现代控制理论状态反馈和状态观测器的设计实验报告

合集下载

现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈和状态观测器的设计实验报告

本科实验报告课程名称:现代控制理论实验项目:状态反馈和状态观测器的设计实验地点:中区机房专业班级:自动化学号:学生姓名:指导教师:年月日现代控制理论基础一、实验目的(1)熟悉和掌握极点配置的原理。

(2)熟悉和掌握观测器设计的原理。

(3)通过实验验证理论的正确性。

(4)分析仿真结果和理论计算的结果。

二、实验要求(1)根据所给被控系统和性能指标要求设计状态反馈阵K。

(2)根据所给被控系统和性能指标要求设计状态观测器阵L。

(3)在计算机上进行分布仿真。

(4)如果结果不能满足要求,分析原因并重复上述步骤。

三、实验内容(一)、状态反馈状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状态反馈不但可以实现闭环系统的极点任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。

1.全部极点配置给定控制系统的状态空间模型,则经常希望引入某种控制器,使得该系统的闭环极点移动到某个指定位置,因为在很多情况下系统的极点位置会决定系统的动态性能。

假设系统的状态空间表达式为(1)其中 n m C r n B n n A ⨯⨯⨯::;:;: 引入状态反馈,使进入该系统的信号为Kx r u -=(2)式中r 为系统的外部参考输入,K 为n n ⨯矩阵. 可得状态反馈闭环系统的状态空间表达式为(3)可以证明,若给定系统是完全能控的,则可以通过状态反馈实现系统的闭环极点进行任意配置。

假定单变量系统的n 个希望极点为λ1,λ2, …λn, 则可以求出期望的闭环特征方程为=)(*s f (s-λ1)(s-λ2)…(s-λn)=n n n a s a s +++-Λ11这是状态反馈阵K 可根据下式求得K=[])(100*1A f U c -Λ(4)式中[]bA Ab b U n c 1-=Λ,)(*A f是将系统期望的闭环特征方程式中的s 换成系统矩阵A 后的矩阵多项式。

例1已知系统的状态方程为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•111101101112 采用状态反馈,将系统的极点配置到-1,-2,-3,求状态反馈阵K..其实,在MATLAB的控制系统工具箱中就提供了单变量系统极点配置函数acker(),该函数的调用格式为K=acker(A,b,p)式中,p为给定的极点,K为状态反馈阵。

实验6_状态反馈与状态观测器

实验6_状态反馈与状态观测器

自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。

2. 了解带有状态观测器的状态反馈系统。

3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。

二、实验内容1. 系统G(s)=10.05s 2+s+1如图2.6.1所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%≤σ,峰值时间st p 5.0≤。

图2.6.1二阶系统结构图2.被控对象传递函数为57.103945.3100)(2++=S S s G写成状态方程形式为CX Y Bu AX X =+=式中⎥⎦⎤⎢⎣⎡--=945.357.10310A ;⎥⎦⎤⎢⎣⎡=10B ;[]0100=C为其配置系统极点为S 1,2=−7.35±j7.5; 观测器极点为Z 1,2=0.712±j0.22。

分别计算状态反馈增益阵和观测矩阵,并进行实验验证。

分别改变几组系统极点和观测器极点,各自比较系统阶跃响应差异。

被控对象的模拟电路图如图2.6.2所示。

图2.6.2 模拟电路图带有状态观测器的状态反馈系统方框图如图2.6.3所示图2.6.3 计算机实现带有状态观测器的状态反馈系统图图2.6.3中虚线内表示连续域转换成离散域在计算机中的实现方法: 其中AT e G = B dt t H T⎪⎭⎫ ⎝⎛=⎰0)(ϕAte t =)(ϕ21⨯---K 维状态反馈系数矩阵,由计算机算出。

12⨯---L 维观测器的反馈矩阵,由计算机算出。

---Kr 为使)(t y 跟踪)(t r 所乘的比例系数。

三、 实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。

这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。

现代控制理论实训报告

现代控制理论实训报告

一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。

为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。

本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。

通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。

二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。

2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。

3. 提高团队合作意识,锻炼动手能力和沟通能力。

三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。

2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。

3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。

4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。

四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。

2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。

3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。

(2)求解状态转移矩阵,并进行可控性和可观测性分析。

(3)设计状态反馈和观测器,优化控制系统性能。

(4)利用MATLAB进行仿真,观察控制系统动态特性。

(5)根据仿真结果,调整控制器参数,提高控制系统性能。

4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。

五、实训成果1. 掌握了现代控制理论的基本概念和方法。

2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。

北京化工大学测控现代控制理论实验报告

北京化工大学测控现代控制理论实验报告

图 2.1 起重机受力分析过程
图 2.2 起重机系统的简化模型
选取小车的位移x 及其速度x ,摆的角位移θ及角速度θ作为状态变量,x 为输出变量。 假设系统参数为m0=50kg, m=5kg,l=1m, g=9.8m/s2,则可以列出起重机系统的状态空间 表达形式。 由此模型可知,拉力F为输入变量,所以对于此系统,G(s)= X(s) S^2+9.8 = F(s) 50S^4+539S^2
n=length(A); JA=poly(A); Q=[B];
JJA=poly(lambda); for i=1:n-1 end
Q=[A^(i)*B Q]; T=zeros(n,n); for i=1:n end T=T+sparse(i:n,1:n-i+1,JA(i)*ones(1,n-i+1),n,n); P=Q*T;
Scope2:
图3.18 带反馈的第二个状态变量波形 Scope1:
图 3.18 带反馈的第三个状态变量波形
Scope:
图3.19 带反馈的第四个状态变量波形 四、思考题
(1)说明反馈控制闭环期望极点和观测器极点的选取原则。 答:对于反馈控制闭环期望极点:首先闭环极点一定选在左半平面上,由于本系统为 高阶系统,在高阶系统中,通常可以根据上升时间,超调量,回复时间等性能指标,按照主 导极点的原则来选取。 具体如下:选择一对期望的主导极点,其余极点选在距主导极点左边较远的地方,不过此时 系统的零点应该位于左半开平面上距离虚轴较远的地方, 使得其余极点及可能出现的零点对 系统动态性能的影响较小。 对于观测器极点: 需使观测器的期望极点在闭环反馈系统A-BK极点的左边不远处, 一般地,期望极点的选择应使状态观测器的响应速度至少比所考虑的闭环系统响应速度快2 —5倍 (2)说明增益矩阵对(K,L)的变化对系统性能的影响关系。 反馈系统期望极点在 S 平面上向左移动,响应速度变快,但控制信号明显加大,超调量增 加,反之,则控制信号较小,但响应时间变长。 观测器极点在 S 平面上向左移动, 观测器状态逼近实际状态的速度加快, 但增益矩阵 L 也随 之增大,实验起来较为困难,易产生饱和。 (3) 说明观测器的引入对系统性能的影响。 答:提高系统的阶次,会使系统响应变慢,计算复杂。

现代控制实验报告

现代控制实验报告

现代控制理论实验报告系统的状态空间分析与全维状态观测器的设计一、实验目的1 •掌握状态反馈系统的极点配置;2 •研究不同配置对系统动态特性的影响。

二、实验仪器1 •计算机2. MATLAB 软件三、实验原理一个受控系统只要其状态是完全能控的,则闭环系统的极点可以任意配置。

极点配置有两种方法:①采用变换矩阵T,将状态方程转换成可控标准型,然后将期相等,从而决定状态反馈增益矩阵K;②基于Carlay-Hamilton理论,它指出矩阵㈡满足自身的特征方程,改变矩阵特征多项式:的值,可以推出增益矩阵K。

这种方法推出增益矩阵K的方程式叫Ackermann公式。

四、实验内容1 •试判别下列系统的可控性和可观性:(1) A=[1,2,3;1,4,6;2,1,7]B=[1,9;0,0;2,0];C=[1,0,0;2,1,0]实验程序:a=[1,2,3;1,4,6;2,1,7]b=[1,9;0,0;2,0]c=[1,0,0;2,1,0]n=size(a)uc=ctrb(a,b)uo=obsv(a,c)if ran k(uc)==ndisp('系统可控')elsedisp('系统不可控')end if ran k(uo )==ndisp('系统可观')elsedisp('系统不可观')End实验结果:a =1 2 31 4 62 1 7b =1 90 02 02 1 0n =3uc =1 9 7 9 81 810 0 13 9 155 1532 0 16 18 139 153 uo =1 0 02 1 01 2 39 13 3635 50 141系统可控系统可观(2) A=[-2,2,-1;0,-2,0;1,-4,0]B=[[0;0;1]C=[1,-1,1]程序:A=[-2,2,-1;0,-2,0;1,-4,0];B=[0;0;1];C=[1,-1,1];Qc=ctrb(A,B);n=ran k(Qc);if(n==3),disp('系统可控'); else,disp('系统不可控');end系统不可控Qo=obsv(A,C);m=ra nk(Qo);if(m==3),disp('系统可观');else,disp('系统不可观');end系统不可观2.全状态反馈极点配置设计:设系统的状态方程为:x=Ax+Bu其中,A=[0,1,0;0,0,1;-1,-5,-6]B=[0;0;1]p1=-2+j4、要求:利用状态反馈控制u=-Kx,将此系统的闭环极点配置成p2=-2-j4、p3=-10。

现代控制理论实验报告—中国石油大学

现代控制理论实验报告—中国石油大学

现代控制理论姓名:滕翔学号:10051321班级:自动化10-3班一、实验内容:已知系统传递函数1. 用Simulink 对该系统进行实现●能控性实现●串联实现●能观性实现(选做)●并联实现(选做)2. 以上述系统的串联实现为基础,实验研究:●系统在初始条件作用下的状态响应和输出响应●系统在阶跃输入信号作用下的状态响应和输出响应●分析系统在状态空间坐标原点的稳定性3. 以上述系统的串联实现为基础,设计状态反馈控制器要求:系统输出的最大超调量,调节时间ts=1秒仿真分析系统的实际工作效果,由系统输出的实际阶跃响应曲线计算最大超调量、调节时间、稳态误差等系统的性能参数分析该系统在输出比例控制下是否会存在稳态误差?状态反馈控制下是否会存在稳态误差?分析出现这种差异的原因,讨论消除状态反馈稳态误差的方法。

4. 以上述系统的串联实现为基础,设计系统的全维状态观测器,观测器极点全为-4,仿真分析在原系统和观测器系统初始条件相同和不同时,观测状态与原状态变量的差值随时间变化的情况,例如改变观测器极点配置到-9,结果有何不同?5. 结合以上3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态反馈与观测状态反馈系统控制效果的异同。

6. 选做降维观测器设计及状态反馈实验平台采用MATLAB 及Simulink 工具,注意:实验过程中要善于应用MATLAB 控制系统工具箱的工具。

二、实验过程,结果及分析:1.用Simulink 对该系统进行实现能控性实现(1)(2)很容易就可以得到能控Ⅰ型实现,状态空间表达式如下:(3)由上述表达式可得结构模拟图如下:(4)根据结构模拟图在simulink中仿真子系统如下图:● 串联实现(1)(2) 由上式很容易得到结构模拟图如下:(3) 根据结构模拟图在simulink 中仿真子系统如下图:● 能观性实现(选做)(1)(2) 可以写出能观Ⅱ型实现,状态空间表达式如下:(3) 结构模拟图如下:(4) 根据结构模拟图在simulink 中仿真子系统如下图:并联实现(选做)(1)(2) 由上式可写出约当标准型实现,状态空间表达式如下:(3)由状态空间表达式可以得到结构模拟图如下:(4)根据结构模拟图在simulink中仿真子系统如下图:综上,将所有子系统一起进行仿真,仿真模型如下图:仿真结果如下图:分析:上图曲线由上及下分别是能控实现,串联实现,能观实现,并联实现以及各种实现混合,可见各种实现仿真曲线一致,证明同一系统各种实现效果唯一,只是形式方式不一样而已,在表观性质上有区别但本质是相同的。

2018-现代控制工程实验报告 (800字)word版本 (11页)

2018-现代控制工程实验报告 (800字)word版本 (11页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==现代控制工程实验报告 (800字)实验一:传递函数与状态空间模型的转换实验时间:10月9日实验地点:机电楼实验人:邹金萍一.实验目的:学会使用matlab将传递函数变为状态空间表达式。

二.实验原理:为了将传递函数变为状态空间表达式,Matlab中提供了函数tf2ss(),调用格式为:[A,B,C,D]=tf2ss(num,den),运行后将给出系统的状态空间表达式。

三.主要仪器与耗材:PC机电脑一台,Matlab 7.0软件四.实验内容和步骤:例9.3 已知系统的传递函数模型为:s3?7s2?24s?24G(s)?4s?10s3?35s2?50s?24将其转换为状态空间模型。

具体步骤如下:1.开机运行PC机电脑,打开Matlab7.0软件,建立一个M文件。

2.直接利用Matlab函数tf2ss()的程序如下:%EX3223系统模型转换 %输入要转换的原模型 num=[1 7 24 24]; den=[1 10 35 50 24];[A,B,C,D]=tf2ss(num,den); G=ss(A,B,C,D)3.保存该M文件,并运行所编程序。

五.数据处理与分析运行结果为: a =x1 x2 x3 x4 x1 -10 -35 -50 -24 x2 1 0 0 0 x3 0 1 0 0 x4 0 0 1 0 b =u1 x1 1 x2 0x3 0 x4 0 c =x1 x2 x3 x4 y1 1 7 24 24 d =u1 y1 0六.实验注意事项1. 编程格式需要注意正确的输入,注意正确使用函数tf2ss()格式,保存文件注意正确格式。

2. 由于状态空间表达式的非唯一性。

Matlab命令给出的只是这些可能的表达式中的一种,但它不会改变系统输入与输出之间的动态关系。

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。

状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。

状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。

本文将分别介绍状态反馈器和状态观测器的设计原理和方法。

一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。

其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。

2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。

常用的设计方法有极点配置法、最优控制法等。

3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。

状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。

4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。

二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。

其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。

常用的设计方法有极点配置法、最优观测器法等。

3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。

状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。

4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。

现代理论控制实验3

现代理论控制实验3
由Uc=ctrb(a,b);rank(Uc)得
ans =3,所以系统是能控的
由Vo=obsv(a,c);rank(Vo)得
ans =3,所以系统是能观的
(2)
a.
选取K=[0 3 0] 为状态反馈矩阵,解得闭环ห้องสมุดไป่ตู้统的零点、极点和传递函数如下
由a=[-3 0 0;0 2 0;0 0 -1];b=[1 1 1]';k=[0 3 0];a1=a+b*k得
三、实验过程及结果
1. 已知系统
(1)求解系统的零点、极点和传递函数,并判断系统的能控性和能观测性。
(2)分别选取K=[0 3 0],K=[1 3 2],K=[0 16 /3–1/3]为状态反馈矩阵,求解闭环系统的零点、极点和传递函数,判断闭环系统的能控性和能观测性。它们是否发生改变?为什么?
(3)任选三个输出反馈矩阵,求解闭环系统的零点、极点和传递函数,并判断系统的能控性和能观测性。它们是否发生改变? 为什么?
[xo,x,t]=simobsv(g1,l);plot(t,x,'-k',t,xo,':r')
观测器观测到的状态如下
其中l=
(4)
三、实验结果
1(1)
系统的零点、极点和传递函数如下
由a=[-3 0 0;0 2 0;0 0 -1];b=[1 1 1]';c=[0.4 0.2667 0.3333];g1=ss(a,b,c,0);g1=tf(g1)得
g1=
由g1=zpk(g1)得
系统的零点为1,-2;系统的极点为-3,-1,2
系统的能控性和能观性判断如下
ans =3,所以系统是能控的
由Vo=obsv(a,c);rank(Vo)得

《现代控制理论》实验报告

《现代控制理论》实验报告

.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。

并写出实验报告。

[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。

[实验内容]1 设系统的模型如式(1.1)示。

p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。

系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。

D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。

2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。

注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。

③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。

,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。

现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN状态反馈器和状态观测器的设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目的(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置的方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步的控制系统设计三、实验原理及相关知识(1)设系统的模型如式所示若系统可控,则必可用状态反馈的方法进行极点配置来改变系统性能。

引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =理想闭环系统的极点为[]123---.(1)采用 Ackermann 公式计算法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1; 3; -6];P=[-1 -2 -3];K=acker(A,B,P)Ac=A-B*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];eig(A)'P=[-1 -2 -3];K=place(A,B,P)eig(A-B*K)'(3)设计全维状态观测器,要求状态观测器的极点为[]---123代码:a=[0 1 0;0 0 1;-4 -3 -2];b=[1;3;-6];c=[1 0 0];p=[-1 -2 -3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=a-h*c(2)已知系统状态方程为:10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =(1)求状态反馈增益阵K ,使反馈后闭环特征值为[-1 -2 -3];代码:A=[0 1 0;0 0 1;4 -3 -2];b=[1;3;-6];p=[-1 -2 -3];k=acker(A,b,p)A-b*keig(A-b*k)(2)检验引入状态反馈后的特征值与希望极点是否一致。

北航_自控实验报告_状态反馈和状态观测器

北航_自控实验报告_状态反馈和状态观测器

北航_自控实验报告_状态反馈和状态观测器摘要:本实验通过对一个质点的运动进行实时控制的实验研究,了解了状态反馈和状态观测器的原理和应用。

通过实验验证了状态反馈和状态观测器在控制系统中的重要性和有效性。

1引言状态反馈和状态观测器是控制系统中常用的两种控制方法,可以实现对系统状态的准确估计和实时控制。

在实际控制应用中,状态反馈和状态观测器广泛应用于电力系统、轨道交通系统等领域。

本实验通过对一个质点运动的控制,以实验方式掌握状态反馈和状态观测器的原理和应用。

2实验目的2.1理解状态反馈和状态观测器的原理;2.2 学会使用Matlab编程实现状态反馈和状态观测器;2.3通过实验验证状态反馈和状态观测器的有效性。

3实验内容与方法3.1实验设备本实验所需设备和材料有:计算机、Matlab软件。

3.2系统建模通过对质点的运动进行建模,得到系统的状态空间方程,用于状态反馈和状态观测器的设计。

3.3状态反馈设计根据系统建模和状态反馈的原理,设计状态反馈控制器,并进行仿真实验。

3.4状态观测器设计根据系统建模和状态观测器的原理,设计状态观测器,并进行仿真实验。

4实验结果与分析4.1状态反馈实验结果在进行状态反馈实验时,观察到质点运动的稳定性得到了明显提高,达到了预期的控制效果。

4.2状态观测器实验结果在进行状态观测器实验时,观察到对系统状态的估计准确性得到了明显提高,状态观测器的设计能够很好地预测系统状态变化。

5结论本实验通过对一个质点运动进行实时控制的实验研究,学习并实践了状态反馈和状态观测器的原理和应用。

通过实验验证了状态反馈和状态观测器在控制系统中的重要性和有效性。

实验结果表明,状态反馈和状态观测器能够有效改善系统的稳定性和估计准确性,达到了实时控制的目的。

[1]袁永安.现代控制理论与技术[M].北京:中国电力出版社。

[2]何国平,刘德海.控制系统设计与应用[M].北京:中国电力出版社。

[3]王晓红.状态反馈和状态观测在电力系统控制中的应用[J].电网技术,2024。

状态反馈综合实验报告

状态反馈综合实验报告

实验名称:状态反馈综合实验实验日期:2023年X月X日实验地点:XX大学自动化实验室实验人员:XXX、XXX、XXX指导教师:XXX一、实验目的1. 理解状态反馈控制原理,掌握状态反馈控制系统的设计方法。

2. 熟悉状态观测器的设计与应用,提高对系统稳定性和鲁棒性的认识。

3. 通过实验,验证状态反馈和状态观测器在控制系统中的应用效果。

二、实验原理状态反馈控制是一种将系统输出反馈到输入端的控制方法,通过改变系统的输入信号来调整系统的状态,实现对系统性能的优化。

状态观测器是一种能够估计系统状态的装置,它通过对系统输入、输出信号的观测,实现对系统状态的估计。

三、实验内容及步骤1. 实验内容(1)设计一个状态反馈控制系统,并实现系统的稳定运行。

(2)设计一个状态观测器,实现对系统状态的估计。

(3)将状态反馈和状态观测器结合,验证其在控制系统中的应用效果。

2. 实验步骤(1)根据系统要求,确定系统状态变量和输入、输出变量。

(2)建立系统状态方程和输出方程。

(3)设计状态反馈控制器,使系统满足稳定性和性能要求。

(4)设计状态观测器,实现对系统状态的估计。

(5)将状态反馈和状态观测器结合,构建综合控制系统。

(6)进行实验,观察系统运行状态,分析实验结果。

四、实验结果与分析1. 状态反馈控制器设计根据系统要求,选择合适的控制器设计方法,如PID控制器、线性二次调节器(LQR)等。

通过仿真实验,调整控制器参数,使系统满足稳定性和性能要求。

2. 状态观测器设计根据系统状态方程和输出方程,设计状态观测器。

通过仿真实验,验证状态观测器的估计精度和稳定性。

3. 状态反馈与状态观测器结合将状态反馈控制器和状态观测器结合,构建综合控制系统。

通过仿真实验,观察系统运行状态,分析实验结果。

实验结果表明,结合状态反馈和状态观测器的综合控制系统具有良好的稳定性和鲁棒性。

在系统受到干扰或参数变化时,系统能够快速恢复到稳定状态,满足实际工程应用需求。

现代控制实验4

现代控制实验4

现代控制理论实验报告(四)实验四 系统设计:状态观测器的设计一、实验目的1. 了解和掌握状态观测器的基本特点。

2. 设计状态完全可观测器。

二、实验要求设计一个状态观测器。

三、实验设备1. 计算机1台2. MATLAB6.X 软件1套四、实验原理说明设系统的模型如式(3-1)示。

pmnR y Ru Rx DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (3-1)系统状态观测器包括全阶观测器和降阶观测器。

设计全阶状态观测器的条件是系统状态完全能观。

全阶状态观测器的方程为:Bu y K z C K A zz z ++-=)( (3-2) 五、实验步骤1. 在MA TLA 界面下调试[例3.1]程序,并检查是否运行正确。

[例3.1]:⎥⎦⎤⎢⎣⎡--=1210A , ⎥⎦⎤⎢⎣⎡=10B , []01=C (3-3)首先验证系统是状态完全能观的,设状态观测器的增益阵为K z =[k1 k2]T根据题义编程: A=[0 1;-2 -1]; B=[0;1];C=[1 0]; D=0;[num,den]=ss2tf(A,B,C,D,1); %求出原系统特征多相式 denf=[1 6 9]; %希望的极点的特征多相式 k1=den(:,2)-denf(:,2) %计算k1=d1-a1 k2=den(:,3)-denf(:,3) %计算k2=d2-a2程序运行结果:k1 =-5 k2 =-7所以,状态观测器的增益阵为K z =[k1 k2]T =[-5 –7]T 。

则状态观测器的方程为u y z z Bu y K z C K A zz z ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=++-=10751375)(21六、实验要求已知系数阵A 、B 、和C 阵分别如式(3-4)示,设计全阶状态观测器,要求状态观测器的极点为[-1 -2 -3]上⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=234100010A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=631B []001=C (3-4)设计全阶状态观测器,要求状态观测器的极点为[-1 -2 -3]。

现代控制理论实验 状态控制器

现代控制理论实验 状态控制器

状态反馈与状态观测器一、 实验目的1. 研究现代控制理论中用状态反馈配置极点的方法。

2. 研究状态观测器的设计方法。

二、 实验内容1. 被控对象模拟电路图如下:2. 系统数学模型:(1)被控对象传递函数为:2()100()() 2.928103.57Y s Gp s U s s s ==++ (2)被控对象状态方程 xA xB u =+ YC x = 式中1103.57 3.928A ⎡⎤=⎢⎥--⎣⎦01B ⎡⎤=⎢⎥⎣⎦[]1000C =(3)图中AT G e =()TH t dtB ϕ=⎰其中()At t e ϕ=K ——1*2维状态反馈系统矩阵,由计算机推出 L ——2*1维观测器的反馈矩阵,有计算机推出Kr ——为使y(t)跟踪r(t)乘的比例系数,由计算机自动递推算出(4)希望的系统极点(参考值):1,27.357.5S j =-± 它对应在Z 平面上应为:1,20.7120.22Z j =± (5)观测点极点参考值:1,20.10Z j =±三、 实验结果分析: 1. 无状态反馈系统输入输出响应如图所示:输入 阶跃信号 Ui=3V输出 百分超调量 PO = 100*(4.23-2.89)/2.89 = 46 稳态误差 e ss (t) = (3-2.89)/3 = 3.67% 上升时间 Tr = 190 ms 峰值时间 Ts = 340 ms 使用 Matlab 仿真,输入:a=[0 1;-103.57 -3.928];b=[0 1]';c=[100 0];d=0; step(a,b,c,d,1,t) 得到输出曲线:如图所示:百分超调量PO = 53.3 稳态误差 ess(t) = 3.4% 上升时间 Tr = 178 ms 峰值时间 Ts = 300 ms与实验结果基本相符。

2. 有状态反馈Step ResponseTime (sec)A m p l i t u d e0123456789100.511.5系统极点和观测器极点均根据参考值设置,其中系统极点:1,27.357.5S j =-±,对应Z 平面:1,20.7120.22Z j =± 观测器极点:1,20.10Z j =±所得输入输出波形如图:输入阶跃信号Ui=2V输出百分超调量PO = 100*(2.09-2)/2 = 4.5 稳态误差e ss(t) = 0 峰值时间Ts = 328 ms通过Matlab 计算系统状态反馈矩阵和观测器反馈矩阵并仿真:1.判断系统能控性、能观性:a=[0 1;-103.57 -3.928];b=[0 1]';c=[100 0];d=0;ro=rank(obsv(a,c))rc=rank(ctrb(a,b))得:ro = 2 rc = 2,所以系统既能控又能观2.计算开环特征值:eol=eig(a)得:eol =-1.9640 + 9.9856i-1.9640 - 9.9856i3.配置观测器极点,计算观测器反馈增益:dpo=[-57.56+0*i -57.56-0*i];k=acker(a',c',dpo)得:k =1.1119 27.72824.配置期望闭环极点,计算系统状态反馈:dpp=[-7.35+7.5*i -7.35-7.5*i];g=acker(a,b,dpp)得:g =6.7025 10.77205.仿真:t=[0:0.05:10.0];step(a,b,c,d,1,t)hold onacl=[a-b*g b*g;[0 0;0 0] a-k'*c]bcl=[b;0;0];ccl=[c 0 0];dcl=d;step(acl,bcl,ccl,dcl,1,t)hold off所得波形如图:如图所示,蓝色波形为未加状态反馈的系统,其仿真波形上文已经分析过:百分超调量PO = 53.3 峰值时间 Tp = 300 ms 2%调节时间 Ts=1950ms 绿色为加了观测器的系统: 百分超调量PO = 4.5 峰值时间 Ts =400 ms 2%调节时间 Ts=570ms 与实验所得数据基本相符,由于仿真时输入没有乘Kr ,故不做稳态误差的比较。

实验6_状态反馈与状态观测器.doc

实验6_状态反馈与状态观测器.doc

实验6_状态反馈与状态观测器自动控制原理实验报告自动控制原理实验报告院系名称:仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。

2. 了解带有状态观测器的状态反馈系统。

3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。

二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。

图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=-仪器科学与光电工程学院班级:141715班姓名:武洋学号:14171073实验六状态反馈与状态观测器一、实验目的1. 掌握用状态反馈进行极点配置的方法。

2. 了解带有状态观测器的状态反馈系统。

3. 理解系统极点、观测器极点与系统性能、状态估计误差之间的关系。

二、实验内容1. 系统G(s)=10.05s2+s+1如图2.6.1所示,要求设计状态反馈阵K,使动态性能指标满足超调量,峰值时间。

图2.6.1二阶系统结构图2.被控对象传递函数为写成状态方程形式为式中; ;为其配置系统极点为S1,2=:其中维状态反馈系数矩阵,由计算机算出。

维观测器的反馈矩阵,由计算机算出。

为使跟踪所乘的比例系数。

三、实验原理1. 闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。

这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。

在改善与提高系统性能时不增加系统零、极点,所以不改变系统阶数,实现方便。

2. 已知线形定常系统的状态方程为为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。

现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈和状态观测器的设计实验报告本次实验是关于现代控制理论中状态反馈与状态观测器的设计与实现。

本次实验采用MATLAB进行模拟与仿真,并通过实验数据进行验证。

一、实验目的1、学习状态反馈控制的概念、设计方法及其在实际工程中的应用。

3、掌握MATLAB软件的使用方法。

二、实验原理1、状态反馈控制状态反馈控制是指将系统状态作为反馈控制的输出,通过对状态反馈控制器参数的设计,使系统的状态响应满足一定的性能指标。

状态反馈控制的设计步骤如下:(1) 确定系统的状态方程,即确定系统的状态矢量、状态方程矩阵和输出矩阵;(2) 设计状态反馈控制器的反馈矩阵,即确定反馈增益矩阵K;(3) 检验状态反馈控制器性能是否满足要求。

2、状态观测器(1) 确定系统的状态方程;(2) 设计观测器的状态估计矩阵和输出矩阵;(3) 检验观测器的状态估计精度是否符合标准。

三、实验内容将简谐信号加入单个质点振动系统,并对状态反馈控制器和状态观测器进行设计与实现。

具体实验步骤如下:1、建立系统状态方程:(1)根据系统的物理特性可得单自由度振动系统的运动方程为:m¨+kx=0(2)考虑到系统存在误差、干扰等因素,引入干扰项,得到系统状态方程:(3)得到系统状态方程为:(1)观察系统状态方程,可以发现系统状态量只存在于 m 行 m 到 m 行 n 之间,而控制量只存在于 m 行 1 到 m 行 n 之间,满足可控性条件。

(2)本次实验并未给出状态变量的全部信息,只给出了系统的一维输出,因此需要设计状态反馈器。

(3)我们采用极点配置法进行状态反馈器设计。

采用 MATLAB 工具箱函数,计算出极点:(4) 根据极点求解反馈矩阵,得到状态反馈增益矩阵K:(1)通过矩阵计算得到系统的可观性矩阵:(2)由若干个实测输出建立观测器,可将观测器矩阵与可观测性矩阵组合成 Hankel 矩阵,求解出状态观测器系数矩阵:(3)根据系统的状态方程和输出方程,设计观测方程和状态估计方程,如下:4、调试控制器和观测器(1)经过上述设计步骤,将反馈矩阵和观测矩阵带入 MATLAB 工具箱函数进行仿真。

现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计

状态反馈器与状态观测器得设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目得(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置得方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步得控制系统设计三、实验原理及相关知识(1)设系统得模型如式所示若系统可控,则必可用状态反馈得方法进行极点配置来改变系统性能。

引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下理想闭环系统得极点为、(1)采用 Ackermann 公式计算法进行闭环系统极点配置; 代码:A=[0 1 0;0 0 1;4 3 2];B=[1; 3; 6];P=[1 2 3];K=acker(A,B,P)Ac=AB*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置; 代码:A=[0 1 0;0 0 1;4 3 2];B=[1;3;6];eig(A)'P=[1 2 3];K=place(A,B,P)eig(AB*K)'(3)设计全维状态观测器,要求状态观测器得极点为代码:a=[0 1 0;0 0 1;4 3 2];b=[1;3;6];c=[1 0 0];p=[1 2 3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=ah*c(2)已知系统状态方程为:(1)求状态反馈增益阵K,使反馈后闭环特征值为[1 2 3]; 代码:A=[0 1 0;0 0 1;4 3 2];b=[1;3;6];p=[1 2 3];k=acker(A,b,p)Ab*keig(Ab*k)(2)检验引入状态反馈后得特征值与希望极点就是否一致。

(3)比较状态反馈前后得系统阶跃响应。

代码:A1=[0 1 0;0 0 1;4 3 2];B1=[1;3;6];C1=[1 0 0];D1=[0];G1=ss(A1,B1,C1,D1);[y1,t1,x1]=step(G1);P=[1 2 3];K=acker(A1,B1,P);abk=A1B1*K;A2=abk;B2=B1;C2=C1;D2=D1;G2=ss(A2,B2,C2,D2);[y2,t2,x2]=step(G2);hold onplot(t1,x1)plot(t2,x2)(4)设计全阶状态观测器,要求状态观测器得极点为[5 6 7]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代控制理论状态反馈与状态观测器的设计实验报告
LT ac ker(AT ,CT , P)

LT place( AT ,CT , P)
其中 P 为给定的极点,L 为状态观测器的反馈阵。
例 3 已知开环系统
其中
x• Ax bu y Cx
0 1 0 0
A=
0
0
1
,b=
0
,C= 1
0
0
6 11 6 1
(1)
现代控制理论状态反馈与状态观测器的设计实验报告
其中 A : n n; B : n r;C :: m n
引入状态反馈,使进入该系统的信号为ຫໍສະໝຸດ u r Kx(2)
式中 r 为系统的外部参考输入,K 为 n n 矩阵、
可得状态反馈闭环系统的状态空间表达式为
(3) 可以证明,若给定系统就是完全能控的,则可以通过状态反馈实现系统
设计全维状态观测器,使观测器的闭环极点为-2 j2 3 ,-5、
解 为求出状态观测器的反馈矩阵 L,先为原系统构造一对偶
系统,
z AT C T n
w
BT
z
然后采用极点配置方法对对偶系统进行闭环极点位置的配置,得
到反馈阵 K,从而可由对偶原理得到原系统的状态观测器的反馈阵 L。
现代控制理论状态反馈与状态观测器的设计实验报告
K=acker(A,b,p) 式中,p 为给定的极点,K 为状态反馈阵。
对于多变量系统的极点配置,MATABLE 控制系统工具箱也给出了函数
place(),其调用格式为
K=place(A,B,P)
例2 已知系统的状态方程为
0 0 4 1 2 0

x
10
13
2
8
x
4
3u
3 3 0 2 1 1
状态反馈就是将系统的状态变量乘以相应的反馈系数,然后反馈 到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状 态反馈不但可以实现闭环系统的极点任意配置,而且也就是实现解耦 与构成线性最优调节器的主要手段。 1、全部极点配置
给定控制系统的状态空间模型,则经常希望引入某种控制器,使得 该系统的闭环极点移动到某个指定位置,因为在很多情况下系统的极 点位置会决定系统的动态性能。 假设系统的状态空间表达式为
10 14 5 9
3
3
求使状态反馈系统的闭环极点为-2,-3,(-1 j 3 )/2 的状态反馈阵 K。
现代控制理论状态反馈与状态观测器的设计实验报告
(二).状态观测器的设计 1、全维状态观测器的设计 极点配置就是基于状态反馈,因此状态 x 必须可测量,当不可测量
时,则应涉及状态观测器来估计状态。
0
0
L=f*(A)V 0
1
. .
. 1
C
CA
式中 V0=
A
C
n1
,f*(A)就是将系统期望的观测器特征方程中 s
换成系统矩阵 A 后的矩阵多项式。
利用对偶原理,可使设计问题大为简化,求解过程如下:
首先构造系统式(5)的对偶系统
A C

z
T
Tn
(6)
w BT Z
然后,根据下试可求得状态观测器的反馈针 L。
中的 s 换成系统矩阵 A 后的矩阵多项式。
例 1 已知系统的状态方程为
2 1 1 1

x
1
0 1x 1u
1 0 1 1
采用状态反馈,将系统的极点配置到-1,-2,-3,求状态反馈阵 K、、
现代控制理论状态反馈与状态观测器的设计实验报告
其实,在 MATLAB 的控制系统工具箱中就提供了单变量系统极点 配置函数 acker(),该函数的调用格式为
的闭环极点进行任意配置。
假定单变量系统的 n 个希望极点为λ1,λ2, …λn, 则可以求出期望
的闭环特征方程为
f * (s) (s-λ1)(s-λ2)…(s-λn)= s n a1s n1 an 这就是状态反馈阵 K 可根据下式求得
K= 00 1Uc1 f *(A)
(4)
式中 U c b Ab An1 b , f * (A) 就是将系统期望的闭环特征方程式
现代控制理论状态反馈与状态观测器的设计实验报告
B
f
C
A
L
B
f
A A
K
设能控能观测的受控系统为

x
Ax
Bu
y Cx
状态反馈控制规律为
u r Kxˆ
状态观测器方程为
由以上三式可得闭环系统的状态空间表达式
C
(12) (13)
(14)
(15) 可以证明,由观测器构成的状态反馈闭环系统,其特征多项式等于 状态反馈部分的特征多项式|Si-(A-BK)|与观测器部分的特征多项式|s
器的极点就可以任意配置达到要求的性能,所以,观测器的设计与状态
反馈极点配置的设计类似。
假定单变量系统所要求的 n 个观测器的极点为λ1 ,λ 2 ……λ n , 则可求出期望的状态观测器的特征方程为
f*(s)=( λ-λ1)( λ-λ2)……( λ-λn)=s n +a1 s n1+……+a n
这时可求得反馈阵 L 为
对于系统
(5)
若系统完全能观测则可构造如图所示的状态观测器。
由上图可得状态观测器的状态方程为 x=Ax+Bu-LCx+Ly
即 x=(A-LC)x+Bu+Ly
现代控制理论状态反馈与状态观测器的设计实验报告
其特征多项式为 f(s)=|sI-(A-LC)|
由于工程上要求 x 能比较快速的逼近 x,只能调整反馈阵 L,观测
现代控制理论状态反馈与状态观测器的设计实验报告
本科实验报告
课程名称:
现代控制理论
实验项目: 状态反馈与状态观测器的设计
实验地点: 中区机房
专业班级:自动化学号: 学生姓名:
指导教师:



现代控制理论基础
现代控制理论状态反馈与状态观测器的设计实验报告
一、实验目的 (1)熟悉与掌握极点配置的原理。 (2)熟悉与掌握观测器设计的原理。 (3)通过实验验证理论的正确性。 (4)分析仿真结果与理论计算的结果。 二、实验要求 (1)根据所给被控系统与性能指标要求设计状态反馈阵 K。 (2)根据所给被控系统与性能指标要求设计状态观测器阵 L。 (3)在计算机上进行分布仿真。 (4)如果结果不能满足要求,分析原因并重复上述步骤。 三、实验内容 (一)、状态反馈
由于 rankr0=3,所以系统哪能观测,因此可设计全维状态观测器。 (三)、带状态观测器的状态反馈系统
状态观测器解决了受控系统的状态重构问题,为那些状态变量不 能直接观测得到的系统实现状态反馈创造了条件。带状态观测器的状 态反馈系统由三部分组成,即原系统、观测器、控制器,图示就是一个 带有全维观测器的状态反馈系统。
相关文档
最新文档