,制定出更有效 的合作策略。
贝叶斯纳什均衡
在不完全信息博弈中,如果所有参与 者都根据自己掌握的信息选择最优策 略,则所有参与者都能获得最大收益 。
静态博弈与动态博弈
01
静态博弈
02
动态博弈
所有参与者在同一时间点选择策略并获得收益。
参与者的选择有先后顺序,后选择的参与者可以观察到先选择的参与 者的策略和收益。
03
纳什均衡
纳什均衡的定义
博弈优化方法
线性规划
线性规划是一种数学优化方法, 用于找到在满足一组约束条件下 最大化或最小化目标函数的最优
解。
非线性规划
非线性规划是数学优化的一种方 法,用于找到一组变量的最优值 ,使得一个或多个目标函数达到
最优。
动态规划
动态规划是一种通过将问题分解 为相互重叠的子问题来解决问题 的方法,每个子问题的解被保存
博弈论课件
汇报人:
汇报时间:202X-01-04

第四篇博弈论PPT课件

第四篇博弈论PPT课件
• 此情况下由于博弈没有可预测的明确的博弈结果,所以就不能 确定博弈方的策略。但是是否在这样的博弈中,各博弈方选择 任何策略都是一样的,因此可以随意选择吗?
• 按博弈中的得益
• 零和博弈 (Zero-sum Games) (严格竞争博 弈)
(麻将、赌博、猜硬币)
• 常和博弈 (Constant-sum Games)
博弈)
(固定数量利润、财产分配的讨价还价
• 变和博弈 (Variable-sum Games) (囚徒 困境博弈、古诺模型)
• 按博弈过程的次序
囚犯困境博弈
• 个人理性选择的结果: -5)
(坦白,坦白)——(-5,
• 集体理性决策的结果: -1)
(抵赖,抵赖)——(-1,
• 个人理性不一定导致集体理性
• 现实中的囚徒困境模型:价格战、恶性广告竞争、军备竞赛等。
第12页/共83页
2、猜硬币博弈

硬 正面 币 反面 方
猜硬币方
正面
反面
-1,1
• 博弈论是系统研究各种博弈问题,寻求博弈方合理的策略选择 和合理选择策略时的博弈结果,并分析结果的经济、效率意义 的理论与方法。
第3页/共83页
二、博弈论发展的里程碑
• 古诺模型(Cournot) (1838)(两寡头通过 产量决策进行竞争的模型;
• 伯特兰德模型(Bertrand) (1883)(价格竞争) • 《博弈论与经济行为》(1944)
六、博弈的表示方法
• 标准型 (normal form ) 收益矩阵
对简单的博弈适用(二人有限博弈)
• 扩展型 (extensive form )
博弈树
适用于动态博弈
• 特征式

《博弈论的基本概念》课件

《博弈论的基本概念》课件

智猪博弈
• 总结词:描述大猪和小猪在食槽附近争夺食物的策略博弈。
• 详细描述:在智猪博弈中,一个大猪和一个小猪共同生活在一个猪圈里,食槽位于猪圈的一端。每次食物被放入食槽时 ,大猪和小猪都有两种选择:冲向食槽或继续等待。如果大猪选择冲向食槽,小猪的最佳策略是等待,因为大猪吃掉大 部分食物后,小猪可以享用剩余的食物。相反,如果小猪选择冲向食槽,大猪的最佳策略也是等待,因为小猪可能无法 抢到任何食物。因此,无论大猪如何选择,小猪的最佳策略都是等待;同样地,无论小猪如何选择,大猪的最佳策略也 是等待。
合作博弈
特征
强调合作、协议和联盟,目标是实现共同利益。
应用领域
国际关系、商业合作、团队协作等。
非合作博弈
特征
强调竞争、自利和策略互动,目标是实现个人利益。
应用领域
市场竞争、个人决策、政治选举等。
动态博弈
特征
强调行动的顺序和信息传递,策略和 行动需考虑时间因素。
应用领域
商业竞争、投资决策、谈判策略等。
《博弈论的基本概念》ppt课件
目录
• 博弈论简介 • 博弈论的基本类型 • 博弈论的基本概念 • 博弈论的经典案例 • 博弈论的未来发展
01
博弈论简介
博弈论的定义
01
博弈论:研究决策主体在相互影 响、相互作用的环境中如何进行 决策,以及这种决策的均衡结果 的学科。
02
博弈论强调参与者之间的互动关 系,通过数学模型和理论分析来 研究策略选择和均衡结果。
应用领域:拍卖机制设计、保险市场 分析、医疗资源分配等。

03
博弈论的基本概念
参与者
01
02
03
参与者
在博弈中,参与者是决策 的主体,可以是个人或组 织。

博弈论课件

博弈论课件

扩展一:不完全信息博弈
不完全信息博弈的定义
01
在博弈中,参与人对于其他参与人的类型、偏好、战略空间等
信息不完全了解。
不完全信息博弈的分类
02
根据信息不完全的程度,可以分为完全信息不完全博弈和完全
非完美信息博弈。
不完全信息博弈的求解方法
03
包括贝叶斯纳什均衡、精炼贝叶斯纳什均衡、完美贝叶斯纳什
均衡等。
选举策略
博弈论可以用来分析选举中的投票行为和策略,研究候选人如何 制定竞选策略以最大化胜选机会。
政策制定
博弈论可以用来研究政策制定过程中的利益冲突和协调,分析政策 制定者如何平衡不同利益群体的需求。
国际关系
博弈论可以用来研究国际关系中的冲突和合作,分析国家如何通过 外交政策和军事手段来维护自身利益。
纯策略纳什均衡和混合策略纳什均衡 。
特点
纳什均衡是一种稳定的状态,任何参 与者单方面改变自己的策略都不会获 得更好的收益。
优势策略与劣势策略
优势策略
无论其他参与者如何选择策略, 该策略都能为参与者带来更高的
收益。
劣势策略
无论其他参与者如何选择策略,该 策略都能为参与者带来更低的收益 。
特点
在优势策略下,参与者没有理由改 变自己的策略;在劣势策略下,参 与者应该尽快改变自己的策略。
价格战的负面影响
价格战不仅会导致企业利润下降,还可能引发市场恶性竞争,破坏市场秩序。此外,价格战还可能导致产品质量 下降,损害消费者利益。
案例二:国际政治中的博弈策略
国际政治中的博弈策略
在国际政治中,各国之间往往存在着复杂的博弈关系。为了维护自身利益,各 国会采取不同的博弈策略,如通过外交手段、经济制裁、军事威胁等方式来达 到自己的目的。

西方经济学博弈论全解ppt课件.ppt

西方经济学博弈论全解ppt课件.ppt
小猪的最优策略:等待 大猪无最优策略:即大猪的最优策略是依赖于 小猪的策略
此时用重复剔除严格劣策略的思路找出均衡:小 猪的严格劣策略为按,剔除“按”后,小猪只 有一种策略等待,大猪仍有两个策略,但此时, “等待”已成为大猪的劣策略,剔除,大猪的 最优策略——按
这是一个“多劳不多得,少劳不少得”的均衡
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论与主流经济学的发展
传统经济学的假设及其局限性
两个基本假设:完全竞争,完美信息 局限性:交易主体的数量其实很有限;信息是不对称的 一般均衡理论是整个经济学的理论基石和道义基础,市场机
博弈论与主流经济学的发展
博弈论研究的是:在策略性环境中如何进 行策略性决策和采取策略性行动的科学。 当成果无法由个体完全掌握,而结局须视 群体共同决策而定时,个人为了取胜,应 该采取什么策略
博弈论成为通用方法论,经济学、政治学、 管理、军事、外交、国际关系、公共选择、 犯罪学
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论:专门研究博弈如何出现均衡的规 律的学问
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
博弈论要点
博弈论的基本概念包括:参与人、参与人的策 略、参与人的支付(效用)
博弈有不同的种类:
从行动顺序角度:
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

《博弈论教程》课件

《博弈论教程》课件

博弈论的应用领域
经济学
博弈论在经济学中广泛应用于 市场行为、产业组织、贸易政
策等领域。
政治学
博弈论在政治学中用于研究国 际关系、政治制度、选举行为 等领域。
社会学
博弈论在社会学中用于研究社 会结构、社会互动、社会行为 等领域。
计算机科学
博弈论在计算机科学中用于人 工智能、机器学习、网络安全
等领域。
应用场景
保险市场、拍卖、投资决策等。
04
纳什均衡
纳什均衡的定义
纳什均衡是指在博弈中,所有参与者 的最优策略组合,即在这种策略组合 下,每个参与者都认为没有更好的选 择。
纳什均衡是一种非合作博弈的解概念 ,适用于各种博弈类型,如囚徒困境 、智猪博弈等。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的最优策略,逐步逼近纳什均衡。
03
博弈论应用
04
市场进入博弈中,企业通常会选 择不同的策略,如快速进入、缓 慢进入或等待观察等。这些策略 的选择会影响到企业的收益和市 场格局。
结论
市场进入博弈可以帮助企业制定 出最优的市场进入策略,以最大 化自身的收益。
价格战博弈
总结词
价格战博弈是博弈论中研究企业之间价格竞争的 模型。
博弈论应用
03
市场竞争、个人决策、政治选举等。
完全信息博弈
定义
参与者拥有完全的信息,即每个 参与者都了解其他参与者的策略 和收益。
特点
信息对称、策略空间明确。
应用场景
金融市场、体育比赛等。
不完全信息博弈
定义
参与者之间存在信息不对称,即某个参与者 对其他参与者的策略和收益不完全了解。
特点
不确定性、信息不完全、策略空间的模糊性。

博弈论 PPT

博弈论  PPT

1、古诺(Cournot)模型
• 两个寡头企业,分别称为企业1和企业2,每个 企业的策略是选择产量;效用是利润,利润是
企业产量的函数。
企业选择自己的最优产量时,对另一个企业具
有外部负效应。
2、豪泰林(Hotelling)价格竞争模型
• “伯川德悖论”:如果企业之间的竞争是价格而不是产 量,可以得到即使在只有两个企业的情况下,纳什均衡 的价格为边际成本,企业的利润为0。 • 产品之间的差异性:当消费者对产品有不同偏好的时候, 价格不是消费者感兴趣的唯一变量。
• 问:下列战略式表述中的均衡结果?
乙 M 1,2 0,1

U D
L 1,0 0,3
R 0,1 2,0
• (1)R严格劣于M;
• (2)U严格优于D;
• (3)M严格优于L。 最后得到(U,M)是重复剔除的占优策略。
• 再来看下面(G1)这个博弈的均衡结果:
R S T L 2,12 0,12 0,12 乙 M 1,10 0,10 0,10 N 1,12 0,11 0,13
在位者 进入者 进入 不进入 默许 40,50 0,300 斗争 -10,0 0,300
例如市场进入阻挠博弈中,按照重复剔除严格劣策略的方法得到均 衡结果(即IDSE)为(进入,默许);而纳什均衡为(进入,默 许)和(不进入,斗争)。
二、纳什均衡应用举例 (板书)
1、古诺(Cournot)模型 2、豪泰林(Hotelling)价格竞争模型 3、公共地的悲剧 4、公共物品的私人自愿供给
* si* 是他的占优策略,则策略组合 s* (s1* ,si* ,, sn ) i,
称为占优策略均衡(也可简称占优均衡)。 • 占优策略均衡只要求每个参与人是理性的,并不要求每

博弈论概述.ppt

博弈论概述.ppt

Glossary
Payoff支付
A payoff is a number, also called utility, that reflects the desirability of an outcome to a player, for whatever reason. When the outcome is random, payoffs are usually weighted with their probabilities. The expected payoff incorporates the play’s attitude towards risk.
Glossary
Mixed strategy混合战略 A mixed strategy is an active randomization,
with given probabilities, that determines the player’s decision. As a special case, a mixed strategy can be the deterministic choice of one of the given pure strategies.
know it, and know that they all know it, and so on. The structure of the game is often assumed to be common knowledge among the players.
如果一个事实被所有的参与人知道,并且每个参与 人都知道所有的人都知道,并且每个参与人都知道每 个参与人都知道所有的人都知道,如此等等,以致无 穷,那么,这个事实就是共同知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3/4
1
A
B
资源浪费还是理性的必然?
其它相似情形:旅行社的热门路线;黄金时间 的电视节目;总统竞选。
知己知彼 百战不殆
8
狩猎与投资 狩猎:
两个猎人围住一头鹿,各卡住两个关口中的 一个,齐心协力即可成功获得并平分猎物。此时 有一群兔子跑过,任何一人去抓兔子必可成功, 但鹿会跑掉。
他们会坚持猎鹿还是去抓兔子?
博弈论
Game Theory
知己知彼 百战不殆
1
主要内容
一、博弈现象及基本概念 二、完全信息静态博弈 三、完全信息动态博弈 四、不完全信息静态博弈 五、不完全信息动态博弈 六、不对称信息应用专题
知己知彼 百战不殆
2
主要参考书
(1) 罗云峰:《博弈论教程》,清华大学出版社、北 京交通大学出版社,2007。
都认罪,各判5年
判0
判10年
罪犯彼此知道对方策略 同时行动完全信息静态博弈

认罪 不认罪

认罪 -5,-5 0,-10
不认罪 -10,0 -1,-1
个人理性与集体理乙 性矛盾
坦白 不认罪

坦白 -5,-5 0,-10
不认罪 -10,0 -1,-1
知己知彼,百战不殆
囚徒困境的意义
他们两人都是在坦白与不坦白策略上首先想到自 己,这样他们必然要服长的刑期。只有当他们 都首先替对方着想时,或者相互合谋(串供)时, 才可以得到最短时间的监禁的结果。
略均为“去学校南门集合”或“去学校北门集合” 在“囚徒困境”博弈中,博弈参与者所能采取的博弈策略均为
知己知彼 百战不殆
9
猎人B
猎人A 抓兔子 打梅花鹿
抓兔子
4,4
4,0
打梅花鹿
0,4
10,10
知己知彼 百战不殆
10
共同投资:
双方共同投资一个大项目,可期望有较大 收益。此时如某方抽出资金去进行小项目投资, 必可成功获小利,但会使共同项目陷入困境, 使对方蒙受损失。
投资者会如何选择?
知己知彼 百战不殆
博弈参与者可能是单个的个人,也可能是组织或集体
企业、社会团体、国家
博弈参与者可能多于两方,三方或多方博弈参与者
二、博弈策略(Strategy)
博弈策略指博弈参与者可以采取的行动 在“锤头、剪刀、布”博弈中,博弈参与者所能采取的博弈策略
均为“锤头”、“剪刀”或“布” 两名同学去相约去博物馆博弈中,博弈参与者所能采取的博弈策
“博弈”指当两个或多个决策主体之间存在相互作用,任何一方 的决策策略(Strategy)。
2. 博弈概念
2.1 什么是博弈:
个人或团体间在依存和对抗、合作和冲突 中的决策问题。
博弈论研究博弈过程中的理性行为。
知己知彼 百战不殆
20
2.2博弈的构成要素
完整的博弈通常包含三个构成要素
博弈参与者(Player) 博弈策略(Strategy) 博弈的收益(Payoff)
一、博弈参与者(Player)
博弈参与者指参与博弈的主体 在“锤头、剪刀、布”博弈中,博弈参与者是玩游戏的两个人 两名同学去相约去博物馆博弈中,博弈参与者是两名同学 在“囚徒困境”博弈中,博弈参与者是两名犯罪嫌疑人
田忌 齐
上马 中马 下马
策略:




上马 中马 下马
结 果: 田忌将军每次输掉三千金
谋士 齐
上马 中马 下马
孙膑



策略: 田
下马 上马 中马
结 果: 田忌将军胜二负一赢一千金
知己知彼 百战不殆
7
学校门口的超市 (海滩占位模型)
*********************
0
1/4
A’ 1/2 O’
11
囚徒困境:

认罪 不认罪
甲 认罪 -5,-5
不认罪 -10,0
0,-10 -1,-1
1950年美国普林斯顿大学数学家A.W.塔 克提出来的,他当时编出一个故事,向斯 坦福大学的心理学家介绍什么是博弈论
理性的人是自私自利的;
理性选择不是全局最优。
知己知彼 百战不殆
12
囚徒困境 Prisoner's Dilemma
田忌赛马
正确的策略可以反败为胜。
知己知彼 百战不殆
6
博弈论的创立与发展
博弈论思想最早产生于我国古代
2000多年前的春秋时期孙武在《孙子兵法》中论述的军事思想和治 国策略,就蕴育了丰富和深刻的博弈论思想。
田忌赛马:齐威王的上、中、下马分别优于大将田忌的上、中、下, 但田忌上马、中马分别优于齐威王的中、下马。比赛规则:每次双方各 出三匹马,一对一比赛三场,第一场的输方要赔一千金给赢方。
(7) [美]弗登博格:《博弈论》,中国人民大学出版 社,2002。
(8) 焦宝聪 陈兰平等《博弈论 思想方法及应用, 中国人民大学出版社2013,6
知己知彼 百战不殆
4
第一讲 博弈现象与基本概念
1.博弈现象 2. 博弈概念 3. 博弈描述 4. 博弈分类 5. 博弈论的历史
知己知彼 百战不殆
5
1.博弈现象
知己知彼 百战不殆
17
问题:“谁该率先行动?”
担当这个任务的领头人意味着要付出重大的代 价
——流血甚至死亡。
结论:每个人都按照自己的利益来行动, 结果对集体来说却是灾难性的。
启示:自由市场的价格体系真的可靠吗?
知己知彼 百战不殆
18
2. 博弈概念
博弈论(Game Theory)又名对策论 博弈理论原本是运筹学的一个重要分支。 目前博弈论已发展为一门备受关注的独立学科。 博弈的定义
(2) 姚国庆:《博弈论》,高等教育出版社,2007. (3) 张维迎:《博弈论与信息经济学》,上海三联书
店,上海人民出版社,2004。 (4) 施锡铨,《博弈论》,上海财经大学出版社,
2002。
知己知彼 百战不殆
3
(5) 张守一,《现代经济对策论》,高等教育出版社, 1998。
(6) [美]艾里克.拉斯缪森:《博弈与信息》,北京大 学出版社,2003。
“囚徒的两难选择”有着广泛而深刻的意义。个人理性与 集体理性的冲突,从个人利益出发的行为往往不能实 现团体的最大利益,同时也揭示了市场理性本身的内 在矛盾,个人理性出发的行为最终也不一定能真正实 现个人的最大利益,甚至会得到相当差的结果。
知己知彼 百战不殆
16
囚徒困境应用
[美]杜鲁门·卡波特《冷血》;电影 《卡波特》 《给猫拴个铃铛》:谁会愿意冒陪掉小命的风险给 猫拴上铃铛呢? 不得民心的暴君怎样才能长期控制一个数目庞大的 人群呢? 为什么一个暴徒出现,就足以让整个校园陷入恐慌?
相关文档
最新文档