第一章 量子论基础
第一章 量子力学基础
氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率
结构化学 第1章 量子力学基本原理---量子论
光是一种电磁波
➢1856年,Maxwell建立电磁场理论,预言了电 磁波的存在。 ➢理论计算出电磁波以3×108m/s的速度在真空 中传播,与光速度相同,所以人们认为光也是 电磁波。 ➢1888年,Hertz探测到电磁波。 ➢光作为电磁波的一部分,在理论上和实验上就 完全确定了。
L. Rayleigh(瑞利) 1911年Nobel物理奖
➢R - J 方 程 只 在 波 长 很 大时与实际情况比较符
。实验 -- 维恩 -- 瑞利-金斯
合 , 随 着 λ 减 小 , ρλ 单调增大,与实验结果
呈现巨大分歧。
➢推 论 : 黑 体 的 单 色 辐
射强度将随波长变短而
趋于“无限大”。
光子学说对光电效应的解释
当光照射金属中的电子时,电子吸收光子的能量,
体现为逸出功(W0)和光电子动能(Ek) :
hn
1 mv2 2
W0
n0=W0/h,为金属材料的特征值。
当n>n0时,如果光的强度越大,则单位体积内
通过的光子数目就越多,因而光电流也越大。
W0
W0
W0 ,逸出功, 或称为功函数,F
结构化学 —— 第一章量子力学原理
第一章
I 量子论的形成 新理论的产生
为世人接受的新 观念和新理论
传统观念 和经典理论
不能解释 实验新发现
解释实验且为 其他实验证实
修
新观念 新假设
正
结构化学 —— 第一章量子力学原理
经典物理学
1900年以前,物理学的发展处于经典物理学 (classical physics)阶段: 由经典力学,电磁波理论, 统计物理学和热力学等组成。
与此相反,Wien方程只在
--“紫外灾难” 高频区符合。
第一章1 量子力学基础
满足上述条件的波函数称为合格波函数或品优波函数 (well-behaved function)
(a)违反单值条件
(b)不连续
(c)一阶微商不连续
(d)波函数不是有限的
不符合品优函数条件的情况
(2)、Ψ 和CΨ 描述同一状态 C为一个非零的常数因子(可以是实数或复数)
ψ
2
重要的是在空间不同点的比值,而不是各点的绝对值大小。
r1 0.529 1010 m=52.9pm
玻尔 半径
氢原子轨道能量 1 me 4 R En 2 ( 2 2 ) 2 ,n 1, 2,3, n 8 0 h n
R 13.6eV
比较:多电子原子轨道能量
Z2 En R 2 n
玻尔理论的缺陷:旧量子论
● 玻尔理论仍然以经典理论为基础,定态假设
2、 电子衍射实验—德布罗意假设的实验验证
(1)戴维逊—革末电子单晶反射实验(1927年)
1925年,戴维逊和革末第一次得到了电子在单晶体中 衍射的现象(Ni 氧化,单晶),1927年他们又精确地进 行了这个实验,实验发现,从衍射数据中求得的电子 的物质波波长与从德布罗意关系式中计算出的波长一 致。
2 2 l 2
求此波函数的归一化常数A。
nx A sin( ) l
(0 x l)
l A 1 A 2
2
2 l
二、假设Ⅱ:力学量和算符
1、算符的定义:一种运算符号,当将其作用到某一函数上 时,就会根据某种运算规则,使该函数变成另一函数
g Af
2、算符的性质 ①相等
定态(E2)→定态(E1)跃迁辐射
(3)量子化条件
电子轨道角动量 M n
第1章 量子力学基本原理
黑体辐射----经典的理论解释”
W. Wien(维恩) 1904年Nobel物理奖。
L. Rayleigh(瑞利9) 1911年Nobel物理奖
当n小于某一频率n0时,
无论光强多大,照射时间 多长都不会发生光电效应。
截止电压与入射光频率n的关系
20
经典物理学理论无法解释光电效应
根据经典的光的电磁波理论,光的能量是由
光的强度决定的,光强越强,照射在金属片
上发射出的光电子动能也越大,光电子动能
与光强相关。
只要光强足够强,足以供应发射电子所需要
37
要点二(频率假设):当电子由低能量轨道跃 迁至高能量轨道,相应地原子由低能量定态变 为高能量定态,必须吸收一个光子;反之由高 返低,则放出一个光子。光子的能量就等于两 个能级或定态能量之差。
EEIIEI hn
38
要点三(量子化假设):在原子的各种可能的
态中,电子绕核运动的角动量L必须是h/2的
的能量,那么光电效应理应对各种n的光都发
生,而不应具有极限频率n0。
21
到了1905年,Planck定律的正确性一次又一次 地得到了实验证实,然而关于它的真实含义物理 学家们的认识却是模糊的。 当时年仅26岁的Einstein第一个意识到Planck量 子假设的革命性意义,同时,他还进一步发展了 普朗克的能量子概念,并大胆地提出了光量子假 设。整数来自。L nh / 2 n
n 1, 2,3,
39
Bohr理论成功地解释了当 时已知的Balmer、Paschen 和Brackett线系。 预 测 n1 = 1 定 态 的 光 谱 线 的波长121.6nm等,1915年 被Lyman发现,称为Lyman 线系。
量子论基础填空1经典物理学不能解释_________
第一章量子论基础一、填空1.经典物理学不能解释:___、___、___、___ 和___等问题。
2.1900年,为解决黑体辐射的困难,普朗克提出了____的概念,导出了以他名字命名的普朗克公式____;1905年,普朗克的量子化概念被爱因斯坦进一步推广,得到了光子的动量和波矢量的关系式____。
这两个关系式合称为普朗克-爱因斯坦关系式。
3.利用普朗克-爱因斯坦关系式,可以解释____、____和____实验结果。
二、概念与名词解释1.黑体辐射2.玻尔的量子论3.光的波粒二象性4.德布罗意关系5.杜隆-珀蒂定律三、计算1.设一电子为电势差V所加速,最后打在靶子上.若电子的动能转化为一个光子,求当这个光子相应的光波波长分别为500nm(可见光)、0.1nm(X射线)以及0.0001nm(γ射线)时,加速电子所需的电势差是多少?2.求下列各粒子的德布罗意波的波长:(1)能量为0.1eV,质量为1g的质点;(2)T=1K 时,具有动能E=3kT/2(k 为玻耳兹曼常数)的氦原子;(3)速度为500m/s ,质量为20g 的子弹.3.利用玻尔量子化条件求:(1)一维谐振子的能量 ;(2)在均匀磁场中作圆周运动的电子的可能轨道半径.4.设箱的长宽高分别为a 、b 、c ,用玻尔量子化条件求箱内运动粒子的能量。
5.利用玻尔量子化条件求转动惯量为I 的平面转子的能量.6.由p=mv 及220/c v -1/m m =出发,利用202c m -mc T =,导出相对论粒子德布罗意波长与动能的关系。
m 0为该粒子的静止质量。
7.一个德布罗意波在k 空间的表示/4)k -(k a -1/4202e )(2a C(k)π=,求: (1)ψ(x,t)和|ψ(x,t)|2,在时刻t 这是否是个高斯波包?(2)波包的宽度Δ(x,t); (3)⎰+∞∞-ψdx t)(x ,2是否依赖于t?8.两个光子在一定条件下可以转化为正负电子对. 如果两光子的能量相等, 问要实现这种转化, 光子的波长最大是多少?9.当自由电子与中子的德布罗意波长均为10-10m 时,求它们各自具有的能量。
第一章 量子力学基础
1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.
量子力学第一章 量子理论基础
第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhch eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe ex dx e x ex dx e x x x xx x66660=-=+-=∞∞--∞-⎰xx xe dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y ch k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
第一章量子力学基础
m
h
c2
h
c
光子的质量与光的频率或波长有关,但光子没有静止质 量,因为根据相对论原理:
m
m0
1 (v / c)2
2020/3/17
13
④光子有动量P
P mc mc2 h h c c
⑤光子与电子碰撞时服从能量守恒和动量守恒。
h
W
Ek
h 0
1 m 2
2
——光电方程或爱因斯坦关系式
③光电效应产生的电子
ν
的初动能随光的频率增 大而增加而与光的强度
无关。
④入射光照射到金属表 面立即有电子逸出,二 者几乎无时间差。
11
根据光波的经典图象,光波的能量与它的强度 (振幅的平方)成正比,而与频率无关。因此 只要有足够的强度,任何频率的光都能产生光 电效应,而电子的动能将随着光强的增加而增 加,与光的频率无关,这些经典物理学家的推 测与实验事实不符。
5
E( v,T)10-9J.m-2
5 4 3 2 1
0
max
2000K
1500k
1000K
1
2
3
v/1014s-1
①随着温度(T)的增加, 总辐射能量E(即曲线下的面积) 急剧增加。
E T 4 ( 5.67 108W gm2 gK 4 )
——斯芯蕃公式
②随着温度(T)的增加,E的 极大值向高频移动;曲线的峰值 对应于辐射最强的频率,相应的 波长ma随x 温度升高而发生位移。
1
R° H
1 n12
1 n22
R°为H 里德堡常数, R°=H 1.09677576×107m-1
第一章 量子力学基础课后习题
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第一章-量子论基础
第五章 近似方法一、概念与名词解释 1. 斯塔克效应 2. 跃迁概率 3. 费米黄金规则 4. 选择定则 二、计算1. 如果类氢原子的核不是点电荷,而是半径为r o ,电荷均匀分布的小 球,计算这种效应对类氢原子基态能量的一级修正 .2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场 E 中,如果电 场较小,用微扰理论求转子基态能量的二级修正 .3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场 E 中,电场 处在转子运动的平面上,用微扰法求转子的能量的二级修正 .E 0a b4. 设哈密顿量在能量表象中的矩阵是 E la 0b ,a 、b 是实数.b E 02 a(1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解, 并与(1)的结果 比较.E 10 0 a5. 设哈密顿量在能量表象中的矩阵是 0 E 10b,(E 02 E 10)* *E 0a bE2(1) 用简并微扰方法求能量至二级修正; (2) 求能量的准确值,并与 (1)的结果比较 .6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级 修正.7. 线谐振子受到微扰aexp(-似2)的作用,计算基态能量的一级修正, 其中常数(3>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为H o (a a 1/2),此体系受到微扰I?'(a a)的作用,求体系的能级到二级近似.已知升与降算符对H o 的本征态|n>的作用为 a |n J n l|n 1J; an) Vn|n —1.9. 一个电荷为q 的线谐振子受到恒定弱电场E i 的作用,利用微扰 论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为 H=p 2/2m+m 忍x 2/2+仅3. B 是常数, 若将H' x 3看成是微扰,用微扰论求能量至二级修正,求能量本 征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+P y 2)/2卩+卩w (x 2+y 2)/2+ ?xy.若X<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 H' axy bz 2,求第一激发态的 一级能量修正.13. 一维无限深势阱(0<xva)中的粒子,受到微扰H' 2 x/a/、(「旳作用,求基态能量的一级修正.2x(1 - x/a) (a/2 x a)14. 处于一维无限深势阱(0<xva)中的粒子,受到微扰H' ° (°x a/3,2a/3 x a)的作用,计算基态能量的一级修正.-V1 (a/3 x 2a/3)15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰16. 一个粒子处在二维无限深势阱V(x,y) 0 (0 a)中运动,现加(其他) 上微扰H' xy(0 x,y a), 求基态能量和第一激发态的能量修正值.2 2 217. 粒子在如下势阱中运动V(x)-2 2sin( x/a)/80 a2 (0 x a),求其(x 0,x a) 基态能量的一级近似.0 (0 x a/2)18. 粒子处于如下势阱中V(x) 2 2/80 a2 (a/2 x a) , 求其能级的一(x 0,X a)级近似值.19. 自旋为?/2的粒子处于一维无限深方势阱(0<xva)中,若其受到微扰H'cos(2 x/a)s?y(0 x a)的作用,求基态能量至一级修正,0 (x 0,x a)其中入为一小量.20. 两个自旋为?/2,固有磁矩算符分别为?1 ?1和?2 ?2的粒子,处于均匀磁场 B B0k 中,若粒子间的相互作用?1 ?2可视为微扰,求体系能量的二级近似,其中a仅丫为实常数.21. 类氢原子中,电子与原子核的库仑作用为U(r)= —Ze2/r,当核电荷增加e(从Z-Z+1),相互作用增加H' -e2/r,试用微扰论求能量的一级修正并与严格解比较.22. 设氢原子处于均匀的弱电场0k 和弱磁场 B B0k 中,不考虑自旋效应,用微扰论讨论其n=2的能级劈裂情况.23. 求氢原子n=3简并度n2=9时的斯塔克效应.24. 设在t=0时,电荷为e的线性谐振子处于基态.在t>0时起,附加一与谐振子振动方向相同的恒定外电场£,求其处在任意态的概率.25. 一个自旋为?/2,磁矩为? g?的粒子处于如下弱旋转磁场中B B°cos( t)i B o s in (t)j Bk ,粒子与磁场的作用为-g?B.若粒子开始处于S z= ?/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)二-g2/r3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以(r) exp(-cr2)为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为I? p2/2 x4,以(x) . a/ exp(-a 2x2/2)为试探波函数,a为变分参数,求其基态能量.231. 取尝试波函数为Ce-ax , C为归一化常数,a是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数 C. 32. 设粒子在中心力场V(r)二-Ar n(n为整数)中运动,选R(r)=Nexp(-町为试探波函数,求其基态能量.进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用①二exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f为变分参数,求势场为V(x)=g2(x2-1)2/2的基态能量,其中g是个很大的常数.三、1.在无简并的微扰论中,证明 (0) nE (0) 匚n E⑴(0) n(1)\ n /E (0)E n⑴ nW -E (1)1— n(1)、\ n/nm2m nm (nxm)|/ , m 是粒子质量,求证:nm0 (在(xy )/b z /a(其他地方)1内),其中 a 探(1+2 卩3), b^R(1- 03),且2. 一维运动的体系,定义从|m >态跃迁到|n >态相应的振子强度为3. 设体系在t=0时处于基态|0>,若长时间加上微扰V?(x, t) F(x)exp(-t/ ),证明该体系处于另一能量本征态|1>的概率为(E i -E o )2~~亍四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒 的质量为M.在棒的两端分别有电荷+Q 和-Q. (1)写出体系的哈密顿量、本征函数和本征值;⑵ 如果在转动平面内存在一电场强度为 E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?⑶如果这个电场很强,求基态的近似波函数和相应的能量值 .2.对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是V 0(r R).相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是〈n 爭〈n 爭E (?)E ⑴np<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核这里C、a是复数,(x)0 (x 0)1 (x 0)基态能量的变化•(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H o+H'描述,其中H' = i兀A,H°]是一个加在非微扰哈密顿量H o上的微扰,A是个厄米算符,入是个实数. 设B是另一个厄米算子,而且C=i[B,A].(1)已知A、B、C在无微扰(非简并)基态的平均值为<A>o、<B>o、<C>o•当微扰加入时,求B在微扰后的基态上的平均值至入的第一级;_ 3p2 1⑵ 将这个结果用到如下三维问题上:H o 匹丄m 2x2 , H' X3.i i 2m 2计算X i在基态的平均值<X i>(i=1,2,3)至入的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z轴方向.电场沿z轴方向,可视为均匀电场.设电容器突然充电,然后放电,电场随时间的变化是⑴°t/(t o )(为常数).求时间充o e-t/(t o)分长后,氢原子跃迁到2s态和2p态的概率.5. 考虑势U=g|x|的能级.(1)用量纲分析,推导本征值和参数(质量m、?、g)的关系;⑵用尝试波函数忙C q x+a) &a-x)(1-|x|/a)对基态能量作变分计算⑶为什么忙c q x+c)q a-x)不是一个好的尝试波函数?(4)如果要求第一激发态能量,你将如何处理?6. 一个质量为m的粒子在汤川势U(r)=-洽口斤中运动,用变分法,取尝试波函数©= e-ar,问入的临界值加等于多少时,能使得 e 无束缚态,> b有束缚态?7. 介子一般可看成夸克和反夸克(q可的束缚态.考虑S态介子,设夸克质量为mq,束缚q和q的势U=A/叶Br , A<0 , B>0.(1) 选用类似于氢原子基态波函数的©= e-r/a作为尝试波函数,用变分法求基态能量(在用变分法决定a的方程中,可近似取A = 0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。
第一章量子力学基础
(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V
第一章 量子力学基础课后习题
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳070601341林丽云 070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第一章 量子论基础(苏汝铿量子力学课件打印版)
第一章 量子论基础 量子力学
复旦大学 苏汝铿
普朗克 MAX PLANCK (1858-1947)
德布罗意 LOUIS DE BROGLIE (1892-1987)
薛定谔 ERWIN SCHRODINGER (1887-1961)
海森堡 WERNER HEISENBERG (1901-1976)
例如:一个由绝热壁围成的开有一个小孔的空 腔可近似视为黑体
§1.1 经典物理学的困难
§1.1 经典物理学的困难
• Stefan-Boltzmann定律 u = σT4
2015/5/1
§1.1 经典物理学的困难
物理解释 • Wien公式 • Rayleigh-Jeans公式 • 紫外灾难
§1.1 经典物理学的困难
§1.3 Bohr量子论
仍有许多困难存在 • • • • 不能给出谱线强度 不能解释精细结构 只能讨论束缚态,不能讨论散射态 E不连续原因来自角动量量子化,不能揭露量 子化的本质
§1.4 波粒两相性和de Broglie波
光的波粒二象性 • 杨氏双缝实验 I <> I1 + I2 + 下图 波粒二象性
§1.1 经典物理学的困难
§1.1 经典物理学的困难
• 满足Wien位移
2015/5/1
§1.1 经典物理学的困难
§1.1 经典物理学的困难
§1.1 经典物理学的困难
• 可解释Stefan-Boltzmann定律
§1.1 经典物理学的困难
§1.1 经典物理学的困难
§1.1 经典物理学的困难
• 两种特殊情况 (a)高温区 kT>>hν Planck R-J Formulae
第一章-量子论基础
第一章-量子论基础第五章 近似方法一、概念与名词解释1. 斯塔克效应2. 跃迁概率3. 费米黄金规则4. 选择定则二、计算1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正.2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正.3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正.4. 设哈密顿量在能量表象中的矩阵是 ,a E b b a E 0201⎪⎪⎭⎫ ⎝⎛++a 、b 是实数. (1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较.5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202*b *a b 01a 01>⎪⎪⎪⎪⎭⎫ ⎝⎛λλλλ, (1) 用简并微扰方法求能量至二级修正;(2) 求能量的准确值,并与(1)的结果比较.6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级修正.7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为, 1/2)a (a Hˆ0ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ˆ的作用,求体系的能级到二级近似. 已知升与降算符对0Hˆ的本征态|n>的作用为. 1n n n a ; 1n 1n n a -=++=+9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy.若λ<<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 , bz axy H'2+=求第一激发态的一级能量修正.13. 一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<λ=a)x (a/2 x/a)-2x(1a/2)x (0 x/a 2H'作用,求基态能量的一级修正. 14. 处于一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<<<=2a/3)x (a/3 V -a)x a/3,2a/3x (0 0H'1的作用,计算基态能量的一级修正. 15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰23. 求氢原子n=3,简并度n 2=9时的斯塔克效应.24. 设在t=0时,电荷为e 的线性谐振子处于基态. 在t>0时起,附加一与谐振子振动方向相同的恒定外电场ε,求其处在任意态的概率.25. 一个自旋为ħ/2,磁矩为sˆg ˆ =μ的粒子处于如下弱旋转磁场中 , k B j t)sin(B i t)cos(B B 00 +ω+ω=粒子与磁场的作用为 .B s ˆg⋅-若粒子开始处于s z = ħ/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)= -g 2/r 3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以)exp(-cr (r)2=φ为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为 , x /2p ˆH ˆ42x λ+μ=以/2)x exp(-a a/(x)22π=φ为试探波函数,a 为变分参数,求其基态能量.31. 取尝试波函数为 ,Ce 2-ax C 为归一化常数,a 是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数C.32. 设粒子在中心力场V(r)= -Ar n (n 为整数)中运动,选R(r)=Nexp(-βr)为试探波函数,求其基态能量. 进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用Φ=exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f 为变分参数,求势场为V(x)=g 2(x 2-1)2/2的基态能量,其中g 是个很大的常数.三、证明1. 在无简并的微扰论中,证明(1)n(1)n (1)n (3)n (2)n(1)n (0)n (1)n (0)n (0)n (1)n(0)n (0)n (0)n E -W ˆE E E E H ˆE E H ˆφφ=++=φ+φφ+=φφ 2. 一维运动的体系,定义从|m>态跃迁到|n>态相应的振子强度为, /m x n 2m f 2nm nm ω= m 是粒子质量,求证:∑=n nm 1f3. 设体系在t=0时处于基态|0>,若长时间加上微扰),(x)exp(-t/F ˆt)(x,W ˆτ=证明该体系处于另一能量本征态|1>的概率为222012/)E -(E 1F ˆ0τ+四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为M. 在棒的两端分别有电荷+Q 和-Q.(1) 写出体系的哈密顿量、本征函数和本征值;(2) 如果在转动平面内存在一电场强度为E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?(3) 如果这个电场很强,求基态的近似波函数和相应的能量值.2. 对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是. R)(r R)(r 0V ⎩⎨⎧≥∞<=相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是)1/a z )/b y (x ( 0V 22222el ,(其他地方)内在⎩⎨⎧∞=++=其中a ≈R(1+2β/3), b ≈R(1-β/3),且β<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核基态能量的变化.(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H 0+H'描述,其中H'=i λ[A,H 0]是一个加在非微扰哈密顿量H 0上的微扰,A 是个厄米算符,λ是个实数.设B 是另一个厄米算子,而且C=i[B,A].(1) 已知A 、B 、C 在无微扰(非简并)基态的平均值为<A>0、<B>0、<C>0.当微扰加入时,求B 在微扰后的基态上的平均值至λ的第一级;(2) 将这个结果用到如下三维问题上:.x H',x m 212m p H 331i 2i 22i 0λ=⎪⎪⎭⎫ ⎝⎛ω+=∑=计算x i 在基态的平均值<x i >(i=1,2,3)至λ的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向. 电场沿z 轴方向,可视为均匀电场. 设电容器突然充电,然后放电,电场随时间的变化是).( 0)(t e 0)(t 0(t)t/-0为常数τ⎩⎨⎧>ε<=ετ求时间充分长后,氢原子跃迁到2s 态和2p 态的概率.5. 考虑势U=g|x|的能级.(1) 用量纲分析,推导本征值和参数(质量m 、ħ、g)的关系;(2) 用尝试波函数φ=C θ(x+a) θ(a-x)(1-|x|/a)对基态能量作变分计算;0)(x 10)(x 0(x)这里C、a是复数⎪⎪⎭⎫ ⎝⎛⎩⎨⎧><=θ, (3) 为什么φ=C θ(x+C) θ(a-x)不是一个好的尝试波函数?(4) 如果要求第一激发态能量,你将如何处理?6. 一个质量为m 的粒子在汤川势U(r)= -λe -μr /r 中运动,用变分法,取尝试波函数φ=e -ar ,问λ的临界值λ0等于多少时,能使得λ<λ0无束缚态,λ>λ0有束缚态?7. 介子一般可看成夸克和反夸克)q (q 的束缚态. 考虑s 态介子,设夸克质量为mq ,束缚q q 和的势U=A/r+Br ,A<0,B>0.(1) 选用类似于氢原子基态波函数的φ=e -r/a 作为尝试波函数,用变分法求基态能量(在用变分法决定a 的方程中,可近似取A =0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。
量子论基础
量子论基础第一章量子论基础一、填空1.经典物理学不能解释:___、___、___、 ___ 和___等问题。
2.1900年,为解决黑体辐射的困难,普朗克提出了____的概念,导出了以他名字命名的普朗克公式____;1905年,普朗克的量子化概念被爱因斯坦进一步推广,得到了光子的动量和波矢量的关系式____。
这两个关系式合称为普朗克-爱因斯坦关系式。
3.利用普朗克-爱因斯坦关系式,可以解释____、____和____实验结果。
二、概念与名词解释1.黑体辐射2.玻尔的量子论3.光的波粒二象性4.德布罗意关系5.杜隆-珀蒂定律三、计算1.设一电子为电势差V 所加速,最后打在靶子上.若电子的动能转化为一个光子,求当这个光子相应的光波波长分别为500nm (可见光)、0.1nm (X 射线)以及0.0001nm (γ射线)时,加速电子所需的电势差是多少?2.求下列各粒子的德布罗意波的波长:(1)能量为0.1eV ,质量为1g 的质点;(2)T=1K 时,具有动能E=3kT/2(k 为玻耳兹曼常数)的氦原子;(3)速度为500m/s ,质量为20g 的子弹.3.利用玻尔量子化条件求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子的可能轨道半径.4.设箱的长宽高分别为a 、b 、c ,用玻尔量子化条件求箱内运动粒子的能量。
5.利用玻尔量子化条件求转动惯量为I 的平面转子的能量.6.由p=mv 及220/c v -1/m m =出发,利用,导出相对论粒子德布罗意波长与动能的关系。
m 202c m -mc T =0为该粒子的静止质量。
7.一个德布罗意波在k 空间的表示/4)k -(k a -202e )(2a C(k)π=,求:(1)ψ(x,t)和|ψ(x,t)|2,在时刻t 这是否是个高斯波包?(2)波包的宽度?(x,t);(3)∫+∞∞?ψdx t)(x,2是否依赖于t? 8.两个光子在一定条件下可以转化为正负电子对. 如果两光子的能量相等, 问要实现这种转化, 光子的波长最大是多少?9.当自由电子与中子的德布罗意波长均为10-10m 时,求它们各自具有的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 近似方法一、概念与名词解释1. 斯塔克效应2. 跃迁概率3. 费米黄金规则4. 选择定则二、计算1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正.2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正.3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正.4. 设哈密顿量在能量表象中的矩阵是 ,a E b b a E 0201⎪⎪⎭⎫ ⎝⎛++a 、b 是实数.(1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较.5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202*b *a b 01a 01>⎪⎪⎪⎪⎭⎫ ⎝⎛λλλλ, (1) 用简并微扰方法求能量至二级修正;(2) 求能量的准确值,并与(1)的结果比较.6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级修正.7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为, 1/2)a (a Hˆ0ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ˆ的作用,求体系的能级到二级近似. 已知升与降算符对0Hˆ的本征态|n>的作用为. 1n n n a ; 1n 1n n a -=++=+9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy. 若λ<<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 , bz axy H'2+=求第一激发态的一级能量修正.13. 一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<λ=a)x (a/2 x/a)-2x(1a/2)x (0 x/a 2H'作用,求基态能量的一级修正. 14. 处于一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<<<=2a/3)x (a/3 V -a)x a/3,2a/3x (0 0H'1的作用,计算基态能量的一级修正. 15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰⎩⎨⎧<<<<=a)x (a/2 b a/2)x (0 b H'+-作用,求波函数至一级修正. 16. 一个粒子处在二维无限深势阱⎩⎨⎧∞<<=)(a)y x,(0 0y)V(x,其他中运动,现加上微扰 a),y x,xy(0H'≤≤λ=求基态能量和第一激发态的能量修正值.17. 粒子在如下势阱中运动, a)x 0,(xa)x (0 a x/a)/80sin(V(x)222⎩⎨⎧><∞≤≤μππ= -求其基态能量的一级近似.18. 粒子处于如下势阱中, a)X 0,(x a)x (a/2 a /80a/2)x (00V(x)222⎪⎩⎪⎨⎧><∞≤≤μπ<<= 求其能级的一级近似值.19. 自旋为ħ/2的粒子处于一维无限深方势阱(0<x<a)中,若其受到微扰⎩⎨⎧><≤≤πλ=a)x 0,(x0a)x (0 s ˆx/a)cos(2H'y 的作用,求基态能量至一级修正,其中λ为一小量.20. 两个自旋为ħ/2,固有磁矩算符分别为2211ˆˆˆˆσβ=μσα=μ和的粒子,处于均匀磁场k B B 0 =中,若粒子间的相互作用21ˆˆσ⋅σγ 可视为微扰,求体系能量的二级近似,其中α、β、γ为实常数.21. 类氢原子中,电子与原子核的库仑作用为U(r)=-Ze 2/r ,当核电荷增加e(从Z →Z+1),相互作用增加/r -e H'2=,试用微扰论求能量的一级修正并与严格解比较.22. 设氢原子处于均匀的弱电场k 0 ε=ε和弱磁场k B B 0 =中,不考虑自旋效应,用微扰论讨论其n=2的能级劈裂情况.23. 求氢原子n=3,简并度n 2=9时的斯塔克效应.24. 设在t=0时,电荷为e 的线性谐振子处于基态. 在t>0时起,附加一与谐振子振动方向相同的恒定外电场ε,求其处在任意态的概率.25. 一个自旋为ħ/2,磁矩为sˆg ˆ =μ的粒子处于如下弱旋转磁场中 , k B j t)sin(B i t)cos(B B 00 +ω+ω=粒子与磁场的作用为 .B s ˆg ⋅-若粒子开始处于s z = ħ/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)= -g 2/r 3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以)exp(-cr (r)2=φ为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为 , x /2p ˆH ˆ42x λ+μ=以/2)x exp(-a a/(x)22π=φ为试探波函数,a 为变分参数,求其基态能量.31. 取尝试波函数为 ,Ce 2-ax C 为归一化常数,a 是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数C.32. 设粒子在中心力场V(r)= -Ar n (n 为整数)中运动,选R(r)=Nexp(-βr)为试探波函数,求其基态能量. 进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用Φ=exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f 为变分参数,求势场为V(x)=g 2(x 2-1)2/2的基态能量,其中g 是个很大的常数.三、证明1. 在无简并的微扰论中,证明(1)n(1)n (1)n (3)n (2)n (1)n (0)n (1)n (0)n (0)n (1)n(0)n (0)n (0)n E -W ˆE E E E H ˆE E H ˆφφ=++=φ+φφ+=φφ2. 一维运动的体系,定义从|m>态跃迁到|n>态相应的振子强度为, /m x n 2m f 2nm nm ω= m 是粒子质量,求证:∑=n nm 1f3. 设体系在t=0时处于基态|0>,若长时间加上微扰),(x)exp(-t/F ˆt)(x,W ˆτ=证明该体系处于另一能量本征态|1>的概率为222012/)E -(E 1Fˆ0τ+四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为M. 在棒的两端分别有电荷+Q 和-Q.(1) 写出体系的哈密顿量、本征函数和本征值;(2) 如果在转动平面内存在一电场强度为E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?(3) 如果这个电场很强,求基态的近似波函数和相应的能量值.2. 对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是. R)(r R)(r 0V ⎩⎨⎧≥∞<=相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是)1/a z )/b y (x ( 0V 22222el ,(其他地方)内在⎩⎨⎧∞=++=其中a ≈R(1+2β/3), b ≈R(1-β/3),且β<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核基态能量的变化.(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H 0+H'描述,其中H'=i λ[A,H 0]是一个加在非微扰哈密顿量H 0上的微扰,A 是个厄米算符,λ是个实数.设B 是另一个厄米算子,而且C=i[B,A].(1) 已知A 、B 、C 在无微扰(非简并)基态的平均值为<A>0、<B>0、<C>0.当微扰加入时,求B 在微扰后的基态上的平均值至λ的第一级;(2) 将这个结果用到如下三维问题上:.x H',x m 212m p H 331i 2i 22i 0λ=⎪⎪⎭⎫ ⎝⎛ω+=∑=计算x i 在基态的平均值<x i >(i=1,2,3)至λ的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向. 电场沿z 轴方向,可视为均匀电场. 设电容器突然充电,然后放电,电场随时间的变化是).( 0)(t e 0)(t0(t)t/-0为常数τ⎩⎨⎧>ε<=ετ求时间充分长后,氢原子跃迁到2s 态和2p 态的概率.5. 考虑势U=g|x|的能级.(1) 用量纲分析,推导本征值和参数(质量m 、ħ、g)的关系;(2) 用尝试波函数φ=C θ(x+a) θ(a-x)(1-|x|/a)对基态能量作变分计算;0)(x 10)(x 0(x)这里C、a是复数⎪⎪⎭⎫ ⎝⎛⎩⎨⎧><=θ, (3) 为什么φ=C θ(x+C) θ(a-x)不是一个好的尝试波函数?(4) 如果要求第一激发态能量,你将如何处理?6. 一个质量为m的粒子在汤川势U(r)= -λe-μr/r中运动,用变分法,取尝试波函数φ=e-ar,问λ的临界值λ0等于多少时,能使得λ<λ0无束缚态,λ>λ0有束缚态?7. 介子一般可看成夸克和反夸克)q(q的束缚态. 考虑s态介子,设夸克质量为mq,束缚qq和的势U=A/r+Br,A<0,B>0.(1) 选用类似于氢原子基态波函数的φ=e-r/a作为尝试波函数,用变分法求基态能量(在用变分法决定a的方程中,可近似取A=0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。