第三章知识点总结 矩阵的初等变换与线性方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换
初等行变换
()1()i j r r ↔对调两行,记作。
()20()i k r k ≠⨯以数乘以某一行的所有元素,记作。
()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。
矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质
(1)反身性 A~A
2 A ~B , B ~A;()对称性若则
3 A ~B,B ~C, A ~C ()传递性若则。(课本P59)
行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。
行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0.
标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r
m n
E O
F O O ⨯⎛⎫= ⎪⎝⎭的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。
初等变换的性质
设A 与B 为m ×n 矩阵,那么
(1);r
A B m P PA B ⇔=存在阶可逆矩阵,使
(2)~;c A B n Q AQ B ⇔=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ⇔=存在阶可逆矩阵,及阶可逆矩阵,使
初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。
初等矩阵的性质
设A 是一个m ×n 矩阵,则
(1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r
A B m P PA B ⇔=即存在阶可逆矩阵,使
(2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c
A B n Q AQ B ⇔=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ⇔=存在阶可逆矩阵,及阶可逆矩阵,使
(4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,
,,l l P P P A PP P =使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? )
初等变换的应用
(1)求逆矩阵:()1(|)|A E E A -−−−−→初等行变换或1A E E A -⎛⎫⎛⎫−−−−→ ⎪ ⎪⎝⎭⎝⎭
初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即()
1(|)|A B E A B -−−→行,则P =A -1B 。或1E A B BA -⎛⎫⎛⎫−−−−→ ⎪ ⎪⎝⎭⎝⎭
初等列变换. 第二节 矩阵的秩
矩阵的秩
任何矩阵m n A ⨯,总可以经过有限次初等变换把它变为行阶梯形,行阶梯形矩阵中非零行的行数是唯一确定的。(非零行的行数即为矩阵的秩) 矩阵的秩 在矩阵A 中有一个不等于0的r 阶子式D ,且所有r + 1阶子式(如果存在的话)全等于0,那么D 称为矩阵A 的最高阶非零子式。数r 称为矩阵A 的秩,记作R(A).规定零矩阵的秩,R(0)=0.
说明
1. 矩阵A m ×n ,则 R (A ) ≤min{m ,n };
2. R (A ) = R (A T );
3. R (A )≥r 的充分必要条件是至少有一个r 阶子式不为零;
4. R (A )≤r 的充分必要条件是所有r + 1 阶子式都为零.
满秩和满秩矩阵 矩阵()ij m n A a ⨯=,若()R A m =,称A 为行满秩矩阵;若()R A n =,
称A 为列满秩矩阵;,(),A n R A n A =若为阶方阵且则称为满秩矩阵。
()n A R A n =若阶方阵满秩,即0A ⇔
≠;1A -⇔必存在;A ⇔为非奇异阵; ,~.n n A E A E ⇔必能化为单位阵即
矩阵秩的求法
定理1 矩阵A 经过有限次行(列)初等变换后其秩不变。即若A ~B ,则R (A )=R (B )。 矩阵A m ×n ,经过有限次初等行变换可变为行阶梯形,则非零行的行数就是A 的秩。(证明课本P ? )
推论 ()()P Q R PAQ R A =若、可逆,则(课本P ? )
矩阵秩的性质总结
(1)0()min{,}m n R A m n ⨯≤≤
(2)()()T R A R A = ()()(3)~, A B R A R B =若则 ()()P Q R PAQ R A =(4)若、可逆,则
(5)max{(),()}(,)()()
()(,)() 1.R A R B R A B R A R B B b R A R A R A ≤≤+=≤≤+b 特别当为非零列向量时,有
(6)()()()R A B R A R B +≤+ (7)()min{(),()}.R AB R A R B ≤
(8),()().m n n l A B O R A R B n ⨯⨯=+≤若则
(9)AB=O A B=O 设,若为列满秩矩阵,则(矩阵乘法的消去率)。(课本P71)
第三节 线性方程组的解
线性方程组11112211211222221122n n n n m m mn n m
a x a x a x
b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果有解,则称其为相容的,否则称为不相容
定理2 n 元齐次线性方程组 Ax =0
(1)R(A) = n ⇔Ax=0 有唯一解,零解
(2)R(A) < n ⇔Ax=0 有非零解.
定理3 n 元非齐次线性方程组Ax b =
(1) 无解的充分必要条件是(A)R(A,b)R <
(2) 有唯一解的充分必要条件是(A)R(A,b)n R ==
(3) 有无限多接的充分必要条件是(A)R(A,b)n R =<(证明课本P71)
基础解系 齐次线性方程组0Ax =的通解具有形式1122x c c ξξ=+(c 1, c 2为任意常数),称通解式()112212,x c c c c ξξ=+为任意常数中向量12,ξξ构成该齐次线性方程组的基础解系。 线性方程组的解法
齐次线性方程组:将系数矩阵A 化成行阶梯形矩阵,判断是否有非零解. 若有非零解,化成行最简形矩阵,写出其解;齐次线性方程组的基础解系含有的向量个数为n -R (A ),齐次线性方程组的通解可以表成基础解系的“线性组合”。
非齐次线性方程组:将增广矩阵B =(A ,b )化成行阶梯形矩阵,判断其是否有解.若有解,化成行最简形矩阵,写出其解;在求解过程中,一般取行最简形矩阵中非零行的第一个非零元对应的未知量为非自由的。
非齐次线性方程组解的通解具有形式*1122x c c ξξη=++ (c 1, c 2为任意常数),不带参数部