(完整版)线性代数试卷及答案详解

合集下载

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。

每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。

2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

线性代数试题及答案

线性代数试题及答案

线性代数习题和答案好东西第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内.错选或未选均无分。

1.设行列式=m,=n,则行列式等于()A. m+nB. -(m+n)C. n-mD. m—n2。

设矩阵A=,则A—1等于( )A. B。

C。

D.3。

设矩阵A=,A*是A的伴随矩阵,则A*中位于(1,2)的元素是( )A. –6B. 6C. 2 D。

–24。

设A是方阵,如有矩阵关系式AB=AC,则必有()A。

A =0 B. BC时A=0C. A0时B=CD. |A|0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A。

1 B。

2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。

有不全为0的数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-β)=0sD.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsα=0和μ1β1+μ2β2+…+μsβs=0s7.设矩阵A的秩为r,则A中()A.所有r—1阶子式都不为0 B。

所有r—1阶子式全为0C。

至少有一个r阶子式不等于0 D。

所有r阶子式都不为08。

设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解 B.η1+η2是Ax=b的一个解C。

η1—η2是Ax=0的一个解D。

2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数习题及解答完整版

线性代数习题及解答完整版

线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数习题和答案第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A の伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ+λ2β2+…λsβs=01β1B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为( ) A.2334⎛⎝⎫⎭⎪B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的n m A ⨯0=Ax )(A A T(A) 充分条件; (B) 必要条件; (C) 充要条件;(D) 无关条件。

2.已知为四维列向量组,且行列式 ,32121,,,,αααββ4,,,1321-==βαααA ,则行列式1,,,2321-==βαααB =+B A (A) ;(B) ;(C) ;(D) 。

4016-3-40-3.设向量组线性无关,且可由向量组线s ααα,,, 21)2(≥s s βββ,,, 21性表示,则以下结论中不能成立的是(A) 向量组线性无关;s βββ,,, 21(B) 对任一个,向量组线性相关;j αs j ββα,,, 2(C) 存在一个,向量组线性无关;j αs j ββα,,, 2(D) 向量组与向量组等价。

s ααα,,, 21s βββ,,, 214.对于元齐次线性方程组,以下命题中,正确的是n 0=Ax (A) 若的列向量组线性无关,则有非零解;A 0=Ax (B) 若的行向量组线性无关,则有非零解;A 0=Ax (C) 若的列向量组线性相关,则有非零解;A 0=Ax (D) 若的行向量组线性相关,则有非零解。

A 0=Ax 5.设为阶非奇异矩阵,为的伴随矩阵,则A n )2(>n *A A 题 号一二三总 分总分人复分人得 分得分评卷人√√(A) ;(B) ;A A A 11||)(-*-=A A A ||)(1=*-(C) ;(D) 。

111||)(--*-=A A A 11||)(-*-=A A A 二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。

3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

经济数学《线性代数》期末试卷五(含答案解析)

经济数学《线性代数》期末试卷五(含答案解析)

《线性代数》试卷五一.选择题(每题3分,共30分)1.已知多项式101111111111111x D ---=----,则D 中的一次项系数是( ).A.4B.1C.4-D.1-【解答】由于13x a =,故将D 按照首行展开可得:111314D A xA A =-++,即一次项系数是13x a =的代数余子式13A ,计算可知134A =-,故选C.2.设矩阵111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,212223111213311132123313a a a B a a a a a a a a a ⎛⎫⎪= ⎪ ⎪+++⎝⎭,另有矩阵12010100100, 010001101P P ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则必有( ) A.12AP P B = B.21AP P B = C.12P P A B =D.21P P A B =【解答】直接计算可知选C.事实上,本题考察了初等变换与矩阵乘法的关系:对矩阵进行初等行变换,等于在其左侧乘以相对应的初等矩阵.本题中,B 可视为由A 经过第一.三行的倍加变换,以及第一.二行的对换变换所得,故B 必等于在A 的左侧乘以相对应的初等矩阵12,P P .3.设A 为m n ⨯矩阵阵,B 为n m ⨯阶方阵,则( ).A. 当m n >时,必有行列式0AB ≠.B. 当m n >时,必有行列式0AB =.C. 当n m >时,必有行列式0AB ≠.D. 当n m >时,必有行列式0AB =. 【解答】显然当m n >时,由于A 与B 的秩均小于等于n ,故(),()r A r B m <,进而由“秩越乘越小”的性质,知()min{(),()}r AB r A r B m ≤<,此时必有行列式0AB =,故选B.4.设n 维列向量组12,,,r ααα与同维列向量组12,,,s βββ等价,则( )A.r s = B .1212(,,,)(,,,)r s r r αααβββ=C .两向量组有相同的线性相关性D .矩阵[]12,,,r ααα与矩阵 []12,,,s βββ等价【解答】向量组等价则必秩相等.故选B.5.已知A 为57⨯矩阵,且()5r A =,则A 的列向量组( )A. 线性相关B. 线性无关C. 线性关系无法判定D. 线性关系和行向量组相同【解答】A 的行秩与列秩显然均为5,由于A 的列向量组共7个向量,故必线性相关.6.设123,,ααα是四元非齐次线性方程组Ax b =的三个解向量,且()3R A =,()()T T1121,2,3,4,0,1,2,3=+=ααα,则线性方程组Ax b =的通解为( )A.11213141k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B.10213243k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C.12233445k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭D.13243546k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【解答】非齐次方程组Ax b =的通解必有形式:特解加上导出组基础解系的线性组合.由()3R A =可知导出组基础解系中仅含有1个向量,显然()()T 11222,3,4,5-+=ααα为导出组的非零解,故可作为基础解系.故选C.7.非齐次方程组Ax b =中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r , 则( ) A.r m =时,方程组Ax b =有解; B.r n =时,方程组Ax b =有唯一解; C.m n =时,方程组Ax b =有唯一解; D.r n <时,Ax b =有无穷解.【解答】当r m =时,易知增广矩阵亦为m 行,一方面其秩不超过m ,另一方面其秩不小于系数矩阵A 的秩r m =,故增广矩阵秩为r ,此时方程组有解,故选A.8.若A 与B 相似,则( )A.E A E B λλ-=-B.A B =C.对于其相同的特征值,对应的特征向量必亦相同D.A 与B 均相似于同一对角阵【解答】选项A 的反例:0110A ⎛⎫= ⎪⎝⎭,1001B ⎛⎫= ⎪-⎝⎭.令1111P ⎛⎫= ⎪-⎝⎭,则1P AP B -=,于是A 与B 相似,但显然E A E B λλ-≠-.相似矩阵的行列式必相等,故选项B 正确.9.二次型222123123121323(,,)55266f x x x x x ax x x x x x x =++-+-的秩为2,则a =( ). A.0 B.1 C.2 D.3【解答】显然该二次型的矩阵51315333A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭秩为2,故计算可知3a =,故选D.10.二次型222123123121323(,,)44224f x x x x x x x x x x x x λ=+++-+为正定二次型,则λ的取值范围是( ).A.21λ-<<B.12λ<<C.32λ-<<-D.2λ>【解答】易知该二次型的矩阵为1142124A λλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭,由A 为正定矩阵知,其各阶顺序主子式都大于零,即10>,21404λλλ=->,且11424(2)(1)0124λλλλ-=-+->-,进而有22λ-<<,且21λ-<<,所以21λ-<<,应选A.二.填空题(每题3分,共18分)1.方程23111112301491827x x x =的全部根是 .【解答】由()()()()()()2311111232131321231491827x x x x x x =------()()()2123x x x =---,可知方程的全部根为1, 2, 3.2.设A 为n 阶矩阵)2(≥n ,*A 为A 的伴随矩阵,则当1)(-=n A R 时,=)(*A R .【解答】关于伴随矩阵的秩,我们由如下结果:*,()()1,()10,()1n R A n R A R A n R A n ⎧=⎪==-⎨⎪<-⎩当时当时当时,于是可知答案为1.3.设12,,,s γγγ为非齐次方程组Ax b =的一组解,且1122s s c c c γ+γ++γ亦为Ax b =的解,则12s c c c +++=【解答】事实上,由()()1122112212s s s s s A c c c c A c A c A c c c b b γ+γ++γ=γ+γ++γ=+++=可知121s c c c +++=。

线性代数(经管类)试题及答案解析(试卷+答案+解析) (1)

线性代数(经管类)试题及答案解析(试卷+答案+解析) (1)

全国2011年7月高等教育自学考试线性代数(经管类)试题(课程代码:04184)说明:本卷中,A T表示方阵A的转置钜阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 设101350041A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则TAA=()A. -49B. -7C. 7D. 492. 设A为3阶方阵,且4A=,则2A-=()A. -32B. -8C. 8D. 323. 设A,B为n阶方阵,且A T=-A,B T=B,则下列命题正确的是()A. (A+B)T=A+BB. (AB)T=-ABC. A2是对称矩阵D. B2+A是对称阵4. 设A,B,X,Y都是n阶方阵,则下面等式正确的是()A. 若A2=0,则A=0B. (AB)2=A2B2C. 若AX=AY,则X=YD. 若A+X=B,则X=B-A5. 设矩阵A =11310214000500⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( )A. 1B. 2C. 3D. 46. 若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k ≠( )A. -2B. -1C. 0D. 27. 实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( ) A. 0 B. 1 C. 2D. 38. 若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( ) A. 1 B. 2 C. 3 D. 49. 设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( )A. 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C. 10001102⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D. 10102001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10. 设实二次型2212323(,,)f x xx x x =-,则f ( )A. 正定B. 不定C. 负定D. 半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数试题及答案

线性代数试题及答案

线性代数试卷和答案分析学院:电力学院专业:热能与动力工程(水动)班级:学号:姓名:线性代数试卷第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.A ,B 都是n 阶矩阵,且AB =0,则必有( )(A) A =0或B =0 (B)|A|=|B|=0 (C)A =B =0 (D)|A|=0或|B|=02.100⎛⎫ A. C. 3.)A. 4.设 A. C. 5. 6. A.s βs =0B.s )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解 B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n -1 C.A=0 D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.n 维向量组a 1……a i (2<I<n )线性无关的充要条件是( ) (A(B (C) (D) 12.设 A.| C.A 13.设 A. B. C. D.14. A.⎛⎝C.⎛⎝ 15.设16.设17.18.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设a=(1,k,0), b=(0,1,k), c=(k,0,1) .如果向量a ,b, c 线性无关,则实数k 的取值范围是 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A=01061332108---⎛⎝⎫⎭⎪⎪⎪,已知α=212-⎛⎝⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为.24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为.三、计算题(本大题共7小题,每小题6分,共42分)25.设A=120340121-⎛⎝⎫⎭⎪⎪⎪,B=22341--⎛⎝⎫⎭⎪.求(1)AB T;(2)|4A|.26.27.28.29.30.AT=D.31.四、证明题(本大题共2小题,每小题5分,共10分)32.设方阵A满足A3=0,试证明E-A可逆,且(E-A)-1=E+A+A2.33.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明(1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b的解;(2)η0,η1,η2线性无关。

线性代数考试题及答案考研

线性代数考试题及答案考研

线性代数考试题及答案考研一、选择题1. 设矩阵A的秩为1,矩阵B与矩阵A相抵消,那么矩阵B的秩为:- A. 0- B. 1- C. 2- D. 不确定2. 若矩阵A可逆,且AB=0,则:- A. A可逆,B不可逆- B. B可逆,A不可逆- C. A和B都可逆- D. A和B都不可逆二、填空题1. 若向量组\[a_1, a_2, a_3\]线性相关,则至少存在不全为零的实数\[c_1, c_2, c_3\],使得\[c_1a_1 + c_2a_2 + c_3a_3 =\_\_\_\_\_\_。

2. 设矩阵\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵\[A\]的特征值是\_\_\_\_\_\_。

三、解答题1. 已知矩阵\[B = \begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求矩阵\[B\]的逆矩阵。

2. 设\[x\]是\[3 \times 1\]的列向量,\[A\]是\[3 \times 3\]的矩阵,若\[Ax = 0\],证明\[x\]是矩阵\[A\]的零空间的基。

答案一、选择题1. 正确答案:A. 0解析:若矩阵B与矩阵A相抵消,则B的列向量是A的行向量的线性组合,因此B的秩小于等于A的秩。

由于A的秩为1,所以B的秩为0。

2. 正确答案:D. A和B都不可逆解析:若AB=0,则A和B至少有一个是不可逆的。

因为如果A可逆,则AB=I,这与AB=0矛盾。

同理,如果B可逆,则AB=I,也与AB=0矛盾。

二、填空题1. 正确答案:0解析:线性相关意味着存在不全为零的系数使得向量和为零向量。

2. 正确答案:2, -1解析:通过计算特征多项式\[|A - λI| = 0\],解得特征值为2和-1。

三、解答题1. 解:矩阵B的逆矩阵计算如下:\[B^{-1} = \frac{1}{\det(B)} \cdot \text{adj}(B)\]其中,\[\det(B) = 2 \cdot 2 - 1 \cdot 4 = 0\],因此矩阵B 不可逆,没有逆矩阵。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。

因此,|A^(-1)| = 1/|A| = 1/2。

2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。

将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。

二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。

答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。

4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。

答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。

三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。

答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。

6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。

答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。

但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。

四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数A 》试题(A 卷)
试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:
3的一组标准正交基,=___________
《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)
二、填空题(每小题3分,共18分)
1、 256;
2、 132465798⎛⎫ ⎪
--- ⎪ ⎪⎝⎭; 3、112
2
112
21122
000⎛⎫
⎪- ⎪ ⎪-⎝⎭
; 4、
; 5、 4; 6、 2 。

三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:
2312112
01012
010*******
12101
141103311033102321102721
002781
002780
11410
101440
10144001103001103001103---⎛⎫⎛⎫⎛⎫



-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝
⎭⎝
⎭⎝
⎭-⎛⎫⎛⎫⎛⎫



−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
―――――(6分)
所以1
278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭
.―――――(8分)
四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:
12345111
4
3111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫
⎪ ⎪
----- ⎪ ⎪
=
→ ⎪ ⎪
--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭
11
1
431
2
12011310
1131000000
0000000000
0000--⎛⎫⎛⎫


---- ⎪ ⎪
→→
⎪ ⎪
⎪ ⎪
⎪ ⎪⎝
⎭⎝⎭――――(5分)
从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩
12345{,,,,}ααααα=2(8分)
且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:
22
1121121
1211101130
11311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝
⎭⎝⎭⎝

-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭
(分)
(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵
与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无
解.――――(6分)
(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为
11
221122112212110333011121110333000010110
11180000------⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪
⎪ ⎪ ⎪---⎝
⎭⎝⎭⎝⎭--⎛⎫

−−→------ ⎪ ⎪⎝⎭
(分)
故原方程组与下列方程组同解:
1
323
11x x x x -=-⎧⎨
-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)T
ξ=--;
它对应的齐次线性方程组13230
x x x x -=⎧⎨
-=⎩的基础解系含有一个元素,令
31,x =可得
1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基
础解系.
此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)



:(
1



A
的特征多项式
21
24
||2
2
2(3)(6)4
2
1
I A λλλλλλ----=-+-=+----
故A 的特征值为13λ=-(二重特征值),36λ=。

――――(3分)
当13λ=-时,由1()I A X O λ-=,即:123424*********x x x ---⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥---=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦
得基础解系为12[1,2,0],[1,0,1]T T
αα=-=-,故属于特征值13λ=-的所有
特征向量为1122k k αα+,12,k k 不全为零的任意常数。

――――(6分)
当36λ=时,由3()I A X O λ-=,即:123524028204250x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦
得基
础解系为3[2,1,2]T
α=,故属于特征值2 6λ=的所有特征向量为33k α,3k
为非零的任意常数。

------(8分) (2)

12
,αα正交化可得:
211122111,42
[1,2,0],
[,,1],55
T T
αββαβαβββ<>==-=-
=--<>。

再将其
单位化


121212,
5515153T
T
ββηηββ⎡⎤⎡==-==--⎢⎥⎢⎣⎦
⎣⎦
将3α单位化得:3212,,333T
η⎡⎤
=⎢⎥⎣⎦。

――――(12分)
则123,,ηηη是A 的一组单位正交的特征向量,令
[
]23
1123323,,0T ηηη⎡⎤
⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦
则T 是一个正交矩阵,且1
336T AT --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。

――――(14分) 七.证明:(1) 因为()()T T T T T T A A A A A A +=+=+, 因此T A A +为
对称矩阵。

――――(2分) 同理,因为
()()()
T T T T T T T A A A A A A A A -=-=-=--,因此
T A A -为反对称矩阵。

――――(4分)
(2) 因为11
()(),22
T T A A A A A =
++-――――(6分) 而由(1) 知1()2T A A +为对称矩阵, 1()2
T
A A -为反对称矩阵,因此任何
矩阵A 都可以表示为一个对称矩阵和一个反对称矩阵之和。

――――(8
分)。

相关文档
最新文档