最新人教A版高中数学选修2-2 1.1.2 导数的概念同步练习习题(含答案解析)

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

度高中数学 第一章 导数及其应用 导数的概念与导数的运算训练题 新人教A版选修2-2(2021年整

度高中数学 第一章 导数及其应用 导数的概念与导数的运算训练题 新人教A版选修2-2(2021年整

吉林省吉林市桦甸市2016-2017学年度高中数学第一章导数及其应用导数的概念与导数的运算训练题新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省吉林市桦甸市2016-2017学年度高中数学第一章导数及其应用导数的概念与导数的运算训练题新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省吉林市桦甸市2016-2017学年度高中数学第一章导数及其应用导数的概念与导数的运算训练题新人教A版选修2-2的全部内容。

导数的概念与导数的运算1、点P 是曲线x e y =上任意一点,则点P 到直线x y =的最小距离为 .2、若函数c bx ax x f ++=24)(满足2)1(='f ,则=-')1(f ( )A .-1B .-2C .2D .03、若函数23)(23++=x ax x f 满足4)1(=-'f ,则=a ( )A .319 B .316 C .313 D .310 4、曲线2+=x x y 在点(-1,-1)处的切线方程是 ( ) A .12+=x y B .12-=x y C .32--=x y D .22--=x y5、过点(1,-1)与曲线x x y 23-=相切的直线方程是 .6、正弦曲线x y sin =上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( )A . ⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,0B .[)π,0C .⎥⎦⎤⎢⎣⎡43,4ππD .⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡43,24,0πππ 7、若函数32)1(21)(2+--'=x x f x f ,则=-')1(f ( ) A .0 B .-1 C .1 D .28、设函数f(x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 016)=( )A .1B .2C 。

1.2几个常用函数的导数(高中数学人教A版选修2-2)

1.2几个常用函数的导数(高中数学人教A版选修2-2)

变式训练
1.求下列函数的导数 : (1)y= sinx-2x2; (2)y= cosx· lnx; ex (3)y= . sinx
解 :(1)y′= (sinx-2x2)′ = (sinx)′- (2x2)′ = cosx- 4x. (2)y′= (cosx· lnx)′ = (cosx)′·lnx+ cosx· (lnx)′ cosx =- sinx· lnx+ . x
(6)y′=2cosx·(cosx)′=-2cosx·sinx=-sin2x [ 点评 ] 法则可简单叙述成:复合函数对自变量的导数,
等于已知函数对中间变量的导数,乘以中间变量对自变
量的导数.
2.复合函数求导
对于复合函数的求导法则,需注意以下几点: (1)分清复合函数的复合关系是由哪些基本函数复合而成,适当 选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中要 特别注意的是中间变量的系数.如 (sin 2x)′≠cos 2x. 2x)′ = 2cos 2x ,而 (sin
语言叙述 两个函数的和(或差)的导数,等于这两 个函数的导数的和(或差) 两个函数的积的导数,等于第一个函数 的导数乘上第二个函数,加上第一个函 数乘上第二个函数的导数
两个函数的商的导数,等于分子的导数
乘上分母减去分子乘上分母的导数,再 除以分母的平方
2.复合函数的求导法则
复合函数
的概念
一般地,对于两个函数y=f(u)和u=g(x),如果通 过变量u,y可以表示成 x的函数 ,那么称这个函 数为y=f(u)和u=g(x)的复合函数,记作 y=f(g(x)).
x 2
x
(5) y ln(4 x)
[例 1] 指出下列函数是由哪些基本初等函数复合成的. ①y=a

人教a版高中数学选修2-1全册同步练习及单元检测含答案

人教a版高中数学选修2-1全册同步练习及单元检测含答案

⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

常数 叫做t0时刻的瞬时速度.即 常数 ,我们就把这个______ 于______
st0+Δt-st0 Δs lim Δt Δt→0 v= lim = ______________________. → Δt
Δt 0
故瞬时速度就是运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( ) A.3m/s B.2m/s C.1m/s D.0m/s [答案] D
Δx 0
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值.
)
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δx Δx→0
4.(2013· 揭阳一中段考)若f(x)=x3,f ′(x0)=3,则x0的值 为( ) A.1 C.± 1 [答案] C B.-1 D.3 3
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负,但 Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与自 变量改变量之___的极限.因此,它是一个常数而不是变量 ; 比

高二人教A版数学选修1-1同步练习3-2-2导数的运算法则 Word版含答案

高二人教A版数学选修1-1同步练习3-2-2导数的运算法则 Word版含答案

2.2.1导数的运算法则一、选择题1.函数y =cos x x 的导数是( )A .-sin xx 2 B .-sin xC .-x sin x +cos xx 2 D .-x cos x +cos xx 2[答案] C[解析] y ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x ·(x )′x 2=-x sin x -cos xx 2.2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是() A.193 B.163C.133D.103[答案] D[解析] f ′(x )=3ax 2+6x ,∵f ′(-1)=3a -6,∴3a -6=4,∴a =103.3.曲线运动方程为s =1-tt 2+2t 2,则t =2时的速度为() A .4 B .8C .10D .12[答案] B[解析] s ′=⎝ ⎛⎭⎪⎫1-t t 2′+(2t 2)′=t -2t 3+4t ,∴t =2时的速度为:s ′|t =2=2-28+8=8.4.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6,∴y ′=6x 5+12x 2.5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x+2x D .y =1cos x [答案] C[解析] ∵函数y =1x+2x 在x =0处无定义, ∴函数y =1x+2x 在点x =0处没有切线. 6.函数y =sin ⎝⎛⎭⎫π4-x 的导数为( )A .-cos ⎝⎛⎭⎫π4+xB .cos ⎝⎛⎭⎫π4-xC .-sin ⎝⎛⎭⎫π4-xD .-sin ⎝⎛⎭⎫x +π4 [答案] D[解析] ∵y =sin π4cos x -cos π4·sin x =22cos x -22sin x , ∴y ′=22(-sin x )-22cos x =-22(sin x +cos x ) =-sin ⎝⎛⎭⎫x +π4,故选D. 7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x =x 0处( )A .可导B .不可导C .不一定可导D .不能确定 [答案] B8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6D .-5x 4[答案] C [解析] (x -5)′=-5x -6.9.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6[答案] C [解析] ∵y =3x (x 2+2)=3x 3+6x ,∴y ′=9x 2+6.10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1[答案] A[解析] f (x )=(x -1)2+3(x -1)=x 2+x -2,f ′(x )=2x +1,f ′(1)=3.二、填空题11.若函数f (x )=1-sin x x,则f ′(π)________________. [答案] π-1π2[解析] f ′(x )=(1-sin x )′·x -(1-sin x )x ′x 2=sin x -x cos x -1x 2, ∴f ′(π)=sinπ-πcosπ-1π2=π-1π2. 12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是____________.[答案] 34[解析] 由⎩⎪⎨⎪⎧y =1x y =x 2得交点为(1,1), y ′=⎝⎛⎭⎫1x ′=-1x 2,y ′=(x 2)′=2x , ∴曲线y =1x 在点(1,1)处的切线方程为x +y -2=0,曲线y =x 2在点(1,1)处的切线方程为2x -y -1=0,两切线与x 轴所围成的三角形的面积为34. 13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )=________.[答案] x sin x +cos x[解析] ∵f ′(x )=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -d -cx )sin x +(ax +b +c )cos x .为使f ′(x )=x cos x ,应满足⎩⎪⎨⎪⎧ a -d =0,c =0,a =1,b +c =0,解方程组,得⎩⎪⎨⎪⎧ a =1,b =0,c =0,d =1.从而可知,f (x )=x sin x +cos x .14.设f (x )=ln a 2x (a >0且a ≠1),则f ′(1)=________.[答案] 2ln a[解析] ∵f (x )=ln a 2x =2x ln a ,∴f ′(x )=(2x ln a )′=2ln a (x )′=2ln a ,故f ′(1)=2ln a .三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5); (2)1+x 1-x +1-x 1+x; (3)f (x )=ln x +2xx 2. [解析] (1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′,∴f ′(x )=10x 4+32x 3-15x 2+4x +8.(2)∵f (x )=1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴f ′(x )=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. (3)f ′(x )=⎝⎛⎭⎫ln x x 2+2x x 2′=⎝⎛⎭⎫ln x x 2′+⎝⎛⎭⎫2xx 2′ =1x ·x 2-ln x ·2x x 4+2x (ln2·x 2-2x )x 4=(1-2ln x )x +(ln2·x 2-2x )·2xx 4=1-2ln x +(ln2·x -2)2xx 3. 16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).[解析] 题设中有四个参数a 、b 、c 、d ,为确定它们的值需要四个方程.由f (2x +1)=4g (x ),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d . 于是有⎩⎪⎨⎪⎧a +2=2c , ①a +b +1=4d , ② 由f ′(x )=g ′(x ),得2x +a =2x +c ,∴a =c .③由f (5)=30,得25+5a +b =30.④∴由①③可得a =c =2.由④得b =-5,再由②得d =-12. ∴g (x )=x 2+2x -12.故g (4)=16+8-12=472. 17.(2010·湖北文,21)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.[解析] 由f (x )=13x 3-a 2x 2+bx +c ,得f (0)=c ,f ′(x )=x 2-ax +b ,f ′(0)=b ,又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得f(0)=1,f′(0)=0,故b=0,c=1.18.已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.[解析]∵f(x)=2x3+ax图象过点P(2,0),∴a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.对于g(x)=bx2+c,图象过点P(2,0),则4b+c=0.又g′(x)=2bx,g′(2)=4b=f′(2)=16,∴b=4.∴c=-16.∴g(x)=4x2-16.综上,可知f(x)=2x3-8x,g(x)=4x2-16.。

高中数学第一章几个常用函数的导数基本初等函数的导数公式及导数的运算法则含解析新人教A版选修2

高中数学第一章几个常用函数的导数基本初等函数的导数公式及导数的运算法则含解析新人教A版选修2

课时作业3 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则时间:45分钟——基础巩固类——一、选择题 1.给出下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3; ③若y =1x 2,则y ′=-1x ;④⎝⎛⎭⎫-1x ′=12x x其中正确的个数是( B ) A .0 B .1 C .2D .3解析:(cos x )′=-sin x ,所以①错误; sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误; ⎝⎛⎭⎫1x 2′=0-(x 2)′x 4=-2x x4=-2x -3,所以③错误;所以④正确.2.函数y =sin x ·cos x 的导数是( B ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x .3.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 013(x )=( C ) A .sin x B .-sin x C .cos xD .-cos x解析:因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x, f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 013(x )= f 1(x )=cos x .4.对任意的x ,有f ′(x )=4x 3,f (1)=-1,则此函数解析式为( B )A .f (x )=x 3B .f (x )=x 4-2C .f (x )=x 3+1D .f (x )=x 4-1解析:由f ′(x )=4x 3知,f (x )中含有x 4项,然后将x =1代入选项中验证可得. 5.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( A )A .3B .2C .1D.12解析:因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).6.曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( B ) A .-12B.12 C .-22D.22解析:y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin2x ,把x =π4代入得导数值为12,即为所求切线的斜率.7.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( A ) A .1 B .±1 C .-1D .-2解析:设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3 ①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1 ②,由①②可得x 0=1,所以a =1.8.已知函数f (x )=12x 2+4ln x ,若存在满足1≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( B )A .[5,+∞)B .[4,5]C .[4,138]D .(-∞,4)解析:f ′(x )=x +4x ,当1≤x 0≤3时,f ′(x 0)∈[4,5],又k =f ′(x 0)=m ,所以m ∈[4,5].二、填空题9.已知f (x )=x 2,g (x )=ln x ,若f ′(x )-g ′(x )=1,则x =1.解析:f ′(x )-g ′(x )=2x -1x =1,即2x 2-x -1=0.解得x =-12或x =1,又x >0,∴x =1.10.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =-1.解析:y ′=k +1x ,由题意知,y ′|x =1=0,即当x =1时,k +1x =k +1=0,解得k =-1.11.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=2.解析:由f (e x )=x +e x ,可得f (x )=ln x +x ,得f ′(x )=1x +1,故f ′(1)=1+1=2.三、解答题12.求下列函数的导数: (1)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (2)y =1+cos xx 2;(3)y =(4x -x )(e x +1).解:(1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x3.(2)y ′=(1+cos x )′·x 2-(1+cos x )(x 2)′x 4=-x sin x -2cos x -2x 3.(3)法1:∵y =(4x -x )(e x +1)=4x e x +4x -x e x -x ,∴y ′=(4x e x +4x -x e x -x )′=(4x )′e x +4x (e x )′+(4x )′-[x ′e x +x (e x )′]-x ′=e x 4x ln4+4x e x +4x ln4-e x -x e x -1=e x (4x ln4+4x -1-x )+4x ln4-1.法2:y ′=(4x -x )′(e x +1)+(4x -x )(e x +1)′=(4x ln4-1)(e x +1)+(4x -x )e x =e x (4x ln4+4x -1-x )+4x ln4-1.13.已知点P 是曲线y =e x 上任一点,求点P 到直线y =x 的最小距离. 解:设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如右图,则在点P (x 0,y 0)处的切线的斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x .∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1), 利用点到直线的距离公式得d =|0-1|12+(-1)2=22.故点P 到直线y =x 的最小距离为22.——能力提升类——14.已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1、m 、4(1<m <4),当△ABC 的面积最大时,m 的值等于94.解析:如图,在△ABC 中,边AC 是确定的,要使△ABC 的面积最大,则点B 到直线AC 的距离应最大,可以将直线AC 作平行移动,显然当直线与曲线相切时,距离达到最大,即当过B 点的切线平行于直线AC 时,△ABC 的面积最大.f ′(m )=12m ,A 点坐标为(1,1),C 点坐标为(4,2),∴k AC =2-14-1=13,∴12m =13,∴m =94.15.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.解:f (x )=ax 2+1(a >0),则f ′(x )=2ax ,从而k 1=2a ; g (x )=x 3+bx ,则g ′(x )=3x 2+b ,从而k 2=3+b , 由题意得,2a =3+b .①又f (1)=a +1,g (1)=1+b ,∴a +1=1+b ,即a =b ,代入①式可得a =b =3.。

高中数学(人教A版,选修22)1.2 导数的计算 课件+同步练习(9份)22 1.2.1

高中数学(人教A版,选修22)1.2 导数的计算 课件+同步练习(9份)22 1.2.1
[方法规律总结] 符合常用函数特点的函数求导数可依据 结论直接写出结果, 不必再按定义求解.
求函数y=1x在点-3,-13处的切线方程.
[解析] y′=1x′=-x12, 切线的斜率k=y′|x=-3=-19. 又切线过点-3,-13. 所以切线方程为y--13=-19(x+3), 即x+9y+6=0.
∴-x120=-1 x20=b
,解得xb0==21 或xb0==--21 .
即当b=2时,切点为(1,1);
当b=-2时,切点为(-1,-1).
典例探究学案
常用函数的导数
(1)求函数f(x)=π的导数. (2)求函数y=1x在点(1,1)处的切线方程.
[解析] (1)∵π为常数,∴f ′(x)=0. (2)∵k=y′=-x12, 当x=1时,k=-1, ∴切线方程为:y-1=-(x-1), 即x+y-2=0.
5.若直线 y=-x+b 为函数 y=1x的图象的切线,求 b 及 切点坐标.
[解析] 设切点坐标为(x0,y0), 因为 y′=1x′=-x12,所以切线斜率为 k=-x120. 所以切线方程为 y-x10=-x120(x-x0) 即 y=-x120x+x20 .
又切线方程为y=-x+b,
∴切线与x轴交点为(32,0),与直线x=2的交点为(2,2).
∴S=12×(2-32)×2=12.
规范答题样板
如图,已知曲线f(x)=2x2+a(x≥0)与曲线g(x)= x(x≥0)相切于点P,且在点P处有相同的切线l.求点P的坐标 及a的值.
[解题思路探究] 第一步,审题. 一审结论探索解题方向.求点P坐标和a值,需利用条件建 立坐标及a的方程求解; 二审条件找解题突破口.两曲线相切于点P,在点P处有相 同切线表明切点是关键,切点在两曲线上和切线上,这是解题 的突破口. 第二步,建联系确定解题步骤. 只要设出切点坐标,则过点P的两曲线切线的斜率相等, 由此可求出切点坐标,代入f(x)解析式中可求出a. 第三步,规范解答.

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中数学 第一章 导数及其应用 课时作业1 1.1.1 变化率问题 1.1.2 导数的概念课件 新

高中数学 第一章 导数及其应用 课时作业1 1.1.1 变化率问题 1.1.2 导数的概念课件 新

C.4+2Δx
D.4+2(Δx)2
解析:∵Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-1=2(Δx)2+ 4Δx,∴ΔΔyx=2Δx+4.
3.函数 f(x)=x2 在 x0 到 x0+Δx 之间的平均变化率为 k1,在
x0-Δx 到 x0 之间的平均变化率为 k2,则 k1、k2 的大小关系是( D )
13.已知 f(x)=x2+2.求: (1)f(x)在 x=1 处的导数; (2)f(x)在 x=a 处的导数.
解:(1)因为ΔΔyx=f1+ΔΔxx-f1 =1+Δx2+Δ2x-12+2=2+Δx, 当 Δx 趋近于 0 时,2+Δx 趋近于 2, 所以 f(x)在 x=1 处的导数等于 2.
(2)因为ΔΔyx=fa+ΔΔxx-fa =a+Δx2+2-a2+2
值为 2.
15.服药后,人体血液中药物的质量浓度 y(单位:μg/mL)与 时间 t(单位:min)的函数是 y=f(t),假设函数 y=f(t)在 t=10 和 t =100 处的导数分别为 f′(10)=1.5 和 f′(100)=-0.6,试解释它 们的实际意义.
解:f′(10)=1.5 表示服药后 10 min 时,血液中药物的质 量浓度上升的速度为 1.5 μg/(mL·min).也就是说,如果保持这 一速度,每经过 1 min,血液中药物的质量浓度将上升 1.5 μg/mL.

h(t0)


9.8t0·Δt

6.5Δt

4.9(Δt)2


Δh Δt


9.8t0

6.5

4.9Δt,则
h′(t0)=lim Δt→0

新人教A版选修2-2《1.2.1几个常用的函数的导数》同步练习及答案

新人教A版选修2-2《1.2.1几个常用的函数的导数》同步练习及答案

选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.下列结论不正确的是( ) A .若y =0,则y ′=0 B .若y =5x ,则y ′=5 C .若y =x -1,则y ′=-x -2[答案] D2.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x ,所以f ′(1)=12×1=12,故应选D.3.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2,∴f ′(2)=li m Δx →0f (2+Δx )-f (2)Δx=li m Δx →0 ⎝ ⎛⎭⎪⎫1+14Δx =1.∴切线方程为y -1=x -2.即x -y -1=0. 4.已知f (x )=x 3,则f ′(2)=( ) A .0 B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12Δx Δx =lim Δx →0 (6Δx +12)=12,故选D. 5.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3[答案] A[解析] 若α=2,则f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 6.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx =4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4. 故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为( ) A .(-2,-8) B .(-1,-1) C .(1,1)D.⎝ ⎛⎭⎪⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0), ∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C. 8.已知f (x )=f ′(1)x 2,则f ′(0)等于( ) A .0 B .1 C .2D .3[答案] A[解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y=3x上的点P(0,0)的切线方程为( )A.y=-x B.x=0 C.y=0 D.不存在[答案] B[解析] ∵y=3 x∴Δy=3x+Δx-3x=x+Δx-x(3x+Δx)2+3x(x+Δx)+(3x)2=Δx(3x+Δx)2+3x(x+Δx)+(3x)2∴ΔyΔx=1(3x+Δx)2+3x(x+Δx)+(3x)2∴曲线在P(0,0)处切线的斜率不存在,∴切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是( )A.14433B.14334C.12334D.13443[答案] A[解析] Δs=4t+Δt-4t=t+Δt-t4t+Δt+4t=t+Δt-t(4t+Δt+4t)(t+Δt+t)=Δt(4t+Δt+4t)(t+Δt+t)∴li m Δt →0 Δs Δt=124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A.二、填空题11.若y =x 表示路程关于时间的函数,则y ′=1可以解释为________. [答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动. 12.若曲线y =x 2的某一切线与直线y =4x +6平行,则切点坐标是________. [答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝ ⎛⎭⎪⎫2,45的切线的斜率为______________. [答案] 45[解析] ∵y =15x 2,∴y ′=25x∴k =25×2=45.14.(2010·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程. [解析] 因为点P 不在曲线y =x 上, 故设切点为Q (x 0,x 0),∵y ′=12x ,∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2,∴切线方程为:y -2=122(x -2),即:x -22y +2=0.16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264.[解析] ∵s =1t2,∴Δs =1(t +Δt )2-1t2=t 2-(t +Δt )2t (t +Δt )=-2t Δt -(Δt )2t (t +Δt )∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264.17.已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程; (3)求满足斜率为-13的曲线的切线方程.[解析] ∵y =1x ,∴y ′=-1x2.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数.即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x上.则可设过该点的切线的切点为A ⎝⎛⎭⎪⎫a ,1a ,那么该切线斜率为k =f ′(a )=-1a2.则切线方程为y -1a =-1a2(x -a ).①将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ).解得a =12,代回方程①整理可得:切线方程为y =-4x +4.(3)设切点坐标为A ⎝ ⎛⎭⎪⎫a ,1a ,则切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝⎛⎭⎪⎫3,33,A ′⎝ ⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233.18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.[解析] 两曲线方程联立得⎩⎪⎨⎪⎧y =1x,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2,∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示. ∴S =12×1×⎝ ⎛⎭⎪⎫2-12=34.。

新课程人教版高中数学选修2-2课后习题解答(全)

新课程人教版高中数学选修2-2课后习题解答(全)

第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-.这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V Vπ'=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:注:图象形状不唯一.因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减. 当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减. 当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40VS R R Rπ'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,(第3题)矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m因此铁丝的长为22()(1)244xa x al x x x x xπππ=++-=++,0x <<令22()104al x xπ'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤.练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.5、(1)03114x dx -=-⎰.由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..。

2019-2020学年高中数学人教A版选修2-2同步训练:1.2 导数的计算

2019-2020学年高中数学人教A版选修2-2同步训练:1.2 导数的计算

1.2 导数的计算1、设曲线在点处的切线与轴的交点的横坐标为,则1*(=)n y x n +∈N ()1,1x n x 的值为( )12...n x x x ⋅⋅⋅A. 1n B. 11n +C. 1nn +D. 12、曲线在点处的切线过原点,则该切线的斜率为( )y lnx =M A. 1B. eC. 1-D. 1e3、给出下列结论:①;()=cosx sinx '②;'=cos 33sin ππ⎛⎫ ⎪⎝⎭③若,则;21y=x 1y x '=④.'⎛= ⎝其中正确的个数是( )A.0B.1C.2D.34、曲线在点处的切线与两坐标轴所围成的三角形的面积为( )x y e =()22,e A. 294e B. 22eC. 2e D. 22e 5、已知函数,则( ) A. B. C. D. 6、设,若,则的值等于( )()3232f x ax x =++()'14f -=a A. B. C. D. 1931631331037、若曲线在点处的切线方程是,则( )2y x ax b =++(0,)b 10x y -+=A. 1,1a b ==B. 1,1a b =-=C. 1,1a b ==-D. 1,1a b =-=-8、已知函数的定义域为,且满足 (是的导()f x ()0,+∞()()0f x x f x '+⋅>()'f x ()f x 函数),则不等式的解集为( )()()()2111x f x f x --<+A. B. C. D. ()1,2-()1,2()1,+∞(),2-∞9、已知,则 ( )()()23'1f x x xf =+()'2f =A.1 B.2 C.4 D.810、定义在上的函数的导函数为,若对任意实数有,且R () f x ()'f x x ()()'f x f x >为奇函数,则不等式的解集是( )()2017f x +()20170x f x e +<A. (),0-∞B. ()0,+∞C. 1,e ⎛⎫-∞ ⎪⎝⎭D. 1,e⎛⎫+∞ ⎪⎝⎭11、已知曲线在点处的切线与曲线相切,则ln y x x =+()1,1()221y ax a x =+++__________a =12、已知函数且,则的值为__________()sin f x a x =()'2f π=a 13、若,则________.()()3log 21f x x =-()'2f =14、已知,则 .()()'1ln f f x x x x =+()1f '=15、已知抛物线过点,且在点处与直线相切,求,2y ax bx c =++()1,1 ()2,1-3y x =-a ,的值.b c答案以及解析1答案及解析:答案:B解析:由题意得1n n x n =+则,故选B.12n 12311x x ...x =...23411n n n n n -⋅⋅⋅⨯⨯⨯⨯⨯=++2答案及解析:答案:D解析:设,()00,M x lnx 由得y lnx =1,y x'=所以切线斜率,00|1x x k y x =='=所以切线方程为()0001.y lnx x x x -=-由题意得,即,()0001001lnx x x -=-=-01lnx =所以.0x e =所以故选D.11k=x e0=3答案及解析:答案:B解析:因为,所以①错误;()=-cosx sinx '而,所以②错误;33sin π=3'0=,所以③错误;2321'()2x x x --⎛⎝⎭'=⎫=⎪-所以④正确,故选B.1232'(12)x x --'⎛===- ⎝4答案及解析:答案:D解析:∵,∴切线的斜率,'x y e =2k e =∴切线方程为,它与两坐标轴的交点坐标分别为,22y e x e =-()()20,,1,0e -∴切线与两坐标轴所围成的三角形的面积为.22e5答案及解析:答案: D解析: ∵,∴,∴.6答案及解析:答案:D 解析:先求出导函数,再代值算出.a ,()2'36f x ax x =+∴ ,()'1364f a -=-=∴ 103a =故选D.7答案及解析:答案:A解析:∵,∵曲线在点处的切线方程0'2|x y x a a ==+=2y x ax b =++(0,)b 的斜率为,∴,又切点在切线上,∴∴.故10x y -+=11a =10x y -+=010b -+=1b =选A.8答案及解析:答案:B解析:设,则,()()g x xf x =()()()''g x f x x f x =+⋅∵()()0f x x f x '+⋅>()'0g x ∴>即在为增函数,()g x ()0,+∞则不等式等价为,()()()2111x f x f x --<+()()()()()211111x x f x x f x -+-<++即,()()()()221111x f x x f x --<++即,()()211g x g x -<+∵在为增函数,()g x ()0,+∞,即,即,22101011x x x x ⎧->⎪∴+>⎨⎪-<+⎩1,1112x x x x ><-⎧⎪>-⎨⎪-<<⎩12x <<故不等式的解集为,()1,2故选: .B 根据条件构造函数,求函数的导数,利用函数单调性和导数之间的关系进行()()g x xf x =转化求解即可.本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性是解决本题的关键9答案及解析:答案:A解析:()()'23'1f x x f =+令,得,1x =()()'123'1f f =+()11f =-.()'23f x x ∴=-()21f ∴'=故选A10答案及解析:答案:B解析:11答案及解析:答案:8解析:∵,()1'1f x x=+∴,()'12f =∴切线方程为,()121y x -=-即.21y x =-由()221,{21,y x y ax a x =-=+++得。

高中数学(人教A版选修2-2)练习:1.1.11.1.2 变化率问题、导数的概念

高中数学(人教A版选修2-2)练习:1.1.11.1.2 变化率问题、导数的概念

课时提升作业(一)变化率问题导数的概念一、选择题(每小题3分,共18分)1.(2014·烟台高二检测)已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44【解析】选B.由函数值的增量公式Δy=f(x0+Δx)-f(x0),得Δy=f(2+0.1)-f(2)=(2+0.1)2+1-(22+1)=0.41.2.一质点运动的方程为s=5-3t2,则在一段时间内相应的平均速度是( ) A.3Δt+6 B.-3Δt+6C.3Δt-6D.-3Δt-6【解析】选D.平均速度===-3Δt-6,故选D.3.一直线运动的物体,从时间t到t+Δt时,物体的位移为Δs,那么为( )A.从时间t到t+Δt时,物体的平均速度B.时间t时该物体的瞬时速度C.当时间为Δt时该物体的速度D.从时间t到t+Δt时位移的平均变化率【解析】选B.根据导数的意义解答.=s′,即为时间t时该物体的瞬时速度.4.已知函数f=2x2-4的图象上一点及附近一点,则等于( )A.4B.4xC.4+2ΔxD.4+2【解析】选C.Δy=2(1+Δx)2-4-2×12+4=4Δx+2(Δx)2,所以==4+2Δx.5.函数f(x)=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1,k2的大小关系是( )A.k1<k2B.k1>k2C.k1=k2D.无法确定【解析】选D.因为k1==2x0+Δx,k2==2x0-Δx,又Δx可正可负且不为零,所以k1,k2的大小关系不确定.【误区警示】本题易因对平均变化率的定义式理解不透而导致错选C.6.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=aB.f′(x)=bC.f′(x0)=aD.f′(x0)=b【解析】选 C.因为f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),所以=a+bΔx.所以f′(x0)==(a+bΔx)=a.二、填空题(每小题4分,共12分)7. (2014·太原高二检测)若f′(x0)=1,则=________.【解题指南】根据导数的定义式,把原式进行一系列变形,凑定义式的结构形式. 【解析】=-=-f′(x0)=-×1=-.答案:-【变式训练】(2014·揭阳高二检测)f′(x0)=,f(3)=2,f′(3)=-2,则=__________.【解析】===-3+=-3f′(3)+=-3f′(3)+2=8.答案:88.函数y=3x2在x=1处的导数为________.【解析】方法一:Δy=f(1+Δx)-f(1)=6Δx+3(Δx)2,所以=6+3Δx,故=6.方法二:利用极限求解,y′|x=1===3(x+1)=6.答案:69.(2014·西宁高二检测)一物体位移s和时间t的关系是s=2t-3t2,则物体的初速度是________.【解析】平均速度==2-3t,当t趋向0时,平均速度趋向2,即初速度为2.答案:2【变式训练】已知一物体的运动方程是s=6t2-5t+7,则其在t=________时刻的速度为7.【解析】=(6Δt+12t-5)=12t-5=7,t=1.答案:1三、解答题(每小题10分,共20分)10.若函数f(x)=-x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于-1,求Δx的范围.【解析】因为函数f(x)在[2,2+Δx]上的平均变化率为:====-3-Δx,所以由-3-Δx≤-1,得Δx≥-2.又因为Δx>0,即Δx的取值范围是(0,+≦).11.(2014·聊城高二检测)求函数y=x2+ax+b(a,b为常数)的导数.【解析】因为Δy=[(x+Δx)2+a(x+Δx)+b]-(x2+ax+b)=2x·Δx+(Δx)2+a·Δx=(2x+a)·Δx+(Δx)2,故==(2x+a)+Δx,=(2x+a+Δx)=2x+a,所以y′=2x+a.一、选择题(每小题4分,共16分)1.(2014·西安高二检测)物体的运动方程是s=-4t2+16t,在某一时刻的速度为零,则相应时刻为( )A.t=1B.t=2C.t=3D.t=4【解题指南】先求瞬时变化率,然后令瞬时变化率为零,即得相应时刻.【解析】选B.=(-4Δt-8t+16)=-8t+16,令-8t+16=0,得t=2.2.将边长为8的正方形的边长增加Δa,则面积的增量ΔS为( )A.16(Δa)2B.64C.(Δa)2+8D.16Δa+(Δa)2【解析】选D.ΔS=S(8+Δa)-S(8)=(8+Δa)2-82=16Δa+(Δa)2.故选D.3.(2014·福州高二检测)一物体运动的方程是s=2t2,则从2s到(2+d)s这段时间内位移的增量为( )A.8B.8+2dC.8d+2d2D.4d+2d2【解析】选C.Δs=2(2+d)2-2×22=8d+2d2.4.在x=1附近取Δx=0.3,在四个函数①y=x;②y=x2;③y=x3;④y=中平均变化率最大的是( )A.①B.②C.③D.④【解析】选C.根据定义判断,也可根据函数的增长趋势的快慢来判断.二、填空题(每小题5分,共10分)5.(2014·天水高二检测)水经过吸管从容器甲中流向容器乙,ts后容器甲中水的体积V(t)=5×2-0.1t(单位:cm3),则第一个10s内V的平均变化率为________cm3/s. 【解析】第一个10s内V的平均变化率==-0.25(cm3/s).答案:-0.256.(2014·上饶高二检测)当球半径r变化时,体积V关于r的瞬时变化率是________.【解题指南】先求,再求瞬时变化率.【解析】==4πr2+4πrΔr+π(Δr)2,当Δr趋于0时,瞬时变化率为4πr2.答案:4πr2三、解答题(每小题12分,共24分)7.求函数y=x2在x=1,2,3附近的平均变化率,取Δx都为,哪一点附近的平均变化率最大?【解析】在x=1附近的平均变化率为k1==2+Δx;在x=2附近的平均变化率为k2==4+Δx;在x=3附近的平均变化率为k3==6+Δx.若Δx=,则k1=2+=,k2=4+=;k3=6+=,由于k1<k2<k3,所以在x=3附近的平均变化率最大.【举一反三】已知函数f(x)=x3+x,证明函数f(x)在任意区间[x,x+Δx]上的平均变化率都是正数.【证明】===3x2+1+3xΔx+(Δx)2=3x2+3Δx·x+(Δx)2+1由于,方程3x2+3Δx·x+(Δx)2+1=0的判别式为(3Δx)2-4×3[(Δx)2+1]=-3(Δx)2-12<0,则3x2+3Δx·x+(Δx)2+1>0对一切x∈R恒成立,所以>0,故f(x)在任意区间 [x,x+Δx]上的平均变化率都是正数.【拓展延伸】1.比较平均变化率的方法步骤(1)求出两不同点处的平均变化率.(2)作差(作商),并对差式(商式)作合理变形,以便探讨差的符号(商与1的大小).(3)下结论.2.比较平均变化率的意义平均变化率的大小可说明函数图象的陡峭程度.8.(2014·南充高二检测)某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.(1)求在第1s内的平均速度.(2)求在1s末的瞬时速度.(3)经过多少时间该物体的运动速度达到14m/s?【解析】(1)物体在第1s内的平均变化率(即平均速度)为=m/s. (2)===6+3Δx+(Δx)2.当Δx→0时,→6,所以物体在1s末的瞬时速度为6m/s.(3)===2x2+2x+2+(Δx)2+2x·Δx+Δx.当Δx→0时,→2x2+2x+2,令2x2+2x+2=14,解得x=2s,即经过2s该物体的运动速度达到14m/s.关闭Word文档返回原板块。

高中数学人教A版选修2-2(课时训练):1.2 导数的计算1.2.1-1.2.2 Word版含答案

高中数学人教A版选修2-2(课时训练):1.2 导数的计算1.2.1-1.2.2 Word版含答案

1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=limΔx→0(4 026x+2 013Δx)=4 026x.规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0,又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________.答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________. 答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 014(x ).解 f 1(x )=(sin x )′=cos x ,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一 利用导数的运算法则求函数的导数 例1 求下列函数的导数: (1) y =x 3-2x +3; (2)y =(x 2+1)(x -1); (3)y =3x -lg x .解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10,利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10. 规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪演练1 求下列函数的导数: (1)y =5-4x 3;(2)y =3x 2+x cos x ;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x-12=1-2x.法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案 A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A.a B.±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12 C .-12 D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=lim Δx →0 (4 026x +2 013Δx ) =4 026x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0, 又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32 答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( )A .4B .-4C .5D .-5答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64.7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________.答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 014(x).解f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一 利用导数的运算法则求函数的导数 例1 求下列函数的导数: (1) y =x 3-2x +3; (2)y =(x 2+1)(x -1); (3)y =3x -lg x .解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10,利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10.规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪演练1 求下列函数的导数:(1)y=5-4x3;(2)y=3x2+x cos x;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x -12=1-2x .法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A .aB .±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

高中数学人教新课标A版 选修2-2 第一章 导数及其计算

高中数学人教新课标A版 选修2-2 第一章 导数及其计算

高中数学人教新课标A版选修2-2 第一章导数及其计算一、单选题(共12题;共24分)1.(2分)函数的图像在点处的切线方程为()A.B.C.D.2.(2分)若,则等于()A.-1B.2C.3D.63.(2分)已知物体位移S(单位:米)和时间t(单位:秒)满足:,则该物体在时刻的瞬时速度为()A.1米/秒B.2米/秒C.3米/秒D.4米/秒4.(2分)函数的图象如图所示,则阴影部分的面积是()A.B.C.D.5.(2分)已知函数,导函数为,那么等于()A.B.C.D.16.(2分)已知函数,为的导函数,则的值为()A.-1B.C.0D.7.(2分)函数的单调递增区间是()A.B.C.D.8.(2分)已知函数在上可导且满足,则下列一定成立的为()A.B.C.D.9.(2分)若点P是曲线上任一点,则点P到直线的最小距离是()A.B.3C.D.10.(2分)若函数在区间上单调递减,则实数a的取值范围是()A.B.C.D.11.(2分)下列给出四个求导运算:①;②;③;④.其中运算结果正确的个数是()A.1B.2C.3D.412.(2分)设是在上的可导函数,且,,,则下列一定不成立的是()A.B.C.D.二、多选题(共4题;共12分)13.(3分)已知函数的导函数的图象如图所示,下列结论中正确的是()A.-1是函数的极小值点B.-3是函数的极小值点C.函数在区间上单调递增D.函数在处切线的斜率小于零14.(3分)已知函数,若,则下列选项正确的是()A.B.C.D.当时,15.(3分)已知,下列结论正确的是()A.在上单调递增B.C.的图象在点处的切线方程为D.若关于的不等式有正整数解,则16.(3分)已知函数,给出下面四个命题:①函数的最小值为;②函数有两个零点;③若方程有一解,则;④函数的单调减区间为.则其中错误命题的序号是()A.①B.②C.③D.④三、填空题(共4题;共4分)17.(1分)设函数.若,则a=.18.(1分)曲线的一条切线的斜率为2,则该切线的方程为.19.(1分)已知函数,若,,则实数m的取值范围是.20.(1分)已知函,,用max{m,n}表示m,n中的最大值,设.若在上恒成立,则实数a的取值范围为四、解答题(共6题;共50分)21.(5分)已知函数,若,求在处的切线方程.22.(10分)已知函数.(1)(5分)求在点处的切线;(2)(5分)求在区间上的最大值和最小值.23.(10分)已知函数,其中.(1)(5分)求,求在上的最大值和最小值;(2)(5分)若是函数的一个极值点,求实数的值.24.(5分)已知函数.(Ⅰ)求曲线的斜率等于的切线方程;(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.25.(10分)已知函数f(x)=2lnx+1.(1)(5分)若f(x)≤2x+c,求c的取值范围;(2)(5分)设a>0时,讨论函数g(x)= 的单调性.26.(10分)已知函数.(1)(5分)当a=1时,讨论f(x)的单调性;(2)(5分)当x≥0时,f(x)≥ x3+1,求a的取值范围.答案解析部分1.【答案】B【解析】【解答】,,,,因此,所求切线的方程为,即.故答案为:B.【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.2.【答案】D【解析】【解答】解:∵∴∴故答案为:D.【分析】先对函数求导,然后把代入,即可求得答案3.【答案】A【解析】【解答】由题意,当时,.故答案为:A.【分析】求出S关于t的导数,令即可得结果.4.【答案】C【解析】【解答】由图可得阴影部分的面积为,故答案为:C.【分析】利用定积分的几何意义即可表示出封闭图形的面积.5.【答案】C【解析】【解答】因为,则,所以.故答案为:C.【分析】先对函数求导,再将代入,即可得出结果.6.【答案】C【解析】【解答】由可得,,所以,.故答案为:C【分析】求幂函数和对数函数的导数,代入1即可得出结果.7.【答案】D【解析】【解答】由已知,当时,当时,所以增区间为.故答案为:D.【分析】求出导函数,由确定增区间.8.【答案】A【解析】【解答】构造函数,则,当时, .所以,函数在上单调递增,,,即,即,S故答案为:A.【分析】构造函数,利用导数判断函数在上的单调性,可得出与的大小关系,经过化简可得出正确选项.9.【答案】C【解析】【解答】要使点P到直线的最小距离,只需点为曲线与直线平行的切线切点,即点为斜率为的切线的切点,设,,解得或(舍去),点到直线的距离为,所以曲线上任一点到直线距离最小值为.故答案为:C.【分析】与直线平行且与曲线相切时,切点到直线的距离最小,利用导数求出切点坐标即可.10.【答案】A【解析】【解答】函数,.则,因为在区间上单调递减,则在区间上恒成立,即,所以在区间上恒成立,所以,解得,故答案为:A.【分析】先求得导函数,根据函数单调递减可知在区间上恒成立,即可由定义域及不等式求得a的取值范围.11.【答案】B【解析】【解答】解:①,故错误.②,故正确.③,故错误.④,故正确.故答案为:B.【分析】对于①②③④直接利用函数的导数的运法则求出结果,即可做出判定.12.【答案】A【解析】【解答】是在上的可导函数,且,设,,为单调递增函数或常数函数.又,,在区间上是常数函数,,.又,,.故答案为:A.【分析】设,可得设,故为单调递增函数或常数函数.由,,可得,故在区间上是常数函数,可求的值,可得的正误. 再根据,求出的取值范围,进而判断的正误,即得答案.13.【答案】B,C【解析】【解答】由图象得时,,时,,故在单调递减,在单调递增,故是函数的极小值点.对选项D:显然,故错误.故答案为:BC.【分析】根据导函数图象,求得函数单调性,结合极值点定义,即可容易判断选择.14.【答案】C,D【解析】【解答】对于A选项,函数,定义域为,.令,则;令,可得.所以,函数的单调递减区间为,单调递增区间为.当时,,则,A选项错误;对于B选项,构造函数,定义域为,,当时,;当时, .所以,函数的单调递减区间为,单调递增区间为,当时,,B选项错误;对于C选项,,由于函数在上单调递增,当时,,即,所以,,C选项正确;对于D选项,由A选项知,函数在区间上单调递增,当时,,则,即,D选项正确.故答案为:CD.【分析】利用导数判断函数的单调性,可判断A选项;构造函数,利用导数判断函数的单调性,可判断B选项;由函数的单调性可判断C选项;利用函数在区间上的单调性可判断D选项.15.【答案】A,D【解析】【解答】,则,易知在上单调递增,在上单调递减,A符合题意;又,,所以,B不符合题意;对于C,,,故切线方程,C不正确;若有正整数解,则,所以,因为,所以,所以,所以,即,所以D符合题意;故答案为:AD.【分析】对函数求导,得到,利用导数的符号判断出函数的单调区间,可以判断A项正确;将化简,整理,得到大小,从而判断出B项不正确;利用导数的几何意义,结合直线方程的点斜式求得切线方程,可以判断出C项不正确;将不等式转化为,两边取对数,得到,结合式子的特征,得到D项正确,进而得到结果.16.【答案】B,C,D【解析】【解答】因为函数,所以当时,,当时,,所以当时,的最小值为,如图所示:当时,,当时,,所以函数有一个零点;若方程有一解,则或,函数的单调递减区间为,故错误命题的序号是②③④。

人教版A版高中数学选修2-2:1.2导数的计算第3课时

人教版A版高中数学选修2-2:1.2导数的计算第3课时
识,即“导数的运算法则”.
二、新课——导数的四则运算法则
1.[ f (x) g(x)]' f '(x) g'(x)
2.[ f (x) g(x)]' f '(x)g(x) f (x)g '(x)
3.[ f (x)]' f ' (x)g(x) f (x)g '(x) (g(x) 0)
. .
四、小结与作业
1、导数的四则运算法则; 2、复合函数的求导公式.
练习、作业:
作业:习题1.2 A 组 4,6.
净化费用的瞬时变化率:
(1) 90%
(2) 98%
四、分层练习,巩固提高
练习:求下列函数的导数
(1) y 2x5 3x2 4;
(2) y (1 cos x)sin x;
(3)
y

3 3

x2 x2
;
(5) y cos x ; 3Biblioteka (4) y x 1 ; x
(6) y 3x 5 10 .
过变量 u, y 可以表示成 x 的函数,那么称这个函 数为函数 y f (u)和u g(x) 的复合函数. 复合函数的导数和函数 y f (u),u g(x) 的导数间 的关系为 yx' yu' ux' . 例2.求下列函数的导数: (1) y (2x 3)2 ;(2) y e0.05x1 ;
(3) y sin( x )(其中 ,均为常数).
三、综合应用
例3.日常生活中的饮用水通常是经过净化的,随着 水纯度的提高,所需净化费用不断增加.已知将1吨水
净化到纯净度为 x% 时所需费用(单位:元)为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2 1.1 第2课时 导数的概念
一、选择题
1.函数在某一点的导数是( )
A .在该点的函数值的增量与自变量的增量的比
B .一个函数
C .一个常数,不是变数
D .函数在这一点到它附近一点之间的平均变化率
[答案] C
[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx
无限趋近的常数,故应选C. 2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( )
A .6
B .18
C .54
D .81 [答案] B
[解析] ∵s (t )=3t 2,t 0=3,
∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32
=18Δt +3(Δt )2∴Δs Δt
=18+3Δt . 当Δt →0时,Δs Δt
→18,故应选B. 3.y =x 2在x =1处的导数为( )
A .2x
B .2
C .2+Δx
D .1
[答案] B
[解析] ∵f (x )=x 2,x =1,
∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2
∴Δy Δx =2+Δx 当Δx →0时,Δy Δx
→2 ∴f ′(1)=2,故应选B.
4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2
-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )
A .37
B .38
C .39
D .40
[答案] D
[解析] ∵Δs Δt =4(5+Δt )2-3-4×52
+3
Δt =40+4Δt ,
∴s ′(5)=li m Δt →0 Δs
Δt =li m Δt →0 (40+4Δt )=40.故应选D.
5.已知函数y =f (x ),那么下列说法错误的是( )
A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量
B.Δy Δx =f (x 0+Δ
x )-f (x 0)
Δx 叫做函数在x 0到x 0+Δx 之间的平均变化率
C .f (x )在x 0处的导数记为y ′
D .f (x )在x 0处的导数记为f ′(x 0)
[答案] C
[解析] 由导数的定义可知C 错误.故应选C.
6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( )
A .f ′(x 0)=f (x 0+Δx )-f (x 0)
B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)]
C .f ′(x 0)=f (
x 0+Δx )-f (x 0)
Δx
D .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)
Δx
[答案] D
[解析] 由导数的定义知D 正确.故应选D.
7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( )
A .4a
B .2a +b
C .b
D .4a +b
[答案] D
[解析] ∵Δy Δx =a (2+Δx )2
+b (2+Δx )+c -4a -2b -c
Δx
=4a +b +a Δx ,
∴y ′|x =2=li m Δx →0 Δy
Δx =li m Δx →0 (4a +b +a ·Δx )=4a +b .故应选D.
8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )
A .圆
B .抛物线
C .椭圆
D .直线
[答案] D
[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.
9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为(
)
A .0
B .3
C .-2
D .3-2t
[答案] B [解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt
=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt
=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a
等于( ) A .-1a
B.2a C .-1a 2
D.1a 2
[答案] C [解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1a x -a
=li m x →a a -x (x -a )·xa =-li m x →a 1ax =-1a 2. 二、填空题
11.已知函数y =f (x )在x =x 0处的导数为11,则
li m Δx →0f (x 0-Δx )-f (x 0)Δx
=________; li m x →x 0
f (x )-f (x 0)2(x 0-x )=________. [答案] -11,-112
[解析] li m Δx →0
f (x 0-Δx )-f (x 0)Δx =-li m Δx →0
f (x 0-Δx )-f (x 0)-Δx =-f ′(x 0)=-11; li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx
=-12f ′(x 0)=-112
. 12.函数y =x +1x
在x =1处的导数是________. [答案] 0
[解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭
⎪⎫1+11
=Δx -1+1Δx +1=(Δx )2Δx +1, ∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______. [答案] 2
[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx
=a , ∴f ′(1)=li m Δx →0 Δy Δx
=a .∴a =2. 14.已知f ′(x 0)=li m x →x 0
f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →3 2x -3f (x )x -3的值是________. [答案] 8
[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3
=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3
. 由于f (3)=2,上式可化为
li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3
=2-3×(-2)=8. 三、解答题
15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).
[解析] 由导数定义有f ′(x 0)
=li m Δx →0 f (x 0+Δx )-f (x 0)Δx
=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx
=2x 0,
16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2
,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.
[解析] 位移公式为s =12
at 2 ∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12
a (Δt )2 ∴Δs Δt =at 0+12a Δt , ∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭
⎪⎫at 0+12a Δt =at 0,
已知a =5.0×105m/s 2,t 0=1.6×10-3s ,
∴at 0=800m/s.
所以枪弹射出枪口时的瞬时速度为800m/s.
17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)
Δy Δx (2)f ′(1).
[解析] (1)Δy Δx =f (1+Δx )-f (1)Δx
=(1+Δx )2+3-12-3Δx
=2+Δx . (2)f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx
=lim Δx →0
(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.
[解析] f (x )=⎩⎪⎨⎪⎧ x +x 2 (x ≥0)-x -x 2 (x <0)
Δy =f (0+Δx )-f (0)=f (Δx )
=⎩⎪⎨⎪⎧ Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0)
∴lim x →0+ Δy Δx =lim Δx →0+
(1+Δx )=1, lim Δx →0- Δy Δx =lim Δx →0-
(-1-Δx )=-1, ∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx
无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)。

相关文档
最新文档