2017年上海浦东新区初三一模数学试卷-学生用卷
上海市各市县2017届中考数学试题分类汇编-初三一模25题(学生版)
上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。
解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。
题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。
其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。
题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。
与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。
解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。
2017年上海市浦东新区中考数学一模试卷及参考答案
2017年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.(4分)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2C.y=ax2D.2.(4分)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα4.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.5.(4分)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG 并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10B.AB=15C.BG=10D.BF=15 6.(4分)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2B.y=x2﹣2x﹣1C.y=x2﹣2x D.y=x2﹣2x+1二.填空题(本大题共12题,每题4分,共48分)7.(4分)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.(4分)已知点P是线段AB上的黄金分割点,PB>P A,PB=2,那么P A =.9.(4分)已知||=2,||=4,且和反向,用向量表示向量=.10.(4分)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=.11.(4分)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.12.(4分)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13.(4分)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x =.14.(4分)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1y2(填“>”、“=”或“<”)15.(4分)如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=米.16.(4分)如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=.17.(4分)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.(4分)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A 逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)计算:2cos230°﹣sin30°+.20.(10分)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)21.(10分)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC 与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sin B.22.(10分)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.(12分)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.24.(12分)已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25.(14分)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2017年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.(4分)在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2C.y=ax2D.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.2.(4分)如果向量、、满足+=(﹣),那么用、表示正确的是()A.B.C.D.【解答】解:∵+=(﹣),∴2(+)=3(﹣),∴2+2=3﹣2,∴2=﹣2,解得:=﹣.故选:D.3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sin A=,∴AB==,故选:A.4.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.B.C.D.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选:C.5.(4分)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG 并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10B.AB=15C.BG=10D.BF=15【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,故选:B.6.(4分)如果抛物线A:y=x2﹣1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2B.y=x2﹣2x﹣1C.y=x2﹣2x D.y=x2﹣2x+1【解答】解:抛物线A:y=x2﹣1的顶点坐标是(0,﹣1),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.二.填空题(本大题共12题,每题4分,共48分)7.(4分)已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.8.(4分)已知点P是线段AB上的黄金分割点,PB>P A,PB=2,那么P A=﹣1.【解答】解:∵点P是线段AB上的黄金分割点,PB>P A,∴PB=AB,解得,AB=+1,∴P A=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.9.(4分)已知||=2,||=4,且和反向,用向量表示向量=﹣2.【解答】解:||=2,||=4,且和反向,故可得:=﹣2.故答案为:﹣2.10.(4分)如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=2.【解答】解:由抛物线y=mx2+(m﹣3)x﹣m+2经过原点,得﹣m+2=0.解得m=2,故答案为:2.11.(4分)如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是a >3.【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.12.(4分)在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是y=﹣x2+4(0<x<2).【解答】解:设剩下部分的面积为y,则:y=﹣x2+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).13.(4分)如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x =3.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(﹣1,7)、B(x,7),∴=1,∴x=3,故答案为3.14.(4分)二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1<y2(填“>”、“=”或“<”)【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=,y1<y2,故答案为<.15.(4分)如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=4米.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.16.(4分)如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=4.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.17.(4分)如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()2=()2=1:4,故答案为:1:4.18.(4分)如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A 逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么=.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C =90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.(10分)计算:2cos230°﹣sin30°+.【解答】解:原式=2×()2﹣+=1++.20.(10分)如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)如果=,=,求向量;(用向量、表示)【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△F AB,∴==;(2)∵△FEC∽△F AB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==,==,则=+=.21.(10分)如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC 与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sin B.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则=,,∴,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sin B==.22.(10分)如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵=,∴=,∴AE=30,∵DF=9×0.4=3.6∴AD=AE+EF+DF=30+2+3.6=35.6,答:斜坡底部点A与台阶底部点D的水平距离AD为35.6米.23.(12分)如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,如果∠ADG=∠B,求证:CD2=AC•CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC•CF.24.(12分)已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.【解答】解:(1)∵顶点为A(2,﹣1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),作AF⊥CD,则AF=DF=1∴△ADF是等腰直角三角形,∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S=•BD•AD=3.△ABD(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DP A=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).25.(14分)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.(2)解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=(0≤x≤4).(3)解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.----<<免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文第21页(共21页)。
上海市2017浦东区初三数学一模试卷
11 1 2016 学年浦东新区初三一模数学试卷一、选择题(本大题共 6 题,每题 4 分,满分 24 分)1.在下列 y 关于 x 的函数中,一定是二次函数的是………………………………………………( )2017.1(A ) y = 2x 2; (B ) y = 2x - 2 ; (C ) y = ax 2; (D ) y =a .x23 22. 如果向量a 、b 、x 满足 x + a = (a - 2 3b ) ,那么 x 用a 、b 表示正确的…………………()(A ) a - 2b ; (B ) 5a -b ; (C )a - 2 2b ; (D ) 3 1 a - b 23. 已知在 Rt ∆ABC 中, ∠C = 90O, ∠A = α , BC = 2 ,那么 AB 的长等于()(A )2sin α; (B ) 2sin α ;(C )2cos α; (D ) 2cos α4. 在∆ABC 中,点 D 、E 分别在边 AB 、AC ,如果 AD = 2 , BD =4 ,那么由下列条件能够判断DE ∥BC 的是( ) AE (A )AC = ; (B )DE 2BC = ; (C )AE 3AC = ; (D )DE = 13BC 25. 如图, ∆ABC 的两条中线 AD 、CE 交于点G ,且 AD ⊥ C E .联结 BG 并延长与 AC 交于点 F ,如果 AD = 9,CE =12 ,那么下列结论不正确的是( ) (A ) AC = 10; (B ) AB = 15 ; (C ) BG = 10 ;(D ) BF = 156. 如果抛物线 A :y = x2-1 通过左右平移得到抛物线 B ,再通过上下平移抛物线 B 得到抛物线C :y = x 2 - 2x + 2 ,那么抛物线 B 的表达式为()(A ) y = x 2+ 2 ; (B ) y = x 2- 2x -1; (C ) y = x 2- 2x 二、填空题(本大题共 12 题,每题 4 分,满分 48 分); (D ) y = x 2- 2x +1; 7. 已知线段a = 3cm ,b = 4cm ,那么线段a 、b 的比例中项等于 cm ;8. 已知 P 是线段 AB 上的黄金分割点, PB >PA , PB =2 ,那么 PA = ; 9. 已知 a = 2,b = 4 ,且b 和a 反向,用向量a 表示b =;10. 如果抛物线 y = mx2+ (m - 3)x - m + 2 经过原点,那么m =; 11. 如果抛物线 y = (a - 3)x 2- 2 有最低点,那么a 的取值范围是。
数学浦东新区一模试卷及答案.pdf
B
A
C
45°30°
C
(第 16 题图)
A
B
(第 18 题图)
2
三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)
将抛物线 y = x 2 − 4x + 5 向左平移 4 个单位,求平移后抛物线的表达式、顶点坐标
和对称轴.
20.(本题满分 10 分,每小题 5 分)
如图,已知△ABC 中,点 D、E 分别在边 AB 和 AC 上,DE∥BC,
(2)证明:∵ □ABCD 中,AD//BC,
F
∴ MB = MH . ……………………………………(2 分) MD MG
CH
B
∵ □ABCD 中,AB//CD,
∴ ME = MB . MF MD
∴ ME = MH . MF MG
……………………………………(2 分) D
……………………………………(1 分)
咨询电话:4000-121-121
3
22.(本题满分 10 分,其中第(1)小题 4 分,第(2)小题 6 分) 如图,为测量学校旗杆 AB 的高度,小明从旗杆正前方 3 米处的点 C 出发,沿坡度为
i = 1: 3 的斜坡 CD 前进 2 3 米到达点 D,在点 D 处放置测角仪,测得旗杆顶部 A 的仰角
为 37°,量得测角仪 DE 的高为 1.5 米.A、B、C、D、E 在同一平面内,且旗杆和测角仪
都与地面垂直.
(1)求点 D 的铅垂高度(结果保留根号);
(2)求旗杆 AB 的高度(精确到 0.1).
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
3 ≈ 1.73 .)
上海市浦东新区九年级数学上学期期末教学质量检测(一
上海市浦东新区2018届九年级数学上学期期末教学质量检测(一模)试题浦东新区2017学年度第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分) 7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,-4);13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分) ∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(-2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=DE 23a .……………………………(5分) (2)图正确得4分,结论:就是所要求作的向量. …(1分).21.(1)解:∵81=∆CDGHCFHS S 四边形,∴ 91=∆∆DFG CFH S S .……………………………………………………(1分)∵ □ABCD 中,AD //BC ,∴ △CFH ∽△DFG . ………………………………………………(1分)∴ 91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴ 31=DG CH . …………………………………………………………(1分)(2)证明:∵ □ABCD 中,AD //BC , ∴ MGMH MD MB =. ……………………………………(2分) ∵ □ABCD 中,AB //CD , ∴ MD MB MF ME =.……………………………………(2分) ∴ MG MH MF ME =.……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分) 22.解:(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC .在Rt △CDH 中,∠DHC =90°,tan ∠DCH=i =……………(1分)(第21题图) A HFEC GD M(第20题图)∴ ∠DCH =30°.∴ CD =2DH .……………………………(1分) ∵ CD=∴ DH,CH =3 .……………………(1分) 答:点D 的铅垂高度是3米.…………(1分)(2)过点E 作EF ⊥AB 于F .由题意得,∠AEF 即为点E 观察点A 时的仰角,∴ ∠AEF =37°. ∵ EF ⊥AB ,AB ⊥BC ,ED ⊥BC , ∴ ∠BFE =∠B =∠BHE =90°. ∴ 四边形FBHE 为矩形.∴ EF =BH =BC +CH =6. ……………………………………………(1分)FB =EH =ED +DH =1.5+3. ……………………………………(1分)在Rt △AEF 中,∠AFE =90°,5.475.06tan ≈⨯≈∠⋅=AEF EF AF .(1分) ∴ AB =AF +FB =6+3 ………………………………………………(1分) 7.773.16≈+≈. ……………………………………………(1分) 答:旗杆AB 的高度约为7.7米. …………………………………(1分)23.证明:(1)∵ DF FB FC EF ⋅=⋅,∴FCFBDF EF =. ………………………(1分) ∵ ∠EFB =∠DFC , …………………(1分)∴ △EFB ∽△DFC . …………………(1分) ∴ ∠FEB =∠FDC . ………………… (1分) ∵ CE ⊥AB ,∴ ∠FEB = 90°.……………………… (1分) ∴ ∠FDC = 90°. ∴ BD ⊥AC . ………………………… (1分) (2)∵ △EFB ∽△DFC ,∴ ∠ABD =∠ACE . …………………………………………… (1分)∵ CE ⊥AB ,∴ ∠FEB = ∠AEC= 90°.∴ △AEC ∽△FEB . ……………………………………………(1分)∴ EB ECFE AE =.……………………………………………………(1分) ∴ EBFEEC AE =. …………………………………………………(1分) ∵ ∠AEC =∠FEB = 90°,∴ △AEF ∽△CEB .………………………………………………(1分)∴ EBEFCB AF =,∴ AF BE BC EF ⋅=⋅. ………………………(1分) (第22题图)A (第23题图) D EF B C24.解:(1)∵ 抛物线52++=bx ax y 与x 轴交于点A (1,0),B (5,0),∴ ⎩⎨⎧=++=++.0552505b a b a ; ……………………… …(1解得⎩⎨⎧-==.61b a ;…………………………(2 ∴ 抛物线的解析式为562+-=x x y .……(1 (2)∵ A (1,0),B (5,0), ∴ OA=1,AB=4.∵ AC=AB 且点C 在点A 的左侧,∴ AC=4 .∴ CB=CA+AB=8. ………………………………………………(1分)∵ 线段CP 是线段CA 、CB 的比例中项,∴CBCPCP CA =. ∴ CP=24. ……………………………………………………(1分)又 ∵ ∠PCB 是公共角,∴ △CPA ∽△CBP .∴ ∠CPA= ∠CBP . ………………………………………………(1分)过P 作PH ⊥x 轴于H .∵ OC=OD=3,∠DOC=90°,∴ ∠DCO=45°.∴ ∠PCH=45°∴ PH=CH=CP 45sin =4,∴ H (-7,0),BH=12. ∴ P (-7,-4).∴ 31tan ==∠BH PH CBP ,31tan =∠CPA . ………………………(1分) (3) ∵ 抛物线的顶点是M (3,-4),………………………………… (1分) 又 ∵ P (-7,-4),∴ PM ∥x 轴 . 当点E 在M 左侧, 则∠BAM=∠AME . ∵ ∠AEM=∠AMB ,∴ △AEM ∽△BMA .…………………………………………………(1分)∴BA AM AM ME =. ∴45252=ME . ∴ ME=5,∴ E (-2,-4). …………………………………(1分)过点A 作AN ⊥PM 于点N ,则N (1,-4). 当点E 在M 右侧时,记为点E ', ∵ ∠A E 'N=∠AEN ,∴ 点E '与E 关于直线AN 对称,则E '(4,-4).………………(1分) 综上所述,E 的坐标为(-2,-4)或(4,-4).(第24题图)25.解:(1)∵ ED =BD ,∴ ∠B =∠BED .………………………………(1分)∵ ∠ACB =90°, ∴ ∠B +∠A =90°. ∵ EF ⊥AB , ∴ ∠BEF =90°.∴ ∠BED +∠GEF =90°.∴ ∠A =∠GEF . ………………………………(1∵ ∠G 是公共角, ……………………………(1∴ △EFG ∽△AEG . …………………………(1分)(2)作EH ⊥AF 于点H .∵ 在Rt △ABC 中,∠ACB =90°,BC =2,AC =4, ∴ 21tan ==AC BC A . ∴ 在Rt △AEF 中,∠AEF =90°,21tan ==AE EF A .∵ △EFG ∽△AEG ,∴ 21===AE EF GA GE EG FG .……………………………………………(1分)∵ FG =x ,∴ EG =2x ,AG =4x .∴ AF =3x . ……………………………………………………………(1分) ∵ EH ⊥AF ,∴ ∠AHE =∠EHF =90°. ∴ ∠EFA +∠FEH =90°. ∵ ∠AEF =90°, ∴ ∠A +∠EFA =90°. ∴ ∠A =∠FEH .∴ tan A =tan ∠FEH .∴ 在Rt △EHF 中,∠EHF =90°,21tan ==∠EH HF FEH .∴ EH =2HF .∵ 在Rt △AEH 中,∠AHE =90°,21tan ==AH EH A .∴ AH =2EH . ∴ AH =4HF . ∴ AF =5HF .∴ HF =x 53.∴ x EH 56=.…………………………………………………………(1分)∴ 253562121x x x EH FG y =⋅⋅=⋅⋅=.………………………………(1分)定义域:(340≤<x ).……………………………………………(1分)(3)当△EFD 为等腰三角形时,FG 的长度是:25425,,27312-.……(5分)。
浦东初三数学试卷(2018.1)
浦东新区2017学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)2018.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸...规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸...的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值 (A )扩大为原来的两倍; (B )缩小为原来的21; (C )不变; (D )不能确定. 2.下列函数中,二次函数是(A )54+-=x y ; (B ))32(-=x x y ; (C )22)4(x x y -+=;(D )21xy =. 3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是(A )75sin =A ; (B )75cos =A ; (C )75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )c a //,c b //; (B=;(C )c a =,c b 2=; (D )0=+b a .5.如果二次函数2y ax bx c =++的图像全部在x 轴的下方,那么下列判断中正确的是 (A )0<a ,0<b ; (B )0>a ,0<b ; (C )0<a ,0>c ;(D )0<a ,0<c .6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF ∥CD ,还需添加一个条件,这个条件可以是(A )EFADCD AB =; (B )AE ADAC AB =; (C )AF ADAD AB=;(D )AF AD AD DB=.BA F E CD(第6题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.已知23=y x ,则yx y x +-的值是 ▲ . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 ▲ cm . 9.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是23,BE 、B 1E 1分别是它 们对应边上的中线,且BE =6,则B 1E 1= ▲ . 10.计算:132()2a ab +-= ▲ . 11.计算:3tan30sin45︒+︒= ▲ .12.抛物线432-=x y 的最低点坐标是 ▲ .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 ▲ .14.如图,已知直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,且l 1∥l 2∥l 3,AB =4,AC =6,DF =9,则DE = ▲ .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是 ▲ (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B 的正东湖边有一棵大树A ,在湖边的C 处测得B在北偏西45°方向上,测得A 在北偏东30°方向上,又测得A 、C 之间的距离为100米,则A 、B 之间的距离是 ▲ 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a ▲ 0(用“>”或“<”连接).18.如图,已知在Rt △ABC 中,∠ACB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、DE ,当∠BDE =∠AEC 时,则BE 的长是 ▲ .(第15题图)A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CBA45° 30° CBA(第18题图)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴. 20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC , 且DE 经过△ABC 的重心,设BC a =. (1)=DE ▲ (用向量a 表示);(2)设AB b =,在图中求作12b a +. (不要求写作法,但要指出所作图中表示结论的向量.) 21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH分别交BA 和DC 的延长线于点E 、F . (1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆AB 的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为3:1=i 的斜坡CD 前进32米到达点D ,在点D 处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A 、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,t an37°≈0.75,73.13≈.) 23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.(第20题图)ABCD E(第22题图)A (第23题图)DEFB C(第21题图)ABHF CG D24.(本题满分12分,每小题4分)已知抛物线y =ax 2+bx +5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C 在x 轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CP A 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB .若存在,求出点E25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△ABC 中,∠ACB=90°,BC =2,AC =4,点D 在射线BC 上,以点D 为圆心,BD 为半径画弧交边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:△EFG ∽△AEG ;(2)设FG =x ,△EFG 的面积为y ,求y 关于x 的函数解析式并写出定义域; (3)联结DF ,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第24题图) (第25题备用图) ABC(第25题备用图)ABC。
2017年上海市各区初三数学一模18题集锦(含答案)
九年级一模18题1、(2017年杨浦区一模第18题)△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是________.【答案】12tan cot cot EFD DFB CEB ∠=∠=∠,问题的本质是在△EBC 中,已知两边EB=BC=6,∠ABC 的余弦为3,求边EC 长.可由余弦定理,或过E 点向BC 添高,得EC=1255,cos CEB ∠=1tan 2EFD ∠=.2、(2017年徐汇区一模第18题)如图,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是________.【答案】13392AP DF AQ BE ===请注意本题中面积法的作用.3、(2017年长宁区一模第18题)如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.【答案】722或以A 为原点,射线AC 为横轴正半轴,建立直角坐标系.①设AE=a ,则'DA DA =,得22(4)(3)25a a -++=,解得a =1,从而'(1,1)(8,6)A B -,,'2A B =;②22(4)(3)25a a -+-=,解得a =7,从而'(7,7)(8,6)A B ,,'2A B =.4、(2017年崇明区一模第18题)如图,已知ABC ∆中,45ABC ∠= ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为.【答案】3105△AEH 相似于△CFH ,且相似比为3:1,过H 向AC 做垂线段HM ,则11022cos 2110FC CM CH C ==⋅⋅∠=⋅⋅31035AE CH ==.5、(2017年宝山区一模第18题)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═12,那么CF:DF═________.【答案】65∵DE⊥AB,tanA═12,∴DE=12AD,∵Rt△ABC中,AC═8,tanA═12,∴BC=4,AB=4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE=5,∴CE=8﹣5=3,∴Rt△BCE中,BE=5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.6、(2017年奉贤区一模第18题)如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP 所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是________.【答案】1∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG=5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=23(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为________.【答案】13PQ垂直平分CD,故CM=6,∠PMC=∠QMC=90°,注意到∠PCM=∠A,∠QCM=∠B,于是32tan tan661323PQ PM QM CM PCM CM QCM=+=⋅∠+⋅∠=⨯+⨯=.8、(2017年闵行区一模第18题)如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=________.【答案】32-作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得BD=2﹣2.如图,在Rt △ABC 中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、C'处,联结BC'与AC 边交于点D ,那么'BD DC=________.【答案】2过C ’作C’H ⊥AC 于点H,则33'''22BC a CA C A C H C A a =====,,,于是23''32BD BC a DC C H a ===.10、(2017年普陀区一模第18题)如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE =,那么S △DPQ :S △CPE 的值是________.【答案】115由重心定理及条件,易知DP :PE :BC=1:3:6,于是△DPQ 与△EPC 的高之比为1:5,从而S △DPQ :S △CPE 1115315=⨯=.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC=∠DBA ,那么BD AB的值是________.【答案】512-如图,由旋转的性质得到AB=AD ,∠CAB=∠DAB ,∴∠ABD=∠ADB ,∵∠CAD=∠ABD ,∴∠ABD=∠ADB=2∠BAD ,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D 作∠ADB 的平分线DF ,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD ,∴△ABD ∽△DBF ,∴,即,解得=.12、(2017年松江区一模第18题)如图,在△ABC 中,∠ACB=90°,AB=9,cosB=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为________.【答案】过C 作CH ⊥AB 于H ,△ACE 相似于△BCE ,相似比为2,所以2222cos cos 93AE BD BH BC B AB B ⎛⎫===⋅∠=⋅∠=⨯= ⎪⎝⎭.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为________.【答案】23CP 垂直平分线段BD ,CD=CB=3,从而得到,设AP=x ,则-x ,在△APD中,由勾股定理得2221)x x +=,解得255x =,BP=355,于是sin ∠ADP=23..14、(2017年黄浦区一模第18题)如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =.D NMC BA 【答案】23。
上海市浦东新区2017届初中毕业生学业模拟数学试题及答案(1)
浦东新区2016学年第二学期初三教学质量检测数学试卷(完卷时间:100分钟,满分150分)2017.5考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,是无理数的是()(A )3.14;(B )13;(C )3;(D )9.2.下列二次根式中,与a 是同类二次根式的是()(A )3a ;(B )22a ;(C )3a ;(D )4a .3.函数1y kx =-(常数k >0)的图像不经过的象限是()(A )第一象限;(B )第二象限;(C )第三象限;(D )第四象限.4.某幢楼10户家庭每月的用电量如下表所示:那么这10户家庭该月用电量的众数和中位数分别是()(A )180,180;(B )180,160;(C )160,180;(D )160,160.5.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()(A )外离;(B )外切;(C )相交;(D )内切.6.如图,已知△ABC 和△DEF ,点E 在BC 边上,点A 在DE 边上,边EF 和边AC 相交于点G .如果AE=EC ,∠AEG =∠B ,那么添加下列一个条件后,仍无法判定△DEF 与△ABC 一定相似的是()(A )AB DE BC EF =;(B )AD GFAE GE =;(C )AG EG AC EF =;(D )ED EGEF EA=.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:2a a ⋅=.8.因式分解:22x x -=.9.方程82x x -=-的根是.用电量(度)140160180200户数134210.函数3()2xf x x =+的定义域是.11.如果关于x 的方程220x x m -+=有两个实数根,那么m 的取值范围是.12.计算:12()3a ab ++.13.将抛物线221y x x =+-向上平移4个单位后,所得新抛物线的顶点坐标是.14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是.15.正五边形的中心角是.16.如图,圆弧形桥拱的跨度AB =16米,拱高CD =4米,那么圆弧形桥拱所在圆的半径是米.17.如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形”,这条边称为“等线边”.在等线三角形ABC 中,AB 为等线边,且AB =3,AC =2,那么BC =.18.如图,矩形ABCD 中,AB =4,AD =7,点E ,F 分别在边AD 、BC 上,且B 、F 关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么AE =.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:123282--++.20.(本题满分10分)解不等式组:3(21)45,311.22x x x x ⎧->-⎪⎨-≤⎪⎩①②.。
上海市浦东新区九年级数学上学期期末教学质量检测(一模)试题(扫描版)沪教版五四制(new)
上海市浦东新区2018届九年级数学上学期期末教学质量检测(一模)试题浦东新区2017学年度第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.A ; 4.B; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,—4); 13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分) ∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(—2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=23a .……………………………((2)图正确得4分,结论:就是所要求作的向量.21.(1)解:∵81=∆CDGHCFHS S 四边形,∴ 91=∆∆DFG CFH S S .……………………………………………………(1分)∵ □ABCD 中,AD //BC ,∴ △CFH ∽△DFG . ………………………………………………(1分)∴91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴ 31=DG CH . …………………………………………………………(1分)(2)证明:∵ □ABCD 中,AD //BC , ∴ MGMH MD MB =. ……………………………………(2分)∵ □ABCD 中,AB //CD ,∴ MDMB MF ME =.……………………………………(2分) ∴ MG MH MF ME =. ……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分)22.解:(1)延长ED 交射线BC 于点H 。
上海市浦东新区届中考数学一模及答案
--浦东新区2017学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值(A)扩大为原来的两倍; ﻩ(B)缩小为原来的21; (C)不变; ﻩ(D)不能确定. 2.下列函数中,二次函数是(A)54+-=x y ; (B))32(-=x x y ; (C)22)4(x x y -+=;(D )21xy =. 3.已知在Rt △A BC 中,∠C =90°,A B=7,BC =5,那么下列式子中正确的是(A)75sin =A ; (B )75cos =A ; ﻩ(C)75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )c a //,c b //; (=; ﻩ(C)c a =,c b 2=; (D)0=+b a . 5.如果二次函数2y ax bx c =++的图像全部在x轴的下方,那么下列判断中正确的是 (A)0<a ,0<b ; ﻩﻩ ﻩ (B)0>a ,0<b ; (C)0<a ,0>c ;ﻩﻩ(D)0<a ,0<c .6.如图,已知点D 、F在△A BC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF∥CD ,还需添加一个条件,这个条件可以是(A)EF ADCD AB=; ﻩ (B)AE AD AC AB =; (C)AF AD AD AB =; ﻩﻩﻩ(D )AF AD AD DB =.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23=y x ,则yx y x +-的值是 . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 c m. 9.已知△ABC ∽△A 1B 1C 1,△A BC 的周长与△A 1B 1C1的周长的比值是23,BE 、B 1E1分别是它 们对应边上的中线,且BE =6,则B 1E 1= .BA F E CD (第6题图)--10.计算:132()2a ab +-= . 11.计算:3tan30sin45︒+︒= .12.抛物线432-=x y 的最低点坐标是 .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 . 14.如图,已知直线l 1、l2、l 3分别交直线l 4于点A 、B、C ,交直线l5于点D 、E 、F ,且l1∥l 2∥l 3,AB =4,A C=6,DF =9,则DE = .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S 平方米,则S 关于x 的函数解析式是 . (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B的正东湖边有一棵大树A ,在湖边的C 处测得B在北偏西45°方向上,测得A在北偏东30°方向上,又测得A、C 之间的距离为100米,则A 、B 之间的距离是 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a 0(用“>”或“<”连接).18.如图,已知在Rt △A BC 中,∠A CB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、D E,当∠BDE =∠A EC 时,则BE 的长是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴.(第15题图) A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CB A45° 30° CBA(第18题图)20.(本题满分10分,每小题5分)如图,已知△AB C中,点D 、E 分别在边AB 和AC 上,D E∥BC , 且DE 经过△ABC 的重心,设BC a =.(1)=DE .(用向量a 表示); (2)设AB b =,在图中求作12b a +.(不要求写作法,但要指出所作图中表示结论的向量.)21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)ﻩ如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH 分别交BA 和DC 的延长线于点E 、F.(1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆A B的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为3:1=i 的斜坡C D前进32米到达点D,在点D处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直. (1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin 37°≈0.60,cos37°≈0.80,t an37°≈0.75,73.13≈.)(第20题图)ABC DE(第22题图)(第21题图)AHF EC G D23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△AB C中,C E⊥AB 于点E ,点D在边AC 上, 联结B D交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.24.(本题满分12分,每小题4分)已知抛物线y=ax 2+b x+5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C在x 轴的负半轴上,且AC =AB ,点D的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l在第三象限上的点,联结AP ,且线段CP 是线段CA 、C B的比例中项,求tan ∠C PA 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E,使得∠AE M=∠AM B.若存在,求出点E 的坐标;若不存在,请说明理由.A (第23题图)DEFBC(第24题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△A BC中,∠AC B=90°,BC=2,AC =4,点D在射线BC 上,以点D 为圆心,B D为半径画弧交边AB 于点E ,过点E作EF ⊥AB 交边AC 于点F ,射线ED 交射线A C于点G . (1)求证:△EFG ∽△AE G;(2)设FG =x ,△EFG 的面积为y ,求y关于x 的函数解析式并写出定义域; (3)联结D F,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第25题备用图)ABC(第25题备用图)ABC浦东新区2017学年度第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C; 2.B ; 3.A ; 4.B ; 5.D; 6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,-4);13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分) ∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(-2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=23a .……………………………(5分)(2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).21.(1)解:∵81=∆CDGH CFHS S 四边形, ∴ 91=∆∆DFG CFH S S .……………………………………………………(1分)∵ □ABCD 中,AD //BC ,∴ △CFH ∽△DFG . ………………………………………………(1分)∴ 91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴ 31=DG CH . …………………………………………………………(1分)(2)证明:∵ □AB CD 中,AD //BC , ∴ MGMH MD MB =. ……………………………………(2分) ∵ □AB CD中,AB//C D, ∴ MD MB MF ME =.……………………………………(2分) ∴ MG MH MF ME =.……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分) 22.解:(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC .(第21题图) A BHFEC GD M(第20题图)B在Rt △CD H中,∠DHC =90°,tan ∠DCH=1:i =……………(1分) ∴ ∠DCH =30°.∴ CD =2DH .……………………………(1分) ∵ CD=∴ DHCH =3 .……………………(1分) 答:点D 的铅垂高度是3米.…………(1分)(2)过点E 作EF ⊥AB 于F.由题意得,∠AE F即为点E 观察点A时的仰角,∴ ∠AEF =37°. ∵ EF ⊥AB ,AB ⊥BC ,ED ⊥B C, ∴ ∠BFE =∠B =∠B HE =90°. ∴ 四边形FBHE 为矩形.∴ EF =BH =BC +C H=6. ……………………………………………(1分)F B=EH =ED +DH =1.5+3. ……………………………………(1分) 在Rt △AEF 中,∠AFE =90°,5.475.06tan ≈⨯≈∠⋅=AEF EF AF .(1分) ∴ AB =AF +FB =6+3 ………………………………………………(1分) 7.773.16≈+≈. ……………………………………………(1分) 答:旗杆AB 的高度约为7.7米. …………………………………(1分)23.证明:(1)∵ DF FB FC EF ⋅=⋅,∴FCFBDF EF =. ………………………(1分) ∵ ∠EF B=∠DFC , …………………(1分)∴ △E FB ∽△DF C. …………………(1分) ∴ ∠FEB =∠FDC . ………………… (1分) ∵ CE ⊥AB , ∴ ∠FEB = 90°.……………………… (1分) ∴ ∠FDC= 90°. ∴ BD ⊥AC. ………………………… (1分) (2)∵ △EFB ∽△DFC ,∴ ∠ABD =∠ACE . …………………………………………… (1分)∵ CE ⊥A B,∴ ∠FEB = ∠A EC= 90°.∴ △AE C∽△FEB . ……………………………………………(1分)∴ EBECFE AE =.……………………………………………………(1分) (第22题图)A (第23题图) D EF B C∴EBFEEC AE =. …………………………………………………(1分) ∵ ∠AEC =∠FEB = 90°,∴ △AEF ∽△CEB .………………………………………………(1分)∴ EBEFCB AF =,∴ AF BE BC EF ⋅=⋅. ………………………(1分) 24.解:(1)∵ 抛物线52++=bx ax y 与x 轴交于点A (1,0),B (5,0),∴ ⎩⎨⎧=++=++.0552505b a b a ;………………………解得⎩⎨⎧-==.61b a ;∴ 抛物线的解析式为562+-=x x y .……(1 (2)∵ A (1,0),B(5,0),∴ OA=1,A B=4.∵ AC =AB 且点C 在点A 的左侧,∴ A C=4 .∴ CB =CA+A B=8. ………………………………………………(1分) ∵ 线段CP 是线段CA 、CB 的比例中项,∴CBCPCP CA =. ∴ CP =24. ……………………………………………………(1分)又 ∵ ∠PCB 是公共角,∴ △CP A ∽△C BP .∴ ∠CPA= ∠CB P. ………………………………………………(1分)过P 作PH ⊥x 轴于H .∵ O C=OD=3,∠D OC=90°,∴ ∠DC O=45°.∴ ∠PC H=45°∴ PH=C H=C P 45sin =4,∴ H(-7,0),BH=12. ∴ P (-7,-4).∴ 31tan ==∠BH PH CBP ,31tan =∠CPA . ………………………(1分) (3) ∵ 抛物线的顶点是M (3,-4),………………………………… (1分) 又 ∵ P (-7,-4),∴ P M∥x轴 .当点E 在M 左侧, 则∠B AM =∠A ME . ∵ ∠AEM=∠AMB ,∴ △AEM ∽△B MA .…………………………………………………(1分)∴BA AM AM ME =. ∴45252=ME . (第24题图)∴ ME=5,∴ E(-2,-4). …………………………………(1分) 过点A作AN ⊥PM 于点N ,则N (1,-4).当点E在M 右侧时,记为点E ', ∵ ∠A E 'N=∠AE N,∴ 点E '与E 关于直线AN 对称,则E '(4,-4).………………(1分) 综上所述,E的坐标为(-2,-4)或(4,-4).25.解:(1)∵ ED =B D,∴ ∠B =∠BED .………………………………(1∵ ∠ACB =90°, ∴ ∠B +∠A=90°. ∵ EF ⊥AB ,∴ ∠B EF =90°. ∴ ∠BED +∠GEF =90°.∴ ∠A =∠G EF . ………………………………(1分∵ ∠G是公共角, ……………………………(1分) ∴ △EFG ∽△A EG . (2)作EH⊥AF 于点H.∵ 在Rt △ABC 中,∠ACB =90°,BC=2,AC =4, ∴ 21tan ==AC BC A . ∴ 在Rt △AEF 中,∠AEF =90°,21tan ==AE EF A . ∵ △EFG ∽△AEG, ∴21===AE EF GA GE EG FG .……………………………………………(1分) ∵ FG =x ,∴ EG =2x,AG =4x .∴ A F=3x . ……………………………………………………………(1分) ∵ EH ⊥AF ,∴ ∠A HE =∠EHF =90°. ∴ ∠EF A+∠FEH =90°. ∵ ∠AEF =90°, ∴ ∠A +∠EF A =90°. ∴ ∠A =∠F EH .∴ tan A =tan ∠F EH .∴ 在Rt △EH F中,∠EH F=90°,21tan ==∠EH HF FEH .∴ EH =2HF.∵ 在R t△AEH 中,∠AHE =90°,21tan ==AH EH A .∴ AH =2EH . ∴ AH =4HF . ∴ AF=5HF .∴ HF =x 53.∴ x EH 56=.…………………………………………………………(1分)∴ 253562121x x x EH FG y =⋅⋅=⋅⋅=.………………………………(1分) 定义域:(340≤<x ).……………………………………………(1分)(3)当△E FD 为等腰三角形时,FG的长度是:254,273.……(5分)。
浦东新区2017届九年级上月考数学试卷(9月份)(有答案)-(沪科版)AKPUnU
上海市浦东新区2017届九年级(上)月考数学试卷(9月份)(解析版)一、选择题:1.在下列命题中,真命题是()A.两个钝角三角形一定相似B.两个等腰三角形一定相似C.两个直角三角形一定相似D.两个等边三角形一定相似2.若两个相似三角形的相似比为1:4,则它们的面积之比为()A.1:2 B.1:4 C.1:5 D.1:163.已知,下列说法中,错误的是()A.B.C.D.4.已知△ABC中,D,E分别是边BC,AC上的点,下列各式中,不能判断DE∥AB的是()A.B.C.D.5.如果,那么下列结论正确的是()A.B.C.D.6.如图,在▱ABCD中,AC、BD相交于O,F在BC延长线上,交CD于E,如果OE=EF,则BF:CF等于()A.3:1 B.2:1 C.5:2 D.3:2二、填空题:7.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是厘米.8.已知点C是线段AB的黄金分割点,AB=4厘米,则较长线段AC的长是厘米(结果保留根号).9.已知与单位向量的方向相反,且长度为2,那么用表示=.10.计算:=.11.在比例尺为1:10000的地图上,相距4厘米的两地A、B的实际距离为米.12.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,AB:A1B1=3:5,BE、B1E1分别是它们的对应中线,则BE:B1E1=.13.如图,已知AE∥BC,AC,BE交于点D,若,则=.14.如图,已知AC∥BD,AE=1,AB=3,AC=2,则BD=.15.如图,在平行四边形ABCD中,点E在边BC上,EC=2BE,连接AE交BD于点F,若△BFE 的面积为2,则△AFD的面积为.16.如图,梯形ABCD中,AD∥BC,AC交BD于点O.若S△AOD=4,S△AOB=6,则△COD的面积是.17.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=.18.△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,则点G到AB中点的距离为.三、解答题:(共78分)19.(10分)已知:,且a+b+c=27,求a、b、c的值.20.(10分)如图,在△ABC中,D是AB 上一点,且=,E、F是AC上的点,且DE∥BC,DF∥BE,AF=9.求EC的长.21.(10分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=8,DF=21,求DE的长.22.(12分)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.23.(10分)如图,延长△ABC的边BC到D,使CD=BC,取AB中点F,边DF交AC于E,求的值.24.(12分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.25.(14分)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,联结EF,求DE:DF值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结CE,若△CDE为等腰三角形,求BF的长.2016-2017学年上海市浦东新区九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题:1.在下列命题中,真命题是()A.两个钝角三角形一定相似B.两个等腰三角形一定相似C.两个直角三角形一定相似D.两个等边三角形一定相似【考点】相似三角形的判定;命题与定理.【分析】根据相似三角形的判定定理对各个选项进行分析,从而得到最后答案.【解答】解:A不正确,不符合相似三角形的判定方法;B不正确,没有指明相等的角或边比例,故不正确;C不正确,没有指明另一个锐角相等或边成比例,故不正确;D正确,三个角均相等,能通过有两个角相等的三角形相似来判定;故选D.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.2.若两个相似三角形的相似比为1:4,则它们的面积之比为()A.1:2 B.1:4 C.1:5 D.1:16【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方解答.【解答】解:两个相似三角形的相似比为1:4,相似三角形面积的比等于相似比的平方是1:16.故选:D.【点评】此题考查了相似三角形性质的理解,相似三角形面积的比等于相似比的平方.3.已知,下列说法中,错误的是()A.B.C.D.【考点】比例的性质.【分析】根据比例的性质(合分比定理)来解答.【解答】A、如果,那么(a+b):b=(c+d):d (b、d≠0).所以由,得,故该选项正确;B、如果a:b=c:d那么(a﹣b):b=(c﹣d):d (b、d≠0).所以由,得,故该选项正确;C、由得,5a=3b,所以a≠b;又由得,ab+b=ab+a即a=b.故该选项错误;D、由得,5a=3b;又由得,5a=3b.故该选项正确;故选C.【点评】本题主要考查的合分比定理和更比定理.①合比定理:如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0);②分比定理:如果a:b=c:d那么(a﹣b):b=(c﹣d):d (b、d≠0);③合分比定理:如果a:b=c:d那么(a+b):(a﹣b)=(c+d):(c﹣d)(b、d、a﹣b、c﹣d≠0);④更比定理:如果a:b=c:d那么a:c=b:d(a、b、c、d≠0).4.已知△ABC中,D,E分别是边BC,AC上的点,下列各式中,不能判断DE∥AB的是()A.B.C.D.【考点】平行线分线段成比例.【分析】若使线段DE∥AB,则其对应边必成比例,进而依据对应边成比例即可判定DE∥AB.【解答】解:如图,若使线段DE∥AB,则其对应边必成比例,即=,=,故选项A、B正确;=,即=,故选项C正确;而=,故D选项答案错误.故选D.【点评】本题主要考查了由平行线分线段成比例判定线段平行的问题,能够掌握其性质,并能够通过其性质判定两直线平行.5.如果,那么下列结论正确的是()A.B.C.D.【考点】*平面向量.【分析】由,可知四边形ABCD是平行四边形,根据相等向量的定义即可作出判断.【解答】解:∵,∴四边形ABCD是平行四边形,A、与长度相等,方向相反,不相等,故本选项错误;B、与长度相等且方向相同,相等,正确;C、与长度不一定相等,方向不同,不相等,故本选项错误;D、与长度不一定相等,方向不同,不相等,故本选项错误.故选B.【点评】本题考查了平行四边形的性质和相等向量的定义.长度相等且方向相同的向量叫做相等向量.6.如图,在▱ABCD中,AC、BD相交于O,F在BC延长线上,交CD于E,如果OE=EF,则BF:CF等于()A.3:1 B.2:1 C.5:2 D.3:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】过O作OH∥CD,交BC于点H,利用平行线的性质,可知H为BC的中点,C为HF 的中点,可求得BF=3CF,可求得答案.【解答】解:如图,过O作OH∥CD,交BC于点H,∵四边形ABCD为平行四边形,∴O为BD中点,∴H为BC中点,∵OE=EF,∴E为OF的中点,∴C为HF的中点,∴BH=HC=CF,∴BF=3CF,∴BF:CF=3:1,故选A.【点评】本题主要考查平行线分线段成比例的性质,由平行四边形的性质结合平行线分线段成比例的性质,求得H、C是BF的三等分点是解题的关键.二、填空题:7.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是4厘米.【考点】比例线段.【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求.【解答】解:∵线段b是a、c的比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故答案为4.【点评】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.8.已知点C是线段AB的黄金分割点,AB=4厘米,则较长线段AC的长是2﹣2厘米(结果保留根号).【考点】黄金分割.【分析】根据黄金分割点的定义,知AC较长线段;则AC=4×=2﹣2.【解答】解:由于C为线段AB=4cm的黄金分割点,且AC较长线段;则AC=4×=2﹣2.故本题答案为:2﹣2厘米.【点评】理解黄金分割点的概念.熟记黄金比的值进行计算.9.已知与单位向量的方向相反,且长度为2,那么用表示=.【考点】*平面向量.【分析】根据向量的表示方法可直接进行解答.【解答】解:∵的长度为2,向量是单位向量,∴a=2e,∵与单位向量的方向相反,∴=.故答案为:.【点评】本题考查的是平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.10.计算:=.【考点】*平面向量.【分析】根据向量的计算法则求解即可.首先去括号,再将同一向量的系数相加减即可求得答案.【解答】解:=2﹣2﹣3﹣=﹣﹣3.故答案为:﹣﹣3.【点评】此题考查了向量的运算.题目比较简单,先去括号,再加减运算即可.11.在比例尺为1:10000的地图上,相距4厘米的两地A、B的实际距离为400米.【考点】比例线段.【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质易求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故答案为400.【点评】本题考查了比例线段:若线段a、b、c、d满足a:b=c:d,则a、b、c、d叫比例线段.也考查了比例尺.12.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,AB:A1B1=3:5,BE、B1E1分别是它们的对应中线,则BE:B1E1=3:5.【考点】相似三角形的性质.【分析】相似三角形对应中线的比等于对应边的比.【解答】解:三角形对应中线的比等于其对应边的比,而题中三角形的对应边的比为3:5,所以三角形的中线之比也等于3:5.故答案为3:5.【点评】本题主要考查了相似三角形的性质问题,能够理解并熟练掌握.13.如图,已知AE∥BC,AC,BE交于点D,若,则=.【考点】相似三角形的判定与性质.【分析】由AE∥BC可知△AED∽△CBD,从而可求得,然后即可求得的值.【解答】解:∵AE∥BC,∴△AED∽△CBD.∴.∴.∴.故答案为:.【点评】本题主要考查的是相似三角形的性质和判定,掌握相似三角形的性质和判定定理是解题的关键.14.如图,已知AC∥BD,AE=1,AB=3,AC=2,则BD=4.【考点】相似三角形的判定与性质.【分析】由AC∥BD易证△ACE∽△BDE,再利用相似三角形的性质:对应边的比值相等即可求出BD的长.【解答】解:∵AC∥BD,∴△ACE∽△BDE,∴AE:BE=AC:BD,∵AE=1,AB=3,∴BE=2,∵AC=2,∴1:2=2:BD,∴BD=4,故答案为:4.【点评】本题考查了相似三角形的判断和性质,熟记相似三角形的各种判断方法是解题的关键.15.如图,在平行四边形ABCD中,点E在边BC上,EC=2BE,连接AE交BD于点F,若△BFE 的面积为2,则△AFD的面积为18.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据四边形ABCD是平行四边形得到BC∥AD,判定△ADF∽△EBF,然后用相似三角形面积的比等于相似比的平方求出△AFD的面积.【解答】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADF∽△EBF,∵EC=2BE,∴BC=3BE,即:AD=3BE,=9S△EFB=18.∴S△AFD故答案为:18.【点评】本题考查的是相似三角形的判定与性质,根据平行四边形的性质,得到AD与BC平行且相等,得到相似三角形,然后用相似三角形的性质,相似三角形面积的比等于相似比的平方求出三角形的面积.16.如图,梯形ABCD中,AD∥BC,AC交BD于点O.若S△AOD=4,S△AOB=6,则△COD的面积是6.【考点】梯形.=S△ADC,进而得出△COD的面积.【分析】直接利用梯形的性质得出S△ABD【解答】解:∵梯形ABCD中,AD∥BC,AD=AD,=S△ADC,∴S△ABD=S△DOC,∴S△AOB=4,S△AOB=6,∵S△AOD∴△COD的面积是6.故答案为:6.=S△ADC是解题关键.【点评】此题主要考查了梯形,正确得出S△ABD17.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= 4.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定及已知可得到△ABC∽△CDE,利用相似三角形的对应边成比例即可求得AB的长.【解答】解:∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=4.【点评】本题主要考查相似三角形的判定、相似三角形的性质等知识.18.△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,则点G到AB中点的距离为.【考点】三角形的重心.【分析】如图,CD是Rt△ABC的斜边上的中线,那么三角形的重心G在线段CD上,然后利用勾股定理和重心的性质即可求出△ABC的重心与斜边AB中点之间的距离.【解答】解:∵在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB==10,如图,CD是Rt△ABC的斜边上的中线,∴三角形的重心G在线段CD上,∴CD=AB=5,∴GD=,即△ABC的重心与斜边AB中点之间的距离等于.故答案为:.【点评】此题分别考查了勾股定理、直角三角形斜边上的中线的性质及三角形的重心的性质,有一定的综合性,解题时要求学生熟练掌握这些知识才能很好解决这类问题.三、解答题:(共78分)19.(10分)(2010秋•虹口区期中)已知:,且a+b+c=27,求a、b、c的值.【考点】比例的性质.【分析】根据题意,设a=2k,b=3k,c=4k.又因为a+b+c=27,则可得k的值,从而求得a、b、c的值.【解答】解:设,则a=2k,b=3k,c=4k∵a+b+c=27∴2k+3k+4k=27∴k=3∴a=6,b=9,c=12.【点评】本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.20.(10分)(2016秋•浦东新区月考)如图,在△ABC中,D是AB 上一点,且=,E、F是AC上的点,且DE∥BC,DF∥BE,AF=9.求EC的长.【考点】平行线分线段成比例.【分析】由DF∥BE可知,故可求出FE的值,由因为=故可求出EC的长度.【解答】解:∵DF∥BE,∴∵,AF=9,∴FE=6.∵DE∥BC,∴=∵AE=AF+FE=15,∴EC=10【点评】本题考查平行线分线段成比例,解题的关键是根据题中的给出的平行线列出比例式,本题属于基础题型.21.(10分)(2016秋•浦东新区月考)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=8,DF=21,求DE的长.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,代入已知数据计算即可.【解答】解:∵AD∥BE∥CF,∴,∵AB=6,BC=8,DF=21,∴,∴DE=9.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.22.(12分)(2010秋•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【考点】相似三角形的判定与性质.【分析】(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴,∴AB×AE=AC×AD,∴,∵∠BAD=∠CAE,∴△ABD∽△ACE.【点评】本题主要考查了相似三角形的判定及性质问题,应熟练掌握.23.(10分)(2016秋•浦东新区月考)如图,延长△ABC的边BC到D,使CD=BC,取AB中点F,边DF交AC于E,求的值.【考点】相似三角形的判定与性质.【分析】首先过点C作CM∥AB,得出CM BF,进而得出==,进而得出答案.【解答】解:过点C作CM∥AB,∵CD=BC,CM∥AB,∴CM BF,∵AB中点F,∴AF=BF,∴CM AF,∴△AFE∽△CME,∴==,∴=.【点评】此题主要考查了相似三角形的判定与性质,根据已知得出正确辅助线是解题关键.24.(12分)(2010秋•虹口区期中)如图,点P是菱形ABCD的对角线BD上一点,连接CP 并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【分析】(1)可由相似三角形△AEP∽△FAP对应边成比例进行求解,也可由平行线分线段成比例定理进行求解,两者均可;(2)由题中已知线段的长度,结合(1)中的结论,再由平行线分线段成比例,即可得出结论.【解答】(1)证明:法1:∵四边形ABCD是菱形,∴DC=DA,∠ADP=∠CDP,DC∥AB,又∵DP是公共边,∴△DAP≌△DCP,∴PA=PC,∠DAP=∠DCP,由DC∥FA得,∠F=∠DCP,∴∠F=∠DAP,又∵∠EPA=∠APF∴△AEP∽△FAP,∴PA2=PE•PF∴PC2=PE•PF.法2:∵四边形ABCD是菱形∴DC∥AB,AD∥BC(1分)∴,∴∴PC2=PE•PF.(2)解:∵PE=2,EF=6,∴PF=8,∵PC2=PE•PF,∴PC2=16∴PC=4,∵DC∥FB∴,又DC=8,∴∴FB=16.【点评】本题主要考查了全等三角形的判定及性质以及菱形的性质和相似三角形的判定及性质问题,能够熟练掌握.25.(14分)(2016秋•浦东新区月考)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,联结EF,求DE:DF值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结CE,若△CDE为等腰三角形,求BF的长.【考点】三角形综合题.【分析】(1)先根据勾股定理求出AB的长,再由三角形的中位线定理求出DF、DE的长,即可求出DE:DF值;(2)过点E作EH⊥AC于点H,由平行线的性质及等腰三角形的性质可求出HE、HD的表达式,再由相似三角形的判定定理求出△HDE∽△CFD,根据相似三角形的性质可写出y关于x的函数关系式;(3)先分析出△DCE为等腰三角形时的两种情况,再根据题意画出图形,当DC=DE时,点F 在边BC上,过点D作DG⊥AE于点G,可求出AE的长度,由AE的长可判断出F的位置,进而可求出BF的长;当ED=EC时,先判断出点F的位置,再根据相似三角形的性质及判定定理即可解答.【解答】解:(1)∴AC=BC=6,∠ACB=90°,∴,∵DF∥AB,,∴,∴,∴在Rt△DEF中,==;(2)过点E作EH⊥AC于点,则,∴,根据∠DHE=∠C=90°,∠DEH=∠FDC,可得△HDE∽△CFD,∴,∴,∴;(3)∵,CD=3,∴CE>CD,∴若△DCE为等腰三角形,只有DC=DE或ED=EC两种可能:①当DC=DE时,点F在边BC上,过点D作DG⊥AE于点G(如图①),可得:,即点E在AB中点,∴此时F与C重合,∴BF=6;②当ED=EC时,点F在BC的延长线上,过点E作EM⊥CD于点M(如图②),可证:△DFC∽△DEM,∴,∴,∴CF=1,∴BF=7,综上所述,BF为6或7.【点评】本题主要考查了是一道综合题,涉及到锐角三角函数的定义、直角三角形的性质、相似三角形的判定与性质,涉及面较广,难度较大.运用分类讨论的思想是解决本题的关键.。
2017年上海各区初三数学一模卷
2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A. 100tan α B. 100cot α C. 100sin α D. 100cos α 3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=r r r ,2a b c -=r r r ,那么a =r (用b r表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =u u u r r ,AC b =u u u r r ,试用向量a r 和b r 表示向量AG u u u r; (2)在图中求作向量AG u u u r 与AB u u u r的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域; (3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. 8. (4,0)-9. 减小10.32x=11.2312.1213. 2014. 45br15. 6016. 2.417. 318.12三. 解答题19.(1)2233AG a b=-u u u r r r;(2)略;20.(1)223y x x=-++;(2)向上平移4个单位;21.(1)6BD=;(2)26;22.2t=;23.(1)略;(2)略;24.(1)(2,3)D、(2,0)M;(2)32a=-或12a=-;25.(1)13;(2)344x xy-=(02)x<<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( ) (A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x . 二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r,B =b ρ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)图3F ABCDE 图2ABCDA B C D EF图119.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =u u u r r,=b ρ. 求:(1)向量DC (用向量a r 、b r表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).图4ABCDEF23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.图6ABCD E25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.B AC备用图图8QPDB AC E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r ,B =b ρ,那么=__b a ϖϖ-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)图3 F A B C D E图2 AB CD A B C DEF 图1解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(. (2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB ϖ=,=EC b BC ϖ2121=;∴b a DC ϖϖ21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里; 它从B 处到达小岛C 的航行时间约为3.7小时. 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =. 24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO ,︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;QPD BAC E F∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A.ED AD BC AB = B. ED AEBC AC=C.AD AE AB AC = D. AD ACAB AE=4.已知1O e 与2O e 的半径分别是2和6,若1O e 与2O e 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a r 与b r,那么下列说法正确的是( )A. 如果a b =r r ,那么a b =r r ;B. 如果a b =-r r,那么a b r r ∥ C. 如果a b r r ∥,那么a b =r r ; D. 如果a b =-r r ,那么a b =r r6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定 二、填空题(本大题共12题,每题4分,满分48分)7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________. 10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________.13. 已知A e 的半径是2,如果B 是A e 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC BDCAACD EB16. 如图,1O e 与2O e 相交于A B 、两点,1O e 与2O e 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =u u u r r ,DC b =u u u r r ,请用向量a r 、b r 表示AC u u u r和AB u u u r(直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D e 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D e 的半径;(2)CE 的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N MD FEBA C第22题图如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式; (3)O 为坐标原点,以A 为圆心OA 长为半径画A e ,以C 为圆心,12OC 长为半径画圆C e ,当A e 与C e 外切时,求此抛物线的解析式.第24题图DBGEFCA第23题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.D第25题备用图OQPD FE第25题图B CA2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( ) ;35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BCAB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( ) ①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题 7.如果)b -a 2(3b a ρρρρ=+,用a ρ表示b ρ,那么b ρ=8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ; 13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60o ,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O e 的半径是4,ABC ∆是O e 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD V 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-o o o o o20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =u u u r r ,DC b =u u u r r . (1)请用a r 、b r 来表示DE u u u r ; (2)在原图中求作向量DE u u u r 在a r 、b r 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC V 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E . 求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F . (1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE于点F ,联结BD .(1)求证:BCCECD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a v8.1:2 9.2 10.3 11.120 12.内含 13.6 14.()221y x =-- .15. 19.56 20(1).2133DE a b =+u u u r r r (2)略 21.0.3米/秒 22.18平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭25.(1)略(2)24(04)2x xy x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC 交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB 的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;。
2016-2017年上海市浦东新区初三数学第一次月考.dot
2017届上海市浦东新区九年级(五四学制)9月月考数学试卷一、单选题(共6小题)1.在下列命题中,真命题是( )A .两个钝角三角形一定相似B .两个等腰三角形一定相似C .两个直角三角形一定相似D .两个等边三角形一定相似2.已知两个相似三角形的相似比为1:4,则它们的面积比为( )A .1:4B .4:1C .1:2D .1:16 3.已知35a b =,下列说法中,错误的是( ) A .85a b b +=B . 25a b b −=−C . 1=1a a b b ++D . 53b a =4.已知△ABC 中,D 、E 分别是边BC 、AC 上的点,下列各式中,不能判断DE //AB 的是( ) A .B .C .D .5.如果AB CD =,那么下列结论正确的是( )A . AC DB=B . AC BD =C . AD BC =D . AD CB =6.如图,在ABCD 中,AC 、BD 相交于O ,F 在BC 延长线上,交CD 于E ,如果OE =EF ,则BF :CF 等于( )A .3:1B .2:1C .5:2D .3:2.二、填空题(共12小题)7.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是 厘米.8.已知点P 是线段AB 的黄金分割点,AB =4厘米,则较长线段AP 的长是 厘米. 9.已知a 与单位向量e 的方向相反,且长度为2,那么用e 表示a =. 10.计算: ()1233a b a b ⎛⎫−−+ ⎪⎝⎭= .11.在比例尺为1:10 000的地图上,相距4厘米的两地A 、B 的实际距离为米. 12.已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,AB : A 1B 1=3:5,BE 、B 1E 1分别是它们的对应中线,则BE :B 1E 1= .13.如图,已知AE ∥BC ,AC 、BE 交于点D ,若23AD DC =,则DE BE = .14.如图,已知AC ∥BD ,AE =1,AB =3,AC =2,则BD = .15.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,联结AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为 .16.如图,梯形ABCD 中,AD //BC ,AC 交BD 于点O .若S △AOD =4,S △AOB =6,则△COD 的面积是_____________.17.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB = .18.△ABC 中,∠ACB =90°,AC =6,BC =8,G 为△ABC 的重心,则点G 到AB 中点的距离为____________ .三、解答题(共7小题)19.已知:234a b c ==,且a +b +c =27,求a 、b 、c 的值.20.如图,在△ABC 中,D 是AB 上一点,且32AD DB =,E 、F 是AC 上的点,且DE ∥BC ,DF ∥BE ,AF =9.求EC 的长.21.如图,已知AD //BE //CF ,它们依次交直线l 1、l 2于点A 、B 、C 和点D 、E 、F .如果AB =6,BC =8,DF =21,求DE 的长;22.如图,在△ABC 和△ADE 中,∠BAD =∠CAE ,∠ABC =∠AD E .(1)求证:△ABC ∽△ADE ;(2)判断△ABD 与△ACE 是否相似?并证明.23.如图,已知△ABC,延长BC到D,使CD=B C.取AB的中点F,联结FD交AC于点E.求AE AC的值;24.如图,点P是菱形ABCD对角线BD上一点,联结CP并延长交AD于点E,交BA的延长线于点F.(1)求证:2PC PE PF=⋅;(2)若菱形边长为8,PE=2,EF=6,求FB的长.25.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF//AB时,联结EF,求DE:DF值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结CE,若△CDE为等腰三角形,求BF的长.2017届上海市浦东新区九年级(五四学制)9月月考数学试卷一、单选题(共6小题)1.D2.D3.C4.D5.B6.A二、填空题(共12小题)7.48.252−9.2e−10.11.40012.3:513.2 514.415.1816.617.418.三、解答题(共7小题)19.,,20.1021.922.(1)证明略(2)相似,证明略23.2 324.(1)证明略;(2)1625.(1)1 2(2)929(2x32) y=+<<(3)6或7.。
9-01-数学-2017浦东新区数学一模(含答案)
名师课堂工作室
2
长宁咨询 52656095
浦东咨询 58942596
微信公众号 ketangedu
10.如果抛物线 y mx m 3 x m 2 经过原点,那么 m ____________. 11.如果抛物线 y a 3 x 2 有最低点,那么 a 的取值范围是____________.
2
12.在一个边长为 2 的正方形中挖去一个边长为 x 0 x 2 的小正方形,如果设剩余部分的面积为 y ,那么 y 关于 x 的函数解析式是____________.
“=”或“<” ). 14.二次函数 y x 1 的图像上有两个点 3, y1 , , y2 ,那么 y1 ____________ y2 (填“>”
(
)
6.如果抛物线 A : y x 1 通过左右平移得到抛物线 B ,再通过上下平移抛物线 B 得到抛物线 C : y x 2 x 2 ,那 么抛物线 B 的表达式为 A. y x 2
2
2
2
( B. y x 2x 1
2
)
C. y x 2 x
2
D. y x 2x 1
DE 1 BC 3
C.
D.
DE 1 BC 2
5. 如 图 , ABC 的 两 条 中 线 AD, CE 交 于 点 G , 且 AD CE , 联 结 BG 并 延 长 与 AC 交 于 点 F , 如 果
AD 9, CE 12, 那么下列结论不正确的是
A. AC 10 B. AB 15 C. BG 10 D. BF 15
上海市浦东新区2017届九年级(上)月考数学试卷(9月份)
2016-2017学年上海市浦东新区九年级(上)月考数学试卷(9月份)一、选择题:(每题4分,共24分)1.在下列命题中,真命题是()A.两个钝角三角形一定相似B.两个等腰三角形一定相似C.两个直角三角形一定相似D.两个等边三角形一定相似2.若两个相似三角形的相似比为1:4,则它们的面积之比为()A.1:2 B.1:4 C.1:5 D.1:163.已知,下列说法中,错误的是()A. B.C. D.4.已知△ABC中,D,E分别是边BC,AC上的点,下列各式中,不能判断DE ∥AB的是()A. B. C. D.5.如果,那么下列结论正确的是()A.B.C.D.6.如图,在▱ABCD中,AC、BD相交于O,F在BC延长线上,交CD于E,如果OE=EF,则BF:CF等于()A.3:1 B.2:1 C.5:2 D.3:2二、填空题:(每题4分,共48分)7.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是厘米.8.已知点C是线段AB的黄金分割点,AB=4厘米,则较长线段AC的长是厘米(结果保留根号).9.已知与单位向量的方向相反,且长度为2,那么用表示=.10.计算:=.11.在比例尺为1:10000的地图上,相距4厘米的两地A、B的实际距离为米.12.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,AB:A1B1=3:5,BE、B1E1分别是它们的对应中线,则BE:B1E1=.13.如图,已知AE∥BC,AC,BE交于点D,若,则=.14.如图,已知AC∥BD,AE=1,AB=3,AC=2,则BD=.15.如图,在平行四边形ABCD中,点E在边BC上,EC=2BE,连接AE交BD 于点F,若△BFE的面积为2,则△AFD的面积为.16.如图,梯形ABCD中,AD∥BC,AC交BD于点O.若S△AOD=4,S△AOB=6,则△COD的面积是.17.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=.18.△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,则点G到AB中点的距离为.三、解答题:(共78分)19.已知:,且a+b+c=27,求a、b、c的值.20.如图,在△ABC中,D是AB 上一点,且=,E、F是AC上的点,且DE∥BC,DF∥BE,AF=9.求EC的长.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=8,DF=21,求DE的长.22.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.23.如图,延长△ABC的边BC到D,使CD=BC,取AB中点F,边DF交AC 于E,求的值.24.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.25.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,联结EF,求DE:DF值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结CE,若△CDE为等腰三角形,求BF的长.2016-2017学年上海市浦东新区九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题:(每题4分,共24分)1.在下列命题中,真命题是()A.两个钝角三角形一定相似B.两个等腰三角形一定相似C.两个直角三角形一定相似D.两个等边三角形一定相似【考点】相似三角形的判定;命题与定理.【分析】根据相似三角形的判定定理对各个选项进行分析,从而得到最后答案.【解答】解:A不正确,不符合相似三角形的判定方法;B不正确,没有指明相等的角或边比例,故不正确;C不正确,没有指明另一个锐角相等或边成比例,故不正确;D正确,三个角均相等,能通过有两个角相等的三角形相似来判定;故选D.2.若两个相似三角形的相似比为1:4,则它们的面积之比为()A.1:2 B.1:4 C.1:5 D.1:16【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方解答.【解答】解:两个相似三角形的相似比为1:4,相似三角形面积的比等于相似比的平方是1:16.故选:D.3.已知,下列说法中,错误的是()A. B.C. D.【考点】比例的性质.【分析】根据比例的性质(合分比定理)来解答.【解答】A、如果,那么(a+b):b=(c+d):d (b、d≠0).所以由,得,故该选项正确;B、如果a:b=c:d那么(a﹣b):b=(c﹣d):d (b、d≠0).所以由,得,故该选项正确;C、由得,5a=3b,所以a≠b;又由得,ab+b=ab+a即a=b.故该选项错误;D、由得,5a=3b;又由得,5a=3b.故该选项正确;故选C.4.已知△ABC中,D,E分别是边BC,AC上的点,下列各式中,不能判断DE ∥AB的是()A. B. C. D.【考点】平行线分线段成比例.【分析】若使线段DE∥AB,则其对应边必成比例,进而依据对应边成比例即可判定DE∥AB.【解答】解:如图,若使线段DE∥AB,则其对应边必成比例,即=,=,故选项A、B正确;=,即=,故选项C正确;而=,故D选项答案错误.故选D.5.如果,那么下列结论正确的是()A.B.C.D.【考点】*平面向量.【分析】由,可知四边形ABCD是平行四边形,根据相等向量的定义即可作出判断.【解答】解:∵,∴四边形ABCD是平行四边形,A、与长度相等,方向相反,不相等,故本选项错误;B、与长度相等且方向相同,相等,正确;C、与长度不一定相等,方向不同,不相等,故本选项错误;D、与长度不一定相等,方向不同,不相等,故本选项错误.故选B.6.如图,在▱ABCD中,AC、BD相交于O,F在BC延长线上,交CD于E,如果OE=EF,则BF:CF等于()A.3:1 B.2:1 C.5:2 D.3:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】过O作OH∥CD,交BC于点H,利用平行线的性质,可知H为BC 的中点,C为HF的中点,可求得BF=3CF,可求得答案.【解答】解:如图,过O作OH∥CD,交BC于点H,∵四边形ABCD为平行四边形,∴O为BD中点,∴H为BC中点,∵OE=EF,∴E为OF的中点,∴C为HF的中点,∴BH=HC=CF,∴BF=3CF,∴BF:CF=3:1,故选A.二、填空题:(每题4分,共48分)7.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是4厘米.【考点】比例线段.【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求.【解答】解:∵线段b是a、c的比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故答案为4.8.已知点C是线段AB的黄金分割点,AB=4厘米,则较长线段AC的长是2﹣2厘米(结果保留根号).【考点】黄金分割.【分析】根据黄金分割点的定义,知AC较长线段;则AC=4×=2﹣2.【解答】解:由于C为线段AB=4cm的黄金分割点,且AC较长线段;则AC=4×=2﹣2.故本题答案为:2﹣2厘米.9.已知与单位向量的方向相反,且长度为2,那么用表示=.【考点】*平面向量.【分析】根据向量的表示方法可直接进行解答.【解答】解:∵的长度为2,向量是单位向量,∴a=2e,∵与单位向量的方向相反,∴=.故答案为:.10.计算:=.【考点】*平面向量.【分析】根据向量的计算法则求解即可.首先去括号,再将同一向量的系数相加减即可求得答案.【解答】解:=2﹣2﹣3﹣=﹣﹣3.故答案为:﹣﹣3.11.在比例尺为1:10000的地图上,相距4厘米的两地A、B的实际距离为400米.【考点】比例线段.【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质易求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故答案为400.12.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,AB:A1B1=3:5,BE、B1E1分别是它们的对应中线,则BE:B1E1=3:5.【考点】相似三角形的性质.【分析】相似三角形对应中线的比等于对应边的比.【解答】解:三角形对应中线的比等于其对应边的比,而题中三角形的对应边的比为3:5,所以三角形的中线之比也等于3:5.故答案为3:5.13.如图,已知AE∥BC,AC,BE交于点D,若,则=.【考点】相似三角形的判定与性质.【分析】由AE∥BC可知△AED∽△CBD,从而可求得,然后即可求得的值.【解答】解:∵AE∥BC,∴△AED∽△CBD.∴.∴.∴.故答案为:.14.如图,已知AC∥BD,AE=1,AB=3,AC=2,则BD=4.【考点】相似三角形的判定与性质.【分析】由AC∥BD易证△ACE∽△BDE,再利用相似三角形的性质:对应边的比值相等即可求出BD的长.【解答】解:∵AC∥BD,∴△ACE∽△BDE,∴AE:BE=AC:BD,∵AE=1,AB=3,∴BE=2,∵AC=2,∴1:2=2:BD,∴BD=4,故答案为:4.15.如图,在平行四边形ABCD中,点E在边BC上,EC=2BE,连接AE交BD 于点F,若△BFE的面积为2,则△AFD的面积为18.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据四边形ABCD是平行四边形得到BC∥AD,判定△ADF∽△EBF,然后用相似三角形面积的比等于相似比的平方求出△AFD的面积.【解答】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADF∽△EBF,∵EC=2BE ,∴BC=3BE ,即:AD=3BE ,∴S △AFD =9S △EFB =18.故答案为:18.16.如图,梯形ABCD 中,AD ∥BC ,AC 交BD 于点O .若S △AOD =4,S △AOB =6,则△COD 的面积是 6 .【考点】梯形.【分析】直接利用梯形的性质得出S △ABD =S △ADC ,进而得出△COD 的面积.【解答】解:∵梯形ABCD 中,AD ∥BC ,AD=AD ,∴S △ABD =S △ADC ,∴S △AOB =S △DOC ,∵S △AOD =4,S △AOB =6,∴△COD 的面积是6.故答案为:6.17.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB= 4 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定及已知可得到△ABC ∽△CDE ,利用相似三角形的对应边成比例即可求得AB 的长.【解答】解:∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=4.18.△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,则点G到AB中点的距离为.【考点】三角形的重心.【分析】如图,CD是Rt△ABC的斜边上的中线,那么三角形的重心G在线段CD上,然后利用勾股定理和重心的性质即可求出△ABC的重心与斜边AB中点之间的距离.【解答】解:∵在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB==10,如图,CD是Rt△ABC的斜边上的中线,∴三角形的重心G在线段CD上,∴CD=AB=5,∴GD=,即△ABC的重心与斜边AB中点之间的距离等于.故答案为:.三、解答题:(共78分)19.已知:,且a+b+c=27,求a、b、c的值.【考点】比例的性质.【分析】根据题意,设a=2k,b=3k,c=4k.又因为a+b+c=27,则可得k的值,从而求得a、b、c的值.【解答】解:设,则a=2k,b=3k,c=4k∵a+b+c=27∴2k+3k+4k=27∴k=3∴a=6,b=9,c=12.20.如图,在△ABC中,D是AB 上一点,且=,E、F是AC上的点,且DE∥BC,DF∥BE,AF=9.求EC的长.【考点】平行线分线段成比例.【分析】由DF∥BE可知,故可求出FE的值,由因为=故可求出EC的长度.【解答】解:∵DF∥BE,∴∵,AF=9,∴FE=6.∵DE∥BC,∴=∵AE=AF+FE=15,∴EC=1021.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=8,DF=21,求DE的长.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,代入已知数据计算即可.【解答】解:∵AD∥BE∥CF,∴,∵AB=6,BC=8,DF=21,∴,∴DE=9.22.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【考点】相似三角形的判定与性质.【分析】(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴,∴AB×AE=AC×AD,∴,∵∠BAD=∠CAE,∴△ABD∽△ACE.23.如图,延长△ABC的边BC到D,使CD=BC,取AB中点F,边DF交AC 于E,求的值.【考点】相似三角形的判定与性质.【分析】首先过点C作CM∥AB,得出CM BF,进而得出==,进而得出答案.【解答】解:过点C作CM∥AB,∵CD=BC,CM∥AB,∴CM BF,∵AB中点F,∴AF=BF,∴CM AF,∴△AFE∽△CME,∴==,∴=.24.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【分析】(1)可由相似三角形△AEP∽△FAP对应边成比例进行求解,也可由平行线分线段成比例定理进行求解,两者均可;(2)由题中已知线段的长度,结合(1)中的结论,再由平行线分线段成比例,即可得出结论.【解答】(1)证明:法1:∵四边形ABCD是菱形,∴DC=DA,∠ADP=∠CDP,DC∥AB,又∵DP是公共边,∴△DAP≌△DCP,∴PA=PC,∠DAP=∠DCP,由DC∥FA得,∠F=∠DCP,∴∠F=∠DAP,又∵∠EPA=∠APF∴△AEP∽△FAP,∴PA2=PE•PF∴PC2=PE•PF.法2:∵四边形ABCD是菱形∴DC∥AB,AD∥BC∴,∴∴PC2=PE•PF.(2)解:∵PE=2,EF=6,∴PF=8,∵PC2=PE•PF,∴PC2=16∴PC=4,∵DC∥FB∴,又DC=8,∴∴FB=16.25.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,联结EF,求DE:DF值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结CE,若△CDE为等腰三角形,求BF的长.【考点】三角形综合题.【分析】(1)先根据勾股定理求出AB的长,再由三角形的中位线定理求出DF、DE的长,即可求出DE:DF值;(2)过点E作EH⊥AC于点H,由平行线的性质及等腰三角形的性质可求出HE、HD的表达式,再由相似三角形的判定定理求出△HDE∽△CFD,根据相似三角形的性质可写出y关于x的函数关系式;(3)先分析出△DCE为等腰三角形时的两种情况,再根据题意画出图形,当DC=DE时,点F在边BC上,过点D作DG⊥AE于点G,可求出AE的长度,由AE的长可判断出F的位置,进而可求出BF的长;当ED=EC时,先判断出点F的位置,再根据相似三角形的性质及判定定理即可解答.【解答】解:(1)∴AC=BC=6,∠ACB=90°,∴,∵DF∥AB,,∴,∴,∴在Rt△DEF中,==;(2)过点E作EH⊥AC于点,则,∴,根据∠DHE=∠C=90°,∠DEH=∠FDC,可得△HDE∽△CFD,∴,∴,∴;(3)∵,CD=3,∴CE>CD,∴若△DCE为等腰三角形,只有DC=DE或ED=EC两种可能:①当DC=DE时,点F在边BC上,过点D作DG⊥AE于点G(如图①),可得:,即点E在AB中点,∴此时F与C重合,∴BF=6;②当ED=EC时,点F在BC的延长线上,过点E作EM⊥CD于点M(如图②),可证:△DFC∽△DEM,∴,∴,∴CF=1,∴BF=7,综上所述,BF为6或7.2017年2月19日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海浦东新区初三一模数学试卷-学生用卷选择题(本大题共6题,每题4分,共24分)1、在下列y 关于x 的函数中,一定是二次函数的是( ).A. y =2x 2B. y =2x −2C. y =ax 2D. y =a x 2、如果向量a →、b →、x →满足x →+a →=32(a →−23b →),那么x →用a →、b →表示正确的是( ). A. a →−2b → B. 52a →−b → C. a →−23b → D. 12a →−b →3、已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( ). A. 2sin αB. 2sinαC. 2cos αD. 2cosα4、在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =4,那么由下列条件能够判断DE//BC 的是( ).A. AE AC =12B. DE BC =13C. AE AC =13D. DE BC =12 5、如图,△ABC 的两条中线AD 、CE 交于点G ,且AD ⊥CE ,联结BG 并延长与AC 交于点F ,如果AD =9,CE =12,那么下列结论不正确的是( ).A. AC =10B. AB =15C. BG =10D. BF =156、如果抛物线A:y=x2−1通过左右平移得到抛物线B,再通过上下平移抛物线B得到抛物线C:y=x2−2x+2,那么抛物线B的表达式为().A. y=x2+2B. y=x2−2x−1C. y=x2−2xD. y=x2−2x+1填空题(本大题共12题,每题4分,共48分)7、已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8、已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA=.9、已知|a→|=2,|b→|=4,且b→和a→反向,用向量a→表示向量b→=.10、如果抛物线y=mx2+(m−3)x−m+2经过原点,那么m=.11、如果抛物线y=(a−3)x2−2有最低点,那么a的取值范围是.12、在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是.13、如果抛物线y=ax2−2ax+1经过点A(−1,7)、B(x,7),那么x=.,y2),那么y1y2(填“>”、14、二次函数y=(x−1)2的图象上有两个点(3,y1)、(92“=”或“<”).15、如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=米.16、如图,梯形ABCD中,AD//BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG=.17、如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18、如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、=.C分别落在点B′、C′处,联结BC′与AC边交于点D,那么BDDC′解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19、计算:2cos230°−sin30°+1.cot30°−2sin45°20、如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F.(1) 求EF的值.AF(2) 如果AB→=a→,AD→=b→,求向量EF→(用向量a→、b→表示).21、如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3.(1) 求证:△ADC∽△BAC.(2) 当AB=8时,求sinB.22、如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:(1) 选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由.(2) 求斜坡底部点A与台阶底部点D的水平距离AD.23、如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF//AB交AE延长线于点F,连接FD并延长与AB交于点G.(1) 求证:AC=2CF.(2) 连接AD,如果∠ADG=∠B,求证:CD2=AC⋅CF.24、已知顶点为A(2,−1)的抛物线经过点B(0,3),与x轴交于C、D两点.(点C在点D的左侧)(1) 求这条抛物线的表达式.(2) 联结AB、BD、DA,求△ABD的面积.(3) 点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.25、如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M.(1) 当点E在线段BC上时,求证:△AEF∽△ABD.(2) 在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x 的取值范围.(3) 当△AGM与△ADF相似时,求BE的长.1 、【答案】 A【解析】 A 、是二次函数,故A 符合题意;B 、是一次函数,故B 错误;C 、a =0时,不是二次函数,故C 错误;D 、a ≠0时是分式方程,故D 错误.故选A .2 、【答案】 D【解析】 ∵x →+a →=32(a →−23b →), ∴2(x →+a →)=3(a →−23b →), ∴2x →+2a →=3a →−2b →,∴2x →=a →−2b →,解得:x →=12a →−b →. 故选D .3 、【答案】 A【解析】 ∵在Rt △ABC 中,∠C =90°,∠A =α,BC =2, ∴sinA =BC AB , ∴AB =BC sin A =2sin α, 故选A .4 、【答案】 C【解析】 由题得,若证得△ADE ∽△ABC 则可判断DE//BC .已知AD AC =22+4=13,且∠A =∠A . 则添加AB AC =AD AC =13即可证△ADE ∽△ABC . 5 、【答案】 B【解析】 ∵△ABC 的两条中线AD 、CE 交于点G ,∴点G 是△ABC 的重心,∴AG =23AD =6,CG =23CE =8,EG =13CE =4, ∵AD ⊥CE ,∴AC =√AG 2+CG 2=10,A 正确;AE =√AG 2+EG 2=2√13,∴AB =2AE =4√13,B 错误;∵AD ⊥CE ,F 是AC 的中点,∴GF =12AC =5, ∴BG =10,C 正确;BF =15,D 正确,故选:B .6 、【答案】 C【解析】 抛物线A :y =x 2−1的顶点坐标是(0,−1),抛物线C :y =x 2−2x +2=(x −1)2+1的顶点坐标是(1,1).则将抛物线A 向右平移1个单位,再向上平移2个单位得到抛物线C . 所以抛物线B 是将抛物线A 向右平移1个单位得到的,其解析式为y =(x −1)2−1=x 2−2x . 故选C .7 、【答案】 2√3【解析】 ∵线段a =3cm ,b =4cm ,∴线段a 、b 的比例中项=√3×4=2√3cm .8 、【答案】 √5−1【解析】∵点P是线段AB上的黄金分割点,PB>PA,∴PB=√5−12AB,解得,AB=√+1,∴PA=AB−PB=√5+1−2=√5−1.9 、【答案】−2a→【解析】|a→|=2,|b→|=4,且b→和a→反向,故可得:b→=−2a→.10 、【答案】2【解析】由抛物线y=mx2+(m−3)x−m+2经过原点,得−m+2=0.解得m=2.11 、【答案】a>3【解析】∵原点是抛物线y=(a−3)x2−2的最低点,∴a−3>0,即a>3.12 、【答案】y=−x2+4(0<x<2)【解析】设剩下部分的面积为y,则:y=−x2+4(0<x<2).13 、【答案】3【解析】∵抛物线的解析式为y=ax2−2ax+1,∴抛物线的对称轴方程为x=1,∵图象经过点A(−1,7)、B(x,7),∴−1+x2=1,∴x=3.14 、【答案】<【解析】当x=3时,y1=(3−1)2=4,当x=92时,y2=(92−1)2=494,∴y1<y2.15 、【答案】4【解析】由题意知CD⊥BE、AB⊥BE,∴CD//AB,∴△CDE∽△ABE,∴CDAB =DEBE,即1.6AB=25,解得:AB=4.16 、【答案】4【解析】∵EF是梯形ABCD的中位线,∴EF//AD//BC,∴DG=BG,∴EG=12AD=12×2=1,∴FG=EF−EG=5−1=4.17 、【答案】1:4或14【解析】∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=12AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴S△ADES△ACB =(AMAT)2=(12)2=1:4.18 、【答案】23【解析】 ∵∠C =90°,∠B =60°,∴∠BAC =30°,∴BC =12AB ,由旋转的性质可知,∠CAC ′=60°,AB ′=AB ,B ′C ′=BC ,∠C ′=∠C =90°, ∴∠BAC ′=90°,∴AB //B ′C ′,∴B ′E EA =CE ′BE =B ′C ′AB =12, ∴AB AE =32, ∵∠BAC =∠B ′AC ,∴BD DE =AB AE =32,又CE′BE =12,∴BD DC ′=23. 19 、【答案】 1+√2+√3.【解析】 原式=2×(√32)2−12√3−2×√22=1+√2+√3. 20 、【答案】 (1) 35.(2) 35a →+32b →. 【解析】 (1) ∵四边形ABCD 是平行四边形,DE =2,CE =3, ∴AB =DC =DE +CE =5,且AB //EC , ∴△FEC ∽△FAB ,∴EF AF =EC AB =35. (2) ∵△FEC ∽△FAB ,∴ECAB =FC FB =EC AB =35,∴FC =32BC ,EC =35AB ,∵四边形ABCD 是平行四边形,∴AD //BC ,EC //AB , ∴AD →=BC →=b →,∴EC →=35AB →=35a →,FC →=32BC →=32b →, 则EF →=EC →+CF →=35a →+32b →. 21 、【答案】 (1) 证明见解析.(2) sinB =√158.【解析】 (1) 如图,作AE ⊥BC 于点E ,∵S △ACD S △ABD =12CD⋅AE 12BD⋅AE =CD BD =13,∴BD =3CD =6,∴CB =CD +BD =8,则CACB =48=12,CD CA =24=12,∴CACB =CDCA,∵∠C=∠C,∴△ADC∽△BAC.(2) ∵△ADC∽△BAC,∴ADBA =ACBC,即AD8=48,∴AD=AC=4,∵AE⊥BC,∴DE=12CD=1,∴AE=√AD2−DE2=√15,∴sinB=AEAB =√158.22 、【答案】 (1) 建设轮椅专用坡道AB选择符合要求的坡度是1:20.(2) 斜坡底部点A与台阶底部点D的水平距离AD为35.6米.【解析】 (1) ∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为0.15×10=1.5(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20.(2) 如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=1.5,EF=BC=2,∵BEAE =120,∴1.5AE =120,∴AE=30,∵DF=9×0.4=3.6,∴AD=AE+EF+DF=30+2+3.6=35.6,答:斜坡底部点A与台阶底部点D的水平距离AD为35.6米.23 、【答案】 (1) 证明见解析.(2) 证明见解析.【解析】 (1) ∵BD=DE=EC,∴BE=2CE,∵CF//AB,∴△ABE∽△FCE,∴ABFC =BECE=2,即AB=2FC,又∵AB=AC,∴AC=2CF.(2) 如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF//AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴CDCF =ACDC,即CD2=AC⋅CF.24 、【答案】 (1) y=x2−4x+3.(2) S△ABD=3.(3) 点P(3+√6,0).【解析】 (1) ∵顶点为A(2,−1)的抛物线经过点B(0,3),∴可以假设抛物线的解析式为y=a(x−2)2−1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2−4x+3.(2) 令y=0,x2−4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,−1),D(3,0),作AF⊥CD,则AF=DF=1,∴△ADF是等腰直角三角形,∴∠ADO=45°,∴∠BDA=90°,∵BD=3√2,AD=√2,∴S△ABD=12⋅BD⋅AD=3.(3) ∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB =∠ADP =135°, ∴△PDB ∽△ADP ,∴PD 2=BD ⋅AD =3√2⋅√2=6, ∴PD =√6,∴OP =3+√6,∴点P(3+√6,0).25 、【答案】 (1) 证明见解析. (2) y =12−3x 9+4x(0⩽x ⩽4). (3) BE 的长为32或1. 【解析】 (1) ∵四边形ABCD 是矩形, ∴∠BAD =∠ADC =∠ADF =90°, ∵AF ⊥AE ,∴∠EAF =90°,∴∠BAD =∠EAF ,∴∠BAE =∠DAF ,∵∠ABE =∠ADF =90°, ∴△ABE ∽△ADF ,∴AB AD =AE AF , ∴AB AE =AD AF , ∵∠BAD =∠EAF ,∴△AEF ∽△ABD .(2) 如图,连接AG .∵△AEF ∽△ABD ,∴∠ABG =∠AEG , ∴A 、B 、E 、G 四点共圆,∴∠ABE +∠AGE =180°, ∵∠ABE =90°,∴∠AGE =90°,∴∠AGM =∠MDF ,∴∠AMG =∠FMD ,∴∠MAG =∠EFC ,∴y =tan∠MAG =tan∠EFC =EC CF, ∵△ABE ∽△ADF ,∴AB AD =BE DF , ∴DF=43x , ∴y =4−x3+43x ,即y =12−3x 9+4x (0⩽x ⩽4).(3) ①如图2中,当点E在线段CB上时,∵△AGM∽△ADF,∴tan∠MAG=GMAG =DFAD,∴12−3x9+4x =43x4,解得x=32.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴ADEC =DFFC,∴4x+4=43x3−43x,解得x=1,∴BE的长为32或1.。