椭圆的简单几何性质(一)(教案)
高中数学选修1-1《椭圆的简单几何性质》教案
⾼中数学选修1-1《椭圆的简单⼏何性质》教案课题:椭圆的简单⼏何性质(第⼀课时)⼀、教学⽬标:1、知识与技能(1)探究椭圆的简单⼏何性质,初步学习利⽤⽅程研究曲线性质的⽅法;(2)掌握椭圆的简单⼏何性质,理解椭圆⽅程与椭圆曲线间互逆推导的逻辑关系及利⽤数形结合思想⽅法解决实际问题。
2、过程与⽅法(1)通过椭圆的⽅程研究椭圆的简单⼏何性质,使学⽣经历知识产⽣与形成的过程,培养学⽣观察、分析、逻辑推理,理性思维的能⼒。
(2)通过掌握椭圆的简单⼏何性质及应⽤过程,培养学⽣对研究⽅法的思想渗透及运⽤数形结合思想解决问题的能⼒。
3、情感、态度与价值观通过数与形的辩证统⼀,对学⽣进⾏辩证唯物主义教育,通过对椭圆对称美的感受,激发学⽣对美好事物的追求。
⼆、教学重难点:1、教学重点:椭圆的简单⼏何性质及其探究过程2、教学难点:利⽤曲线⽅程研究曲线⼏何性质的基本⽅法和离⼼率定义的给出过程。
三、教学⽅法:本节课以启发式教学为主,综合运⽤演⽰法、讲授法、讨论法、有指导的发现法及练习法等教学⽅法。
先通过多媒体动画演⽰,创设问题情境;在椭圆简单⼏何性质的教学过程中,通过多媒体演⽰,有指导的发现问题,然后进⾏讨论、探究、总结、运⽤,最后通过练习加以巩固提⾼。
四、教学过程:(⼀)创设情景,揭⽰课题多媒体展⽰:模拟“嫦娥⼀号”升空,进⼊轨道运⾏的动画. 解说:2007年10⽉24⽇,随着中国⾃主研制的第⼀个⽉球探测器——嫦娥⼀号卫星飞向太空,⾃强不息的中国航天⼈,⼜将把中华民族的崭新⾼度镌刻在太空中。
绕⽉探测,中国航天的第三个⾥程碑。
它标志着,在实现⼈造地球卫星飞⾏和载⼈航天之后,中国航天⼜向深空探测迈出了第⼀步。
“嫦娥⼀号”卫星发射后⾸先将被送⼊⼀个椭圆形地球同步轨道,这⼀轨道离地⾯最近距离为200公⾥,最远为5.1万公⾥,,⽽我们地球的半径R=6371km.根据这些条件,我们能否求出其轨迹⽅程呢?要想解决这个问题,我们就⼀起来学习“椭圆的简单⼏何性质”。
椭圆的简单几何性质 精品教案
椭圆的简单几何性质第四课时(一)教学目标1.能推导并掌握椭圆的焦半径公式,能利用焦半径公式解决有关与焦点距离有关的问题.2.能利用椭圆的有关知识解决实际应用问题.3.能综合利用椭圆的有关知识,解决最值问题及参数的取值范围问题. (二)教学过程 【复习引入】1.利用投影仪显示椭圆的定义,标准方程及其几何性质(见第二课时). 2.求椭圆上到焦点距离的最大值与最小值. 【探索研究】为研究上述问题,可先解决例1,教师出示问题.例 1 求证:椭圆12222=+by a x ()0>>b a 上任一点()00y x P ,与焦点所连两条线段的长分别为0ex a ±.分析:由距离公式和椭圆定义可以有两种证法,先由一位学生演板,教师最后予以补充.证法一:设椭圆的左、右焦点分别为()01,c F -.()02,c F ,则 ()()2222202201a x a b c x y c x PF -⋅++=++= 2020222a cx x ac ++= 0x ac a += ∵a x a ≤≤-0, ∴00>-≥+c a x aca . ∴01ex a PF +=. 又a PF PF 221=+,∴()0022ex a ex a a PF -=+-= 故得证.证法二:设P 到左右准线的距离分别为1d ,2d ,由椭圆的第二定义有e d PF =11,又c a x c a x d 20201+=⎪⎪⎭⎫ ⎝⎛--=,∴02011ex a c a x a c ed PF +=⎪⎪⎭⎫⎝⎛+==. 又a PF PF 221=+,∴022ex a PF -=. 故得证.说明:1PF 、2PF 叫做椭圆的焦半径.利用焦半径公式在椭圆的有关计算、证明中,能大大简化相应的计算.至此可解决开始提出的问题.∵01ex a PF +=,a x a ≤≤-0, ∴c a a a c a PF +=⋅+≤1,()c a a aca PF -=-+≥1. ∴c a PF c a +≤≤-1.即椭圆上焦点的距离最大值为c a +,最小值为c a -,最大值与最小值点即是椭圆长轴上的顶点.例2 如图,我国发射的第一颗人造地球卫星的运行轨道是以地心(地球中心)2F 为一个焦点的椭圆.已知它们近地点A (离地面最近的点)距地面439km ,远地点B (离地面最)距地面2384km ,并且2F 、A 、B 在同一条直线上,地球半径约6371km ,求卫星运行的轨道方程(精确到1km ).分析:这是一个介绍椭圆在航天领域应用的例子,关键是理解近地点和远地点与椭圆的关系.由于数字大,计算较繁,可教师讲解.解:如图,建立直角坐标系,使点A 、B 、2F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的方程为12222=+by a x ()0>>b a则6810439637122=+==-=-A F OF OA c a87552384637122=+==-=+B F OF OB c a解得5.7782=a 5.972=c ∴()()77228755681022≈⨯=-+=-=c a ca c ab .因此,卫星的轨道方程是1772277832222=+y x . 点评:由例1可知椭圆上到焦点的距离的最大和最小的点,恰是椭圆长轴的两个端点,因而可知所有卫星的近地点、远地点、及轨道的焦点都在同一直线上.例3 已知点P 在圆()1422=-+y x C :上移动,点Q 在椭圆1422=+y x 上移动,求PQ 的最大值.分析:要求PQ 的最大值,只要考虑圆心到椭圆上的点的距离,而椭圆上的点是有范围的.可在教师指导下学生完成,解答如下:设椭圆上一点()y x Q ,,又()40,C ,于是 ()()()222224144-+-=-+=y y y x QC20832++-=y y3763432+⎪⎭⎫ ⎝⎛+-=y .而11≤≤-y∴当1-=y 时,QC 有最大值5. 故PQ 的最大值为6.点评:椭圆中的最值问题常转化为二次函数在闭区间上的最值问题.例4 已知椭圆12222=+by a x ()0>>b a 与x 轴的正半轴交于点A ,O 是原点.若椭圆上存在一点M ,使MO MA ⊥,求椭圆离心率e 的取值范围.分析:依题意M 点的横坐标a x <<0,找到x 与a 、b 的关系式.教师讲解为好.解:设M 的坐标为()y x ,,由OM AM ⊥,有22222⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x于是下面方程组的解为M 的坐标⎪⎩⎪⎨⎧=+=+-.022222222b a y a x b y ax x 消去y 整理得()0223222=+-+b a x a x b a.解得a x = 或 22c ab x =.a x =即为椭圆的右顶点∴ a cab <<220 即22c b <.即22>e ,而1<e , 故122<<e . (三)随堂练习1.如图在AFB ∆中,150=∠AFB ,32-=∆AFB S ,则以F 为焦点,A 、B 分别是长、短轴端点的椭圆方程是______________.2.设椭圆12922=+y x 上动点()y x P ,到定点()0,a A ()30<<a 的距离AP 最小值为1,求a 的值.答案:1.12822=+y x 2.2=a (四)总结提炼椭圆的焦半径是椭圆的基础问题,在解题中有其独特的作用,椭圆的范围在解决椭圆的元素的范围及与其有关的最大值(最小值)问题时是很有效的方法.(五)布置作业1.椭圆短半轴的长为1,离心率的最大值是23,则长半轴长的取值范围是___________. 2.若椭圆两焦点为()041,-F ,()042,F ,P 在椭圆上,且21F PF ∆的最大面积是12,则椭圆方程是_______________.3.已知F 是椭圆222222ba y a xb =+()0>>b a 的一个焦点,PQ 是过其中心的一条弦,记22b a c -=,则PQF ∆面积的最大值是( )A .ab 21B .abC .acD .bc 4.已知()00y x M ,是椭圆1162522=+y x 上的任意一点,以过M 的一条焦半径为直径作圆1O ,以椭圆长轴为直径作圆2O ,则圆1O 与圆2O 的位置关系是( )A .内切B .内含C .相交D .相离5.设P 是椭圆12222=+by a x ()0>>b a 上的任一点,求P 点到椭圆两焦点1F 、2F 距离之积的最大值与最大值,并求取得最大值与最小值时P 点的坐标.6.设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆方程,并求椭圆上到点P 的距离等于7的点的坐标.答案:1.(]21,2.192522=+y x 3.D 4.A 5.设()00y x P ,则01ex a PF +=,02ex a PF -=()()20220021x e a ex a ex a PF PF -=-+=⋅ ∵a x a ≤≤-0 ∴2200a x ≤≤当00=x 即()b P ,0或()b -,0时,21PF PF ⋅最大,最大值为2a .当220a x =即()0,a P 或()0,a -时,21PF PF ⋅最小,最小值为222b c a =-.6.设所求椭圆方程是12222=+by a x ()0>>b a依题意可得342132322222++⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-+=b y y x d ,其中b y b ≤≤-如果210<<b ,则当b y -=时,2d 有最大值,即()22237⎪⎭⎫ ⎝⎛+=b .由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d 有最大值,即()34722+=b.由此得1=b ,2=a ,故所求椭圆方程为1422=+y x . 由21-=y 代入椭圆方程得点⎪⎭⎫ ⎝⎛--213,和⎪⎭⎫ ⎝⎛-213,到点P 的距离都是7.注:本题也可设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,πθ20<≤,利用三角函数求解.。
椭圆的简单几何性质优秀教学设计
椭圆的简单几何性质第三课时(一)教学目标1.能利用椭圆中的基本量、、、熟练地求椭圆的标准方程.a b c e 2.掌握椭圆的参数方程,会用参数方程解一些简单的问题.(二)教学过程【复习引入】由一位学生回答,教师板书列表或用投影仪给出.问题1.椭圆有哪些几何性质?问题2.确定椭圆的标准方程需要几个条件?通过对椭圆标准方程的讨论,研究了椭圆的几何性质,必须掌握标准方程中、和a b 、的几何意义以及、、、之间的相互关系,这样就可以由椭圆的几何性质确定c e a b c e 它的标准方程.【例题分析】例1 求中心在原点,过点,一条准线方程为的椭圆方程.⎪⎪⎭⎫ ⎝⎛231,P 043=-x 分析:根据准线方程可知椭圆的焦点在轴上,由于思路不同有两种不同的解法,可x 让学生练习后,教师再归纳小结,解法如下:解法一:设椭圆方程为.()0222222>>=+b a b a y a x b ∵点在椭圆上⎪⎪⎭⎫ ⎝⎛231,P ∴ 即 ①222243b a a b =+()143222-=a a b 又∵一条准线方程是043=-x ∴ ②342=c a 243a c =将①、②代入,得222c b a += 整理得()4222163143a a a a +-=02819324=+-a a 解得或.42=a 372=a 分别代入①得或.12=b 16212=b故所求椭圆方程为或.1422=+y x 121167322=+y x 解法二:设椭圆的右焦点为,点到椭圆右准线的距离为,由椭圆的第二定()0,c F Pd 义得,即a c d PF=. ①()a c c =-⎪⎪⎭⎫ ⎝⎛+-13423122又由准线方程为342==c a x . ②c a c 4322=将②代入①,整理得021319122=+-c c 解得或.3=c 347=c 代入②及得222c b a += 或 ⎪⎩⎪⎨⎧==1422b a ⎪⎪⎩⎪⎪⎨⎧==16213722b a 故所求椭圆的方程为 或 .1422=+y x 121167322=+y x 例2 如图,以原点心圆心,分别以、a b为半径作两个圆,点是大圆半径与()0>>b a B OA 小圆的交点,过点作,垂足为,过点A Ox AN ⊥N 作,垂足为,求当半径绕点B AN BM ⊥M OA O旋转时点的轨迹的参数方程.M 解:设点的坐标为,是以为始M ()y x ,ϕOx 边,为终边的正角.OA取为参数,那么ϕ⎪⎩⎪⎨⎧====ϕϕsin cos OB NM y OA ON x 即⎩⎨⎧==ϕϕsin cos b y a x 这就是所求点的轨迹的参数方程.M 消去参数后得到,由此可知,点的轨迹是椭圆.ϕ12222=+by a x M 点评:这道题还给出了椭圆的一种画法,按照这种方法,在已知椭圆的长、短轴长的情况下,给出离心角的一个值,就可以画出椭圆上的一个对应点,利用几何画板画椭圆ϕ都用此法.例3 已知椭圆,(,,为参数)上的点,求:⎩⎨⎧==ϕϕsin cos b y a x 0>a 0>b ϕ()y x P ,(1)、的取值范围;x y (2)的取值范围.y x 43+解:(1)∵,,1cos 1≤≤-ϕ1sin 1≤≤-ϕ∴,.a a a ≤≤-ϕcosb b b ≤≤-ϕsin ∴,为所求范围.a x a ≤≤-b x b ≤≤-(2)∴ϕϕsin 4cos 343b a y x +=+ .()θϕ++sin 16922b x (其中为第一象限角,且).θb a 43tan =θ而.()1sin 1≤+≤-θϕ∴,()[]222222169169sin 169b a b a b a ++-∈++,θϕ即这所求.222216943169b a y x b a +≤+≤+-例4 把参数方程(为参数).写成普通方程,并求出离心率.⎩⎨⎧==ϕϕsin 4cos 3y x ϕ解:由参数方程得⎪⎪⎩⎪⎪⎨⎧==.sin 4cos 3ϕϕy x 平方相加得为所求普通方程.116922=+y x ∵,,4=a 3=b ∴.791622=-=+=b a c ∴椭圆的离心率.47=e (三)随堂练习1.焦点在轴上的椭圆上一点到两准线间的距离之和为36,到两焦点的距离分别x P 为9和15的椭圆的标准方程为______________.2.参数方程(为参数)表示的曲线的焦点坐标是______________.⎩⎨⎧==θθsin 3cos 4y x θ3.椭圆(为参数)的离心率为_________________.⎩⎨⎧==θθcos 3cos 2y x θ答案:1. 2., 3.18014422=+y x ()07,-()07,35(四)总结提炼若已知条件涉及到焦点,准线方程式时,往往利用定义求解较简便.2.椭圆的参数方程(为参数)中,表明、分别是椭⎩⎨⎧==ϕϕsin cos b y a x ϕ0>>b a a 2b 2圆的长轴、短轴长,且焦点在轴上,参数的几何意义是椭圆的离心角,利用椭圆的参x ϕ数方程求的最值较方便.()y x f ,(五)布置作业1.已知椭圆中心在原点,一个焦点是,点在椭圆上,则点到与()031,F ⎪⎭⎫ ⎝⎛5124,P P 相应准线的距离为( )1FA .B .C .D .5133373253232.椭圆的左焦点为,,是两个顶点,如12222=+by a x ()0>>b a F ()0,a A -()b B ,0果到直线的距离等于,那么椭圆的离心率等于( )F AB 77b A . B . C . D .777-777+32364.椭圆(为参数)的两准线间距离为_______________.⎩⎨⎧==θθsin 4sin 5y x θ5.已知椭圆的一条准线方程是,且过点,求椭圆的标准方程.325-=x ⎪⎭⎫ ⎝⎛5124,6.求椭圆的内接矩形面积的最大值.12222=+by a x ()0>>b a 答案:1.A 2.C 3.D 4. 5.3501162522=+y x 7.设是椭圆上的任一点,则(为参数)()y x P ,⎩⎨⎧==θθsin cos b y a x θ内接矩形面积θθθθcos sin 4sin 2cos 2ab b a S =⋅=∴ .θθ>=2sin 2ab ab S 2≤ab S 2max =(六)板书设计椭圆的简单几何性质(三)一、复习引入二、例题分析例1例2例3例4练习总结。
《椭圆的简单几何性质》教学设计
椭圆的简单几何性质(1)教学设计杨华燕大附中2.2.2椭圆的简单几何性质(1)教学设计一、教学任务及对象1、教学内容分析《椭圆的简单几何性质》是选修2-1第二章第二节的内容,本节内容是在学生已经学过曲线与方程和椭圆的概念及其标准方程基础上引入的,是利用椭圆的标准方程研究椭圆的几何性质,它是由方程研究曲线的性质的一个应用,也是为后面学习利用双曲线、抛物线的标准方程研究其几何性质做铺垫,因此本节课起到承前启后的作用。
2、教学对象分析本节课授课的对象是高二年级的学生,他们已掌握了椭圆的标准方程,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。
二、教学目标依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:1、知识与技能:使学生掌握椭圆的几何性质,初步学会运用椭圆的几何性质解决问题,进一步体会数形结合的思想。
2、过程与方法:通过数和形两条线研究椭圆的几何性质,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数形结合的思想方法;对椭圆的几何性质的归纳、总结时培养学生抽象概括能力;进一步强化数形结合思想。
3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断创新的学习习惯和品质。
三、重、难点分析重点:椭圆的简单几何性质难点:培养数形结合思想四、教学策略为了突出重点、突破难点,在教学中采取了以下策略:1.教法分析为了充分调动学生学习的积极性,采用“生本课堂”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣.2.学法分析本节课通过探究椭圆的几何性质,让学生体会数形结合思想,加深对解析几何的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.五、教学过程本节课中应把更多的时间、机会留给学生,让学生充分的交流、探究,积极引导学生动手操作、动脑思考。
椭圆的简单几何性质(教案)
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。
2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。
3. 能够运用椭圆的性质解决相关几何问题。
教学重点:1. 椭圆的定义及其基本性质。
2. 椭圆几何参数的计算方法。
教学难点:1. 椭圆性质的应用。
教学准备:1. 教学课件或黑板。
2. 尺子、圆规等绘图工具。
教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。
二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。
b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。
c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。
3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。
三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。
2. 学生分组讨论并解答,教师巡回指导。
四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。
2. 学生独立完成练习题,教师批改并给予反馈。
五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。
2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。
教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。
在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。
通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。
但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。
六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。
椭圆的简单几何性质(教案)
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本几何性质。
2. 学会运用椭圆的性质解决相关问题。
3. 培养学生的观察能力、推理能力和解决问题的能力。
教学内容:1. 椭圆的定义2. 椭圆的焦点3. 椭圆的长轴和短轴4. 椭圆的离心率5. 椭圆的面积教学准备:1. 教学课件或黑板2. 椭圆模型或图片3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆模型或图片,让学生观察并描述椭圆的特点。
2. 引导学生思考:椭圆与其他几何图形(如圆、矩形等)有什么不同?二、椭圆的定义(10分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和等于常数的点的集合。
2. 解释椭圆的焦点概念,说明焦点的作用。
3. 引导学生通过实际操作,绘制一个椭圆,并标记出焦点。
三、椭圆的焦点(10分钟)1. 介绍椭圆的焦点与椭圆的离心率的关系。
2. 引导学生通过实际操作,观察焦点的位置与椭圆的形状之间的关系。
3. 解释椭圆的离心率的定义及其几何意义。
四、椭圆的长轴和短轴(10分钟)1. 介绍椭圆的长轴和短轴的概念。
2. 引导学生通过实际操作,测量和记录椭圆的长轴和短轴的长度。
3. 解释长轴和短轴与椭圆的形状之间的关系。
五、椭圆的面积(10分钟)1. 介绍椭圆的面积的计算公式。
2. 引导学生通过实际操作,计算一个给定椭圆的面积。
3. 解释椭圆面积与长轴和短轴之间的关系。
教学评价:1. 通过课堂讲解和实际操作,学生能够理解椭圆的定义及其基本几何性质。
2. 通过解决问题和完成作业,学生能够运用椭圆的性质解决相关问题。
3. 通过课堂讨论和提问,学生能够展示对椭圆的理解和应用能力。
六、椭圆的离心率(10分钟)1. 回顾椭圆的离心率的定义和计算方法。
2. 引导学生通过实际操作,观察离心率与椭圆的形状之间的关系。
3. 解释离心率在几何中的应用,如椭圆的焦点和直线的交点等。
七、椭圆的参数方程(10分钟)1. 介绍椭圆的参数方程及其意义。
椭圆的简单几何性质教案
椭圆的简单几何性质(一)教学目标:1. 知识与技能(1) 理解并掌握椭圆的范围、对称性、顶点坐标和离心率这四个简单几何性质;(2) 掌握椭圆标准方程中b a ,以及e c ,的几何意义,以及e c b a ,,,之间的相互关系。
(3) 会根据椭圆的几何性质,解决简单的实际问题2. 过程与方法(1) 通过对椭圆性质的研究,经历对椭圆几何性质的探索过程(2) 通过椭圆图形的观察,经历有图形归纳出相应性质的过程3. 情感、态度与价值观(1) 由图形归纳性质的过程中,培养学生用代数的方法研究曲线的几何性质的思想。
(2) 感受椭圆在刻画现实世界和解决实际问题中的作用(二)教学重点和难点:1、教学重点:椭圆的四个简单几何性质;2、教学难点:椭圆性质在实际问题中的应用,数形结合的思想、方程的思想的运用。
(三)教学过程:【复习引入】问题: 椭圆的定义是怎样的? 椭圆的标准方程是怎样的?【新课讲授】根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.根据曲线的条件列出方程.如果说是解析几何的手段,1. 椭圆的几何性质:(ⅰ)如图:椭圆的标准方程为:192522=+y x通过观察该椭圆的图形,可以看出这个椭圆的的大小范围是什么?具有怎样的对称性?以及它跟两条坐标轴的交点一般地,如果椭圆的标准方程为:)0(12222>>=+b a by a x ,下面研究其几何性质: (1)范围:椭圆在直线 和直线 ,围成的矩形里(2)对称性:椭圆关于x 轴、y 轴轴对称,是轴对称图形;也关心原点中心对称,是中心对称图形。
椭圆的对称中心叫椭圆的中心。
(3)顶点:椭圆与两条坐标轴的四个交点 )0,(1a A ,)0,(2a A -,)0,(1b B )0,(2b B -叫椭圆的顶点。
椭圆的长轴:线段21A A ;长轴长:2a ;长半轴长:a椭圆的短轴:线段21B B ;短轴长:2b ; 短半轴长:b(ⅱ)求下列各椭圆的长轴和短轴的长、顶点坐标(1)192522=+y x (2 ) 1817222=+y x (3)400251622=+y x (4)81922=+y x通过观察上述椭圆的图形,它们有什么区别?(4)离心率:椭圆的焦距与长轴长的比a c e =叫椭圆的离心率()10<<e 离心率的大小对椭圆形状的影响:① 当 趋近于1时, 趋近于 ,从而越小,因此椭圆越扁平:② 当 趋近于0时, 趋近于0,从而 趋近于 ,因此椭圆越接近于圆 ③ 当且仅当b a =时,0=c ,两焦点重合,图形变为圆,它的方程变为: 222a y x =+思考:若椭圆的标准方程为)0(12222>>=+b a bx a y ,其范围,对称性,顶点坐标和离心率又是怎样?2. 例题讲练:1. 比较下列两个椭圆的形状,哪个更圆,哪个更扁?为什么?36922=+y x 与1121622=+y x 题组一:求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,53,3==e c (2)经过点)0,3(-P ,)2,0(-Q 题组二:求适合下列条件的椭圆的标准方程:(1)长轴长等于20,离心率等于53 (2)经过点(3,0),离心率53=e 4. 小结:椭圆的四个简单的几何性质。
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案一、教学目标1. 知识与技能:使学生掌握椭圆的定义,理解椭圆的基本几何性质,如焦点、半长轴、半短轴等概念;2. 过程与方法:通过观察、分析、归纳等方法,让学生发现并证明椭圆的几何性质;3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 椭圆的基本几何性质:a. 焦点:椭圆的焦点距离为2c,其中c为半焦距,c^2=a^2-b^2;b. 半长轴:椭圆的半长轴为a,表示椭圆的长轴的一半;c. 半短轴:椭圆的半短轴为b,表示椭圆的短轴的一半;d. 椭圆的面积:S=πab。
三、教学重点与难点1. 教学重点:椭圆的定义及其基本几何性质;2. 教学难点:椭圆的焦点、半长轴、半短轴等概念的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法发现椭圆的几何性质;2. 利用数形结合法,让学生直观地理解椭圆的定义及其几何性质;3. 运用实例讲解法,让学生掌握椭圆在实际问题中的应用。
五、教学过程1. 导入新课:通过介绍椭圆的起源和发展,激发学生的学习兴趣;2. 讲解椭圆的定义:结合图形,解释椭圆的定义,让学生理解椭圆的概念;3. 探索椭圆的基本几何性质:引导学生观察椭圆的图形,发现焦点、半长轴、半短轴等性质;4. 证明椭圆的几何性质:引导学生运用数学方法证明椭圆的基本几何性质;5. 应用实例:让学生运用椭圆的性质解决实际问题,巩固所学知识。
本教案为椭圆的简单几何性质教学教案的第一部分,后续章节将陆续呈现。
希望能对您的教学有所帮助!六、教学练习1. 基本概念练习:a. 定义椭圆的焦点;b. 解释椭圆的半长轴和半短轴;c. 计算椭圆的面积。
2. 应用题练习:a. 已知椭圆的半长轴为5cm,半短轴为3cm,求椭圆的焦点距离;b. 已知椭圆的面积为36πcm²,半长轴为6cm,求椭圆的半短轴;c. 一个椭圆的焦点在x轴上,半长轴为4cm,半短轴为3cm,求椭圆的标准方程。
教案2:椭圆的简单几何性质(2课时)
椭圆的简单几何性质(一)教学目标:知识与技能:掌握椭圆的范围、对称性、顶点,掌握c b a ,,几何意义以及c b a ,,的相互关系,初步学习利用方程研究曲线性质的方法。
过程与方法:利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力。
情感、态度与价值观:通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质。
重点难点:重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法。
难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质。
教学过程(一)复习与引入过程:引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④探究椭圆的扁平程度量----椭圆的离心率.〖板书〗椭圆的简单几何性质.(二)新课探析(1)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(2)椭圆的简单几何性质:①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率:椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 .(3)例题讲解与引申、扩展例1、 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.扩展:已知椭圆()22550mx y m m +=>的离心率为e =m 的值. 解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=. 例2、如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.分析:若设点(),M x y ,则MF =l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数c e a =()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c=相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2a x c=-. (三)课堂练习:(四)反思小结:(1)利用方程研究椭圆的几何性质时,若椭圆的方程不是标准方程,首先应将方程化为标准方程,然后找出相应的c b a ,,。
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状。
讲解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
1.2 椭圆的标准方程推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是椭圆的半长轴,\(b\)是半短轴。
解释\(a\)和\(b\)与椭圆的形状和大小之间的关系。
第二章:椭圆的焦点与离心率2.1 椭圆的焦点讲解椭圆的焦点定义:椭圆上到两个焦点距离之和为常数的点。
推导椭圆焦点的坐标公式:\((\pm c, 0)\),其中\(c\)是焦距,满足\(c^2 = a^2 b^2\)。
2.2 椭圆的离心率定义椭圆的离心率:\(e = \frac{c}{a}\),表示椭圆的扁率。
解释离心率与椭圆的形状之间的关系:离心率越接近1,椭圆越扁;离心率越接近0,椭圆越接近圆。
第三章:椭圆的面积与周长3.1 椭圆的面积推导椭圆的面积公式:\(A = \pi ab\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。
解释椭圆面积与半长轴和半短轴之间的关系。
3.2 椭圆的周长推导椭圆的周长公式:\(C = \pi(a + b)\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。
解释椭圆周长与半长轴和半短轴之间的关系。
第四章:椭圆的直线段性质4.1 椭圆的半通径定义椭圆的半通径:连接椭圆上一点与焦点的线段中点的距离。
推导半通径的公式:\(r = \frac{a}{2}\)。
4.2 椭圆的半焦距定义椭圆的半焦距:椭圆上到焦点距离之和的一半。
推导半焦距的公式:\(f = \frac{c}{2}\)。
第五章:椭圆的参数方程与极坐标方程5.1 椭圆的参数方程引入椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数。
椭圆的简单几何性质教案第一课时
《椭圆的简单几何性质》教案第一课时教学目的:1.熟练掌握椭圆的范围,对称性,顶点等简单几何性质 2.掌握标准方程中的几何意义,以及的相互关系 3.理解.掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法 教学重点:椭圆的几何性质教学难点:如何贯彻数形结合思想,运用曲线方程研究几何性质 授课类型:新授课 课时安排:1课时教具:多媒体.实物投影仪 内容分析:根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一,根据曲线的条件列出方程,如果说是解析几何的手段,那么根据曲线的方程研究它的性质.画图就是解析几何的目的怎样用代数的方法来研究曲线原性质呢?本节内容为系统地按照方程来研究曲线的几何性质提供了一个范例,因此,本节内容在解析几何中占有非常重要的地位通过本节的学习,使学生掌握应从哪些方面来讨论一般曲线的几何性质,从而对曲线的方程和方程的曲线彼此之间的相辅相成的辩证关系,对解析几何的基本思想有更深的了解通过对椭圆几种画法的学习,能深化对椭圆定义的认识,提高画图能力;通过几何性质的简单的应用,了解到如何应用几何性质去解决实际问题,提高学生用数学知识解决实际问题的能力本节内容的重点是椭圆的几何性质――范围.对称性.顶点.离心率.准线方程;根据方程研究曲线的几何性质的思路与方法;椭圆的几种画法.难点是椭圆的离心率.准线方程及椭圆的第二定义的理解,关键是掌握椭圆的标准方程与椭圆图形的对应关系,理解关掌握两种椭圆的定义的等价性根据教学大纲的安排,本节内容分4个课时进行教学,本节内容的课时分配作如下设计:第一课时,椭圆的范围.对称性.顶点坐标.离心率.椭圆的画法;第二课时,椭圆的第二定义.椭圆的准线方程;第三课时,焦半径公式与椭圆的标准方程;第四课时,椭圆的参数c b a ,,e c b a ,,,方程及应用教学过程: 一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:,()3.问题:(1)椭圆曲线的几何意义是什么?(2)“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的取值范围是什么?其图形位置是怎样的?(3)标准形式的方程所表示的椭圆,其对称性是怎样的?(4)椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长.短轴长各是多少?的几何意义各是什么?(5)椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?(6)画椭圆草图的方法是怎样的? 二、讲解新课:由椭圆方程()研究椭圆的性质.(利用方程研究,说明结论与由图形观察一致)(1)范围:从标准方程得出,,即有,,可知椭圆落在组成的矩形中.(2)对称性:把方程中的换成方程不变,图象关于轴对称.换成方程不变,图象关于轴对称.把同时换成方程也不变,图象关于原点对称.12222=+b y a x 12222=+bx a y 0>>b a c b a ,,12222=+by a x 0>>b a 122≤a x 122≤by a x a ≤≤-b y b ≤≤-b y a x ±=±=,y x --,QB 2B 1A 2A 1P F 2F 1P ′P ″xOy如果曲线具有关于轴对称,关于轴对称和关于原点对称中的任意两种,则它一定具有第三种对称原点叫椭圆的对称中心,简称中心.轴.轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点在椭圆的方程里,令得,因此椭圆和轴有两个交点,它们是椭圆的顶点令,得,因此椭圆和轴有两个交,它们也是椭圆的顶点因此椭圆共有四个顶点:, 加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴.长分别为分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点. 至此我们从椭圆的方程中直接可以看出它的范围, 对称性, 顶点.因而只需少量描点就可以较正确的作图了.(4)离心率:发现长轴相等,短轴不同,扁圆程度不同 这种扁平性质由什么来决定呢? 概念:椭圆焦距与长轴长之比 定义式:范围: 考察椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例椭圆变扁,直至成为极限位置线12222=+b y a x 0=y a x ±=)0,(),0,(2a A a A -12222=+by a x b y ±=),0(),,0(2b B b B -12222=+b y a x )0,(),0,(2a A a A -),0(),,0(2b B b B -)0,(),0,(21c F c F -b a 2,2ace =2)(1a b e -=10<<e 0,0→→c e ,,1a c e →→B 2B 1A 2A 1xOy段,此时也可认为圆为椭圆在时的特例三、讲解范例:例1 求椭圆的长轴和短轴的长.离心率.焦点和顶点的坐标,并用描点法画出它的图形.解:把已知方程化成标准方程所以,,因此,椭圆的长轴的长和短轴的长分别为,离心率,两个焦点分别为,椭圆的四个顶点是,将已知方程变形为,根据,在的范围内算出几个点的坐标:先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆:例2 在同一坐标系中画出下列椭圆的简图:(1)(2)答:简图如下:400251622=+y x 1452222=+y x 345,4,522=-===c b a 82,102==b a 53==a c e )0,3(),0,3(21F F -)0,5(),0,5(2A A -)4,0(),4,0(2B B -22554x y -±=22554x y -=50≤≤x ),(yx 1162522=+y x 192522=+y x例3 分别在两个坐标系中,画出以下椭圆的简图:(1) (2)答:简图如下:四、课堂练习:1.已知椭圆的一个焦点将长轴分为:两段,求其离心率 解:由题意,=:,即,解得 2.如图,求椭圆,()内接正方形ABCD 的面积解由椭圆和正方形的中心对称性知,正方形BFOE 的面积是所求正方形面积的1/4,且B 点横纵坐标相等,故设B (),代入椭圆方程求得,即正方形ABCD 面积为五、小结:这节课学习了用方程讨论曲线几何性质的思想方法;学习了椭圆的几何性质:对称性.顶点.范围.离心率;学习了椭圆的描点法画图及徒手画椭圆草图的方法六、课后作业: 七、板书设计(略)14922=+y x 1364922=+yx)(:)(c a c a -+2311=-+e e 625-=e 12222=+by a x 0>>b a 22222ba b a t +=22224b a b a +八、课后记:。
3.1.2椭圆的简单几何性质(第1课时)课件(人教版)
基础巩固2:由椭圆的几何性质求方程
[例2]求适合下列条件的椭圆的标准方程.
(1)焦点在x轴上, a 6, e 1 ; c 2 b2 32 x2 y2 1
3
36 32
(2)焦点在y轴上, c 3, e 3 ; 5
a 5 b2
16
y2 x2 1 25 16
(3)过P(3,0), Q(0,2)两点;
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
长轴为A1A2=2a,短轴为B1B1=2b 关于x轴、y轴、原点对称
e c a
1
b2 a2
| F1F2 | | PF1 | | PF2
|
0 e 1
e越接近1, 椭圆越扁平; e越接近0, 椭圆越接近圆.
基础巩固1:由方程确定椭圆的几何性质
x2 36
y2 20
1上在第一象限的点, 且MF1F2
为等腰三角形, 则M的坐标为_(_3,__1_5_)___.
y
M
析: MF1 F1F2 8
由焦半径的公式得MF1
a exM
6
4 6
xM
8
xM 3, 代入方程yM 15.
y
F1 O
x F2
a2 36 a 6
析:S 14 2
82
P3(x, y)
设P(
x,
y
)是椭圆上任一点,
则P满足
x a
2 2
y2 b2
1,
P1(x, y)也满足方程 任一点P关于x轴的对称点也在椭圆上
椭圆关于x轴对称
P2 (x, y)也满足方程 椭圆关于y轴对称 P3(x, y)也满足方程 椭圆关于原点对称
P1(x, y)
3.1.2椭圆的简单几何性质(第1课时)课件(人教版)
由题意得
2a=5×2b,
25 0
+ 2=1,
2
a b
a=5,
解得
b=1.
椭圆的简单几何性质
x2
故所求椭圆的标准方程为25+y2=1;
y2 x2
若焦点在 y 轴上,设其标准方程为a2+b2=1(a>b>0),由题意,得
2a=5×2b,
a=25,
0 25
解得
b=5.
a2+ b2 =1,
椭圆的简单几何性质
椭圆的离心率的求法
求椭圆的离心率,关键是寻找 a 与 c 的关系,一般地:
c
(1)若已知 a,c,则直接代入 e= 求解;
a
(2)若已知 a,b,则由 e=
b
1- a 2求解;
(3)若已知 a,b,c 的关系,则可转化为 a,c 的齐次式,
再转化为含 e 的方程求解即可.
椭圆的简单几何性质
范围,就是利用方程确
定曲线上点的横、纵坐
标的取值范围
x
椭圆的简单几何性质
视察椭圆形状,可以发现椭圆既是轴对称图形,又是中心对称图形.
y
如何利用方程说明椭圆的对称性?
把(x)换成(-x),方程不变,说明椭圆关于
P1(-x,y)
P(x,y)
( y )轴对称;
把(y)换成(-y),方程不变,说明椭圆关于( x
如右图示,椭圆
2
a
b
焦距为c. 利用信息技术发现, 保持长半轴长a不变, 改变椭圆
的半焦距c, 可以发现, c越接近a, 椭圆越扁平. 类似地, 保持c
不变, 改变a的大小, 则a越接近c, 椭圆越扁平; 而当a, c扩大或
缩小相同倍数时, 椭圆的形状不变. 这样, 利用c和a这两个量,
高二数学上 8.2 椭圆的简单几何性质(一)优秀教案
8.2 椭圆的简单几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?a,b,c的关系是?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.X围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取X围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x ,y)在曲线上,因为曲线关于x 轴对称,所以点P 1(x ,-y)必在曲线上.又因为曲线关于原点对称,所以P 1关于原点对称点P 2(-x ,y)必在曲线上.因P(x ,y)、P 2(-x ,y)都在曲线上,所以曲线关于y 轴对称.最后指出:x 轴、y 轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心. 3.顶点只须令x=0,得y=±b ,点B 1(0,-b)、B 2(0,b)是椭圆和y 轴的两个交点;令y=0,得x=±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.强调指出:椭圆有四个顶点A 1(-a ,0)、A 2(a ,0)、B 1(0,-b)、B 2(0,b).教师还需指出:(1)线段A 1A 2、线段B 1B 2分别叫椭圆的长轴和短轴,它们的长分别等于2a 和2b ;(2)a 、b 的几何意义:a 是长半轴的长,b 是短半轴的长;这时,教师可以小结以下:由椭圆的X 围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.根据前面所学有关知识画出下列图形(1)1162522=+y x (2)142522=+y x 4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e 的几何意义. 先分析椭圆的离心率e 的取值X 围: ∵a >c >0,∴ 0<e <1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 已知椭圆16x2+25y2=400,它的长轴长是:。
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际物体(如地球、月球绕太阳的运动)来让学生理解椭圆的形状。
解释椭圆是由一个固定点(焦点)和到该点距离之和等于常数的点的集合所形成的图形。
1.2 椭圆的标准方程推导椭圆的标准方程,即x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
解释方程中a和b的含义,以及它们与椭圆的性质之间的关系。
第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴定义椭圆的长轴,即通过椭圆中心并且平行于x轴的轴。
解释长轴的长度是2a,与椭圆的半长轴a的关系。
2.2 椭圆的短轴定义椭圆的短轴,即通过椭圆中心并且垂直于x轴的轴。
解释短轴的长度是2b,与椭圆的半短轴b的关系。
2.3 椭圆的焦距定义椭圆的焦距,即焦点之间的距离。
解释焦距与椭圆的长轴和短轴的关系,即焦距等于2c,其中c是焦点到椭圆中心的距离。
第三章:椭圆的面积3.1 椭圆的面积公式推导椭圆的面积公式,即A = πab,其中a和b分别是椭圆的半长轴和半短轴。
解释面积公式中π的作用和意义。
3.2 椭圆的面积性质解释椭圆的面积与长轴和短轴的关系,即面积与长轴和短轴的乘积成正比。
举例说明椭圆面积的计算方法,并进行实际计算练习。
第四章:椭圆的离心率4.1 椭圆的离心率定义定义椭圆的离心率e,即焦距与长轴之间的比值,e = c/a。
解释离心率的作用和意义,以及它与椭圆的形状之间的关系。
4.2 椭圆的离心率性质解释离心率与椭圆的长轴和短轴的关系,即离心率越小,椭圆越接近于圆形。
举例说明椭圆离心率的计算方法,并进行实际计算练习。
第五章:椭圆的焦点和直线的交点5.1 椭圆的焦点定义椭圆的焦点,即椭圆上到焦点距离之和等于常数的点。
解释焦点的性质,以及它们与椭圆的中心和长轴之间的关系。
5.2 椭圆与直线的交点解释椭圆与直线的位置关系,以及交点的性质。
举例说明椭圆与直线交点的计算方法,并进行实际计算练习。
椭圆的简单几何性质教案
一、教案基本信息椭圆的简单几何性质教案课时安排:1课时教学目标:1. 让学生掌握椭圆的定义及基本性质。
2. 培养学生运用几何知识分析问题、解决问题的能力。
3. 引导学生发现椭圆在实际生活中的应用,培养学生的学习兴趣。
教学内容:1. 椭圆的定义2. 椭圆的基本性质3. 椭圆的标准方程4. 椭圆的焦点与离心率5. 椭圆的参数方程二、教学过程1. 导入:利用多媒体展示一些生活中的椭圆形状的物体,如地球、月球、鸡蛋等,引导学生发现椭圆在生活中的广泛存在。
2. 知识讲解:1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 讲解椭圆的基本性质:(1)椭圆的两个焦点在椭圆的长轴上,且长轴长度为2a。
(2)椭圆的短轴长度为2b。
(3)椭圆的离心率e=c/a,其中c为焦距,a为半长轴,b为半短轴。
(4)椭圆的面积S=πab。
3. 讲解椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。
4. 讲解椭圆的参数方程:椭圆的参数方程为x=acosθ,y=bsinθ。
3. 案例分析:给出一个实际问题,如求解椭圆上一点到两焦点的距离之和。
引导学生运用椭圆的性质解决问题。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生课后巩固所学知识。
5. 总结:对本节课的内容进行总结,强调椭圆的基本性质及应用。
三、课后作业1. 复习椭圆的定义及基本性质。
2. 练习椭圆的标准方程和参数方程的转化。
3. 寻找生活中的椭圆形状物体,了解椭圆在实际中的应用。
四、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆知识的理解和运用能力。
五、教学评价通过课堂讲解、练习和课后作业,评价学生对椭圆定义、基本性质、标准方程和参数方程的掌握程度,以及运用椭圆知识解决实际问题的能力。
六、教学活动设计1. 互动提问:在上一节课中,我们学习了椭圆的定义及基本性质,谁能简要回顾一下椭圆的定义是什么?2. 小组讨论:请同学们分成小组,讨论如何运用椭圆的性质解决实际问题。
〖2021年整理〗《椭圆的简单几何性质》优秀教案
椭圆的简单几何性质(第一课时)(杨军君)一、教学目标 (一)学习目标1给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率; 2在图形中,能指出椭圆中e c b a ,,,的几何意义及其相互关系; 3知道离心率大小对椭圆扁平程度的影响 (二)学习重点1用方程研究椭圆上点的横纵坐标范围,对称性; 2椭圆的简单几何性质 (三)学习难点椭圆的离心率及椭圆几何性质的简单应用 二教学设计 (一)预习任务设计 1预习任务(1)读一读:阅读教材第43页至第46页(2)想一想:椭圆的离心率对椭圆扁平程度的影响?(3)写一写:焦点分别在,x y 轴上的椭圆的范围、对称性、顶点 2预习自测判断(正确的打“√”,错误的打“×”)(1)椭圆22221(0)x y a b a b +=>>的长轴长为a ( )(2)椭圆的离心率e 越大,椭圆就越圆( )(3)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为2212516x y +=( )(4)已知点(,)m n 在椭圆228324x y +=上,则24m +的最大值为4+( ) 【知识点】椭圆的几何性质【解题过程】通过椭圆的标准方程22221x y a b +=可认识到椭圆的相应几何量:长轴长2a ,短轴长2b ,离心率e ca=,的取值范围取值范围a x a -≤≤【思路点拨】通过椭圆的标准方程认识几何性质 【答案】(1)×;(2)×;(3)×;(4)√ (二)课堂设计 1知识回顾椭圆的标准方程:当焦点在轴时,)0(12222>>=+b a b y a x当焦点在轴时,)0(12222>>=+b a b x a y2新知讲解探究一:具体方程,认识图形 ●活动① 图形引发性质运用所学的知识,你能否画出方程14922=+y x 所对应的曲线?(如果不能精确地画出,也可以画出它的草图)预案一:利用椭圆的定义,用绳子画图;预案二:根据所学先判断其为椭圆,求与x 轴y 轴的交点再连结;预案三:根据所学判断椭圆具有对称性,只需比较精确地画出第一象限的部分;【设计意图】让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点研究曲线的性质,可以从整体上把握它的形状,大小和位置以椭圆)0(12222>>=+b a b y a x 为例,你觉得应该从哪些方面研究它的几何性质?【设计意图】引出研究曲线性质的意义,为后面研究椭圆的几何性质指明角度 探究二:简化抽象、探究性质 ●活动① 归纳梳理、理解提升 (1)范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤说明椭圆位于直线x a =±,y b =±所围成的矩形里 (2)对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称所以,椭圆关于x 轴、y 轴和原点对称这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心 (3)顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点同理令0y =得x a =±,即1(,0)A a -,2(,0)A a是椭圆与x 轴的两个交点 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22R t O BF ∆中,2||O B b =,2||O F c =,22||BF a =,且2222222||||||O F B F O B =-,即222c a b =-(4)离心率:椭圆的焦距与长轴的比e ca=叫椭圆的离心率 ∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a+=e 1,0c a b →→→⎧⎨⎩当时,椭圆图形越扁; e 00,c b a →→→⎧⎨⎩当时,椭圆越接近于圆●活动② 巩固基础、检查反馈 例1根据下列条件求椭圆的标准方程 (1)28,e 3c ==; (2)过点(3,0)P ,离心率e =,求椭圆的标准方程 【知识点】椭圆的标准方程以及离心率 【解题过程】(1)8e ,1223c c a a e =∴===,又2222212880b a c =-=-= ∴椭圆标标准方程为22114480x y +=或22114480y x += (2)当椭圆的焦点在x 轴上时,3,c a ca ==∴=从而222963b a c =-=-=,∴椭圆的方程为22193x y +=当椭圆的焦点在y 轴上时,3,c b a === 227a ∴=,∴椭圆方程为221927x y += ∴所求椭圆的方程为221927x y +=或22193x y += 【思路点拨】已知椭圆的某些性质,和与性质相关的条件求标准方程仍需先判定焦点位置,从而确定方程形式,并用待定系数的思想,求出方程中的,a b 值,得到方程【答案】(1)22114480x y +=或22114480y x +=;(2)221927x y +=或22193x y +=同类训练 已知椭圆()22550mx y m m +=>的离心率为e =,求m 的值 【知识点】椭圆的离心率【解题过程】依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=【思路点拨】根据椭圆焦点的位置确定,,a b c 的值,结合离心率的定义建立方程求解 【答案】m =3或253例2已知12,F F 分别为椭圆12222=+by a x 的左右焦点,P 是以12F F 为直径的圆与椭圆的一个交点,且12212PF F PF F ∠=∠,求这个椭圆的离心率 【知识点】椭圆的离心率【解题过程】由题意12PF F ∆为直角三角形,且90P ∠=,1260PF F ∠=,122F F c =,则12,PF c PF ==,所以由椭圆的定义知,122PF PF a +=,即2c a =,得离心率e 1ca== 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围1-同类训练 已知椭圆12222=+by a x (0)a b >>,过椭圆的右焦点作x 轴的垂线交椭圆于A B 、两点,0OA OB ⋅=,求椭圆的离心率 【知识点】椭圆的离心率【解题过程】2(,0)F c ,把x c =代入椭圆12222=+b y a x 得2(,)b A c a由0OA OB ⋅=,结合图形得22||||OF AF =,即:22222e e 10e b c b ac a c ac a =⇒=⇒-=⇒+-=⇒=【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围 【答案】1+52- 例3如图,设(),M x y 与定点()4,0F 的距离和它到直线:254x =的距离的比是常数45,求点的轨迹方程【知识点】椭圆的方程以及离心率 【解题过程】分析:若设点(),M x y ,则()224MF x y =-+,到直线:254x =的距离254d x =-,则容易得点的轨迹方程25:44,5d M l x MF M P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设是点到直线的距离,根据题意,点的轨迹就是集合2(4)4.2554x y x -+=-22925225,x y +=将上式两边平方,并化简,得22 1.259x y +=即 所以,点M 的轨迹是长轴、短轴长分别为10,6的椭圆【思路点拨】利用条件直接求轨迹方程,我们可以将例3抽象为下面问题:点(,)P x y 与定点(,0)F c 的距离和它到一定直线2:a l x c =的距离之比是常数ca (0)a c >>,求点P 的轨迹方程(记222b ac =-,则轨迹方程为22221x y a b+=)【答案】221 259x y+=3课堂总结知识梳理椭圆的简单几何性质:标准方程)(012222>>=+b a by a x )0(12222>>=+b a bx a y 图形范围 ,a x a b y b -≤≤-≤≤,a y a b x b -≤≤-≤≤顶点 1(,0)A a -2(,0)A a 1(0,)B b -2(0,)B b 1(0,)A a -2(0,)A a 1(,0)B b -2(,0)B b 长轴长 2a短轴长 2b对称性对称轴:,x y 轴;对称中心:(0,0)cb a ,,关系 222a bc =+离心率e c a=重难点归纳利用椭圆轴长、离心率、准线等性质求解椭圆方程时,需注意:(1)在,,,e a b c 四个参数中,只要知道其中的任意两个,便可求出其它两个,必须正确地掌握四个参数间的相互关系;(2)离心率的转化和变形:22222e 1()1(1)2c b be b a e a a==-⇒=-⇒=- (三)课后作业 基础型 自主突破+错误!=1的离心率为错误!,则m 的值为( ) 【知识点】椭圆的离心率【解题过程】由题意得a 2=2,b 2=m ,∴c 2=2-m ,又错误!=错误!,∴错误!=错误!,∴m =错误! 【思路点拨】利用椭圆离心率定义解题【答案】B1:错误!+错误!=1和椭圆C 2:错误!+错误!=1 0错误!8=错误!错误!b >0的左、右焦点为F 1、F 2,离心率为错误!,过F 2的直线交C 于A 、B 两点,若△AF 1B 的周长为4错误!,则C 的方程为( )+错误!=1 错误!+2=1 错误!+错误!=1 错误!+错误!=1 【知识点】椭圆的几何性质【解题过程】根据条件可知错误!=错误!,且4a =4错误!, ∴a =错误!,c =1,b =错误!,椭圆的方程为错误!+错误!=1 【思路点拨】过焦点的直线利用椭圆的定义 【答案】A+错误!=1a >b >0的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) -2【知识点】椭圆的几何性质【解题过程】∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得a -ca +c =4c 2,即a 2=5c 2,所以离心率e =错误! 【思路点拨】利用椭圆的几何性质中量的关系 【答案】B轴上,其上任意一点到两焦点的距离和为8,焦距为2错误!,则此椭圆的标准方程为________ 【知识点】椭圆的定义【解题过程】由已知,2a =8,2c =2错误!,∴a =4,c =错误!,∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为错误!+2=1 【思路点拨】利用条件求a,b,c 的值 【答案】错误!+2=16已知椭圆的短半轴长为1,离心率00,∴a 2>1, ∴1b >0,半焦距为c ,则错误!∴错误!∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为错误!+错误!=1【思路点拨】利用椭圆a,b,c 三者关系以及椭圆定义解题 【答案】错误!+错误!=1+错误!=1的左焦点为F ,直线=m 与椭圆相交于点A 、B 当△F AB 的周长最大时,△F AB 的面积是________【知识点】椭圆的几何性质【解题过程】如图,当直线=m ,过右焦点1,0时,△F AB 的周长最大,由错误!解得=±错误!,∴|AB |=3 ∴S =错误!×3×2=3 【思路点拨】数形结合解题 【答案】3 探究型 多维突破0,0是椭圆错误!+错误!=1上一点,A 点的坐标为6,0,求线段错误!错误!错误!错误!错误!错误!错误!22(26)(2)184x y -+=22(3)12x y -+=22(3)12x y -+=12:2:1PF PF =12:2:1PF PF =+32=mm >0的离心率e =错误!,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标 【知识点】椭圆的几何性质【解题过程】椭圆方程可化为错误!+错误!=1, ∵(2)033m m m m m m +-=>++,∴m >错误! 即a 2=m ,b 2=错误!,22(2)3m m c a b m +=-=+由e =错误!得,错误!=错误!,∴m =1 ∴椭圆的标准方程为2+错误!=1, ∴a =1,b =错误!,c =错误!∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1-错误!,0,F 2错误!,0;四个顶点分别为A 1-1,0,A 21,0,B 10,-错误!,B 2021错误!【思路点拨】利用离心率的定义建立关系6已知椭圆上横坐标等于焦点横坐标的点,它到轴的距离等于短半轴长的错误!,求椭圆的离心率【知识点】椭圆的几何性质【解题过程】解法一:设焦点坐标为F1-c,0,F2c,0,M是椭圆上一点,依题意设M点坐标为c,错误!b在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2,即4c2+错误!b2=|MF1|2,而|MF1|+|MF2|=错误!+错误!b=2a,整理,得3c2=3a2-2ab又c2=a2-b2 3b=2a∴错误!=错误!∴e2=错误!=错误!=1-错误!=错误!,∴e=错误!解法二:设Mc,错误!b,代入椭圆方程,得错误!+错误!=1,∴错误!=错误!,∴错误!=错误!,即e=错误!【思路点拨】利用椭圆的几何关系结合椭圆离心率的定义解题。
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案第一章:椭圆的定义与基本性质1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状,如地球、月球绕太阳的运动轨迹等。
引导学生思考椭圆与圆的区别和联系,明确椭圆是平面上到两个固定点距离之和为常数的点的轨迹。
1.2 椭圆的基本性质引导学生探究椭圆的长轴、短轴、焦距等基本几何参数,并了解它们之间的关系。
引导学生通过画图或利用几何软件验证椭圆的离心率与焦距的关系。
第二章:椭圆的弧长与面积2.1 椭圆的弧长引导学生利用椭圆的参数方程或积分方法计算椭圆上任意弧长的公式。
通过实际例子,让学生了解椭圆弧长公式的应用,如计算椭圆上的某个角度对应的弧长。
2.2 椭圆的面积引导学生利用椭圆的参数方程或积分方法计算椭圆的面积公式。
通过实际例子,让学生了解椭圆面积公式的应用,如计算给定长轴和短轴的椭圆的面积。
第三章:椭圆的焦点与离心率3.1 椭圆的焦点引导学生利用椭圆的定义和基本性质,确定椭圆的焦点位置和数量。
通过实际例子,让学生了解焦点与椭圆的离心率之间的关系。
3.2 椭圆的离心率引导学生利用椭圆的离心率公式,计算给定长轴和短轴的椭圆的离心率。
通过实际例子,让学生了解离心率对椭圆形状的影响,如离心率越大,椭圆越扁平。
第四章:椭圆的直角坐标方程4.1 椭圆的标准方程引导学生利用椭圆的参数方程和基本性质,推导出椭圆的标准方程。
通过实际例子,让学生了解椭圆标准方程的应用,如给定长轴和短轴,求椭圆的方程。
4.2 椭圆的参数方程引导学生利用椭圆的标准方程,推导出椭圆的参数方程。
通过实际例子,让学生了解椭圆参数方程的应用,如求椭圆上任意一点的坐标。
第五章:椭圆的简单几何性质的应用5.1 椭圆的切线与法线引导学生利用椭圆的性质和几何知识,判断给定点是否在椭圆上,并求出相应的切线和法线方程。
通过实际例子,让学生了解切线和法线在解决椭圆问题中的作用。
5.2 椭圆的焦点弦引导学生利用椭圆的性质和几何知识,求解给定两点的焦点弦方程。
椭圆的简单几何性质教案
椭圆的简单几何性质教案教案:椭圆的简单几何性质一、教学目标:1.了解椭圆的定义和基本性质;2.掌握椭圆的离心率与长短轴长度的关系;3.能够判定给定的图形是否为椭圆。
二、教学内容:1.椭圆的定义;2.椭圆的焦点、离心率与长短轴之间的关系;3.如何判定给定的图形是否为椭圆。
三、教学过程:Step 1:导入新知引入椭圆的概念:椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a,且到两个点F1和F2的距离之差的绝对值等于常数2b的点的轨迹。
图示:绘制一个椭圆的图形,并标出其中心O、两个焦点F1、F2、长轴2a和短轴2b。
Step 2:椭圆的性质性质1:椭圆的任意一点到两个焦点的距离之和等于椭圆的长轴长度,即PF1+PF2=2a。
图示:绘制一个椭圆,任意选取一点P,并测量该点到两个焦点的距离PF1和PF2,证明PF1+PF2=2a。
性质2:椭圆的离心率e与椭圆的长短轴长度之比的平方等于1,即e^2=1-(b^2/a^2)。
图示:绘制一个椭圆,其中心O、两个焦点F1、F2和两个顶点A、B。
测量焦距CP和长轴2a的长度,以及短轴2b的长度,计算离心率e,并验证e^2=1-(b^2/a^2)。
Step 3:判定椭圆的图形给定一组数据,由学生判断该图形是否为椭圆。
示例:数据为横坐标x和纵坐标y的点集合。
图示:将一组数据绘制成一个坐标系,并将数据的散点连线,观察图形是否为椭圆。
Step 4:练习与巩固为学生提供一系列的练习题,巩固椭圆的性质和判定方法。
四、教学资源:1.教学PPT;2.椭圆的示意图;3.测量工具(尺子、量角器);4.练习题集合。
五、教学评价:1.在教学过程中,引导学生积极参与讨论、思考,并及时给予帮助和指导;2.在练习环节中,及时纠正学生的错误,鼓励他们在做错的题目上找到错误原因并进行改正。
六、教学延伸:1.椭圆的方程:利用椭圆的性质,可以推导出椭圆的标准方程和一般方程;2.椭圆的焦点性质:椭圆的焦点位置与长短轴之间的关系。
椭圆地简单几何性质(一)(教案设计)
●课 题§8.2.1 椭圆的简单几何性质(一)大英县育才中学 蒋登兵●教学目标(一)教学知识点椭圆的范围、对称性、对称轴、对称中心、离心率及顶点. (二)能力训练要求1.使学生了解并掌握椭圆的范围.2使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心.3.使学生掌握椭圆的顶点坐标、长轴长、短轴长以及a 、b 、c 的几何意义,明确标准方程所表示的椭圆的截距.4.使学生掌握离心率的定义及其几何意义. ●教学重点椭圆的简单几何性质. ●教学难点椭圆的简单几何性质.(这是第一次用代数的方法研究几何图形的性质的) ●教学方法师生共同讨论法.通过师生的共同讨论研究,学生的亲身实践体验,使学生明确椭圆的几何性质的研究方法,加强对性质的理解,掌握椭圆的几何性质.●教学过程 Ⅰ.课题导入[师]前面,我们研究讨论椭圆的标准方程)0(12222>>=+b a b y a x ,(焦点在x 轴上)或)0(12222>>=+b a b x a y (焦点在y 轴上)(板书) 那么我们研究椭圆的标准方程有什么实际作用呢?同学们知道,2008年的8月,中国为世界奉献了一个空前盛况的奥运会,一个多月后的9月25日,世界的目光再次投向中国,同学们知道是什么事吗?(出示神七发射画片并解说):2008年9月25日21时,“神舟七号”载人飞船顺利升空,实现多人多天飞行和宇航员太空行走等多项先进技术,标志着我国航天事业又上了一个新台阶,请问: “神舟七号”载人飞船的运行轨道是什么?――对,是椭圆。
据有关资料报道,飞船发射升空后,进入的是以地球的地心为一个焦点,距地球表面近地点高度约200公里、远地点约346公里的椭圆轨道。
我们在前几节课刚刚学习了椭圆的标准方程,请同学们回忆椭圆是标准方程是怎样的?它们有几种形式?问题1:我们前面刚刚学习了椭圆的标准方程,同学们还记得椭圆的标准方程吗?它有几种形式(板书))0(12222>>=+b a b y a x )0(12222>>=+b a bx a y(焦点在x 轴上) (焦点在y 轴上) 问题2:你想求出神七在宇宙中运行的椭圆轨道的标准方程吗? Ⅱ.讲授新课(板书标题)§8.13.2 椭圆的几何性质 首先我们进入本节课的第一个环节一、几何性质[师]我们不妨对焦点在x 轴的椭圆的标准方程.(板书)12222=+by a x (a >b >0)进行讨论.在解析几何里,我们常常是从两个方面来研究曲线的几何性质:一是由曲线的图像去“看”曲线的几何特征(以形辅数),同时又由曲线的方程来“证”明它(以数助形)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的简单几何性质(一)池州第六中学 王超教学目标(一)教学知识点椭圆的范围、对称性、对称轴、对称中心、离心率及顶点. (二)能力训练要求1.使学生了解并掌握椭圆的范围.2使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心.3.使学生掌握椭圆的顶点坐标、长轴长、短轴长以及a 、b 、c 的几何意义,明确标准方程所表示的椭圆的截距.4.使学生掌握离心率的定义及其几何意义.教学重点椭圆的简单几何性质.教学难点椭圆的简单几何性质.(这是第一次用代数的方法研究几何图形的性质的)教学方法师生共同讨论法.通过师生的共同讨论研究,学生的亲身实践体验,使学生明确椭圆的几何性质的研究方法,加强对性质的理解,掌握椭圆的几何性质.教学过程Ⅰ.课题导入[师]前面,我们研究讨论椭圆的标准方程)0(12222>>=+b a b y a x ,(焦点在x 轴上)或)0(12222>>=+b a bx a y (焦点在y 轴上)(板书) 那么我们研究椭圆的标准方程有什么实际作用呢?同学们知道,2008年的8月,中国为世界奉献了一个空前盛况的奥运会,一个多月后的9月25日,世界的目光再次投向中国,同学们知道是什么事吗?(出示神七发射画片并解说):2008年9月25日21时,“神舟七号”载人飞船顺利升空,实现多人多天飞行和宇航员太空行走等多项先进技术,标志着我国航天事业又上了一个新台阶,请问: “神舟七号”载人飞船的运行轨道是什么?――对,是椭圆。
据有关资料报道,飞船发射升空后,进入的是以地球的地心为一个焦点,距地球表面近地点高度约200公里、远地点约346公里的椭圆轨道。
我们在前几节课刚刚学习了椭圆的标准方程,请同学们回忆椭圆是标准方程是怎样的?它们有几种形式?问题1:我们前面刚刚学习了椭圆的标准方程,同学们还记得椭圆的标准方程吗?它有几种形式(板书))0(12222>>=+b a b y a x )0(12222>>=+b a bx a y(焦点在x 轴上) (焦点在y 轴上) 问题2:你想求出神七在宇宙中运行的椭圆轨道的标准方程吗?Ⅱ.讲授新课(板书标题)椭圆的几何性质 首先我们进入本节课的第一个环节一、几何性质[师]我们不妨对焦点在x 轴的椭圆的标准方程.(板书)12222=+by a x (a >b >0)进行讨论.在解析几何里,我们常常是从两个方面来研究曲线的几何性质:一是由曲线的图像去“看”曲线的几何特征(以形辅数),同时又由曲线的方程来“证”明它(以数助形)。
我们今天也用这种方法来研究椭圆的几何性质, 1.范围:[师]所谓范围,就是指椭圆图象上的所有的点在什么约束范围内,也就是说椭圆上所有的点的纵、横坐标应该在哪个范围内取值。
那么,你能从椭圆的图形上看出椭圆上所有的点所在的范围吗?[师]请看,如果我们过椭圆与x 轴的两个交点作两条平行于y 轴的直线,再过椭圆与y 轴的两个交点作两条平行于x 的直线(出示幻灯片)。
此时,你能说出椭圆的范围吗? [生]在一个矩形中[师]这两组平行线所在的直线方程是多少?能从椭圆的标准方程中找出它来吗?[生]方程中两个非负数的和等于1,所以,椭圆上点的坐标(x ,y )适合不等式:22a x ≤1, 22bx ≤1 即:x 2≤a 2,y 2≤b 2 ∴|x |≤a ,|y |≤b这说明椭圆位于直线x =±a ,y =±b 所围成的矩形里. 结论(板书)椭圆的范围是-a ≤x ≤a; -b ≤y ≤b[师]很好!请大家思考:对函数性质的研究常常是根据函数的解析来讨论的,那么我们能否从函数的思想出发,对椭圆的范围进行分析呢?[生](师点拨、提示)椭圆的标准方程可化为两个函数y=22x a a b -、y=-22x a ab -,对它们的定义域、值域分别进行讨论可得-a ≤x ≤a,-b ≤y ≤b,即椭圆位于直线x=±a,y=±b 所围成的矩形里.[师]将由函数的解析式研究函数的性质与由椭圆的方程研究椭圆的性质结合起来学习,有助于我们理解知识与知识之间的本质联系,对我们的进一步学习是大有益处的. 2.对称性:[师]你能从椭圆的图形上看出椭圆的对称性吗? [生]关于x 轴、y 轴成轴对称;关于原点成中心对称。
[师]我们怎样由椭圆的标准方程来研究椭圆的对称性? 想一想,我们前面在函数中是怎样研究函数图像的对称性的?[师]在函数里,我们讨论过对称性,如果以如果以-x 代x 方程不变,那么曲线关于y 轴对称,同理,以-y 代y 方程不变,那么曲线关于x 轴对称,如果同时以-x 代x ,以-y 代y 方程不变,那么曲线关于原点对称.[师]我们来看椭圆的标准方程,以-x 代x ,或以-y 代y 或同时以-x 代x ,-y 代y ,方程怎样改变?[生]没有改变.[师]所以椭圆关于x 轴、y 轴及原点都是对称的,这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.结论(板书)坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心. 3.顶点:[师]什么叫做椭圆的顶点?———椭圆与它的对称轴的交点叫做椭圆的顶点.(板书) [师]由刚才我们所学的第二条性质,标准方程下的椭圆的对称轴是哪个? [生]坐标轴[师]那么标准方程下的椭圆的顶点就在坐标轴上。
你能从椭圆的图形上看出椭圆有几个顶点?他们分别在什么地方?[师](出示幻灯提示)椭圆有四个顶点,其中,在x 轴有两个顶点,我们把它命名为21A A 、,在y 轴有两个顶点,我们把它命名为21B B 、[师]想一想,怎样由椭圆的标准方程求得椭圆的顶点坐标?(再提示:直线方程1+=x y 与x 轴的交点坐标是怎样求的?与y 轴的坐标又是怎样求的?)[生]在椭圆的标准方程里,令y =0,得a x ±=可得A 1(-a ,0)、A 2(a ,0)是椭圆在x 轴上的两个顶点,,同理. 令x =0得y =±b ,所以得到:B 1(0,-b )、B 2(0,b )是椭圆在y 轴的两个顶点结论(板书)椭圆的四个顶点分别是A 1(a,0)A 2(-a ,0)、B 1(0,b )、B 2(0,-b )。
[师]线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.它们的长分别是2a 和2b ,其中a 和b 分别叫椭圆的长半轴长和短半轴长.(板书)[师]通过以上性质,我们就知道了在椭圆的标准方程节课里我们接触到的三个基本量:a 、b 、c 的几何意义是a 、b 、c 分别是长半轴长、短半轴长、半焦距[师]请观察图形,如果我们吧短轴的一个端点与一个焦点连接起来,则短轴端点、中心、焦点构成一直角Δ,显然,这个直角Δ的两直角边的长分别是b 和c ,那么,它的斜边隐私多长呢?由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即 |B 1F 1|=|B 2F 1|=|B 1F 2|=|B 2F 2|=a 所以斜边长是a , 在Rt △OB 2F 2中 |B 2F 2|2-|OF 2|2=|OB 2|2 即a 2-c 2= b 2这就是在上节中令a 2-c 2=b 2的几何意义.我们把Rt △OB 2F 2叫做椭圆的特征三角形,请大家注意这个特征三角形,我们在后续内容中还将研究它。
[师]现在,我们来举一个例子来说明椭圆的范围、顶点、对称性的作用。
(出示幻灯)根据前面所学有关知识画出下列图形(1)1162522=+y x (2)142522=+y x (在学生思考后教师评讲)第一步,作出坐标轴,第二步找出顶点坐标,第三步,画出范围,第四步作出一象限的图像(必要时还可以取x 等于1、2、3、4,求出y 的值来描点)最后根据对称性画出其他几个象限的图像,用同样方法可作出(2)的图像。
[师]从以上两个椭圆的形状看,同为椭圆为什么有些椭圆“圆”些,有些椭圆“扁”些? 是什么因素影响了椭圆的扁圆程度?我一起来研究椭圆是性质4――离心率。
4.离心率[师]椭圆的离心率是怎样定义的? [生]椭圆的焦距与长轴长的比aca c =22=e ,叫做椭圆的离心率.(板书) [师]椭圆离心率e 的范围是怎样的? [生]因为a >c >0,所以0<e <1 结论(板书)离心率ac e =,(0<e <1) [师]e 既然在(0,1)变化,e 的变化又对椭圆有什么影响呢? [师]我们不妨用两个例子来看一看。
对于(1)1162522=+y x ,椭圆的长半轴、短半轴、半焦距a 、b 、c 分别等于多少?离心率呢?[生]a=5, b=4, ∴c=3;离心率53==a c e [师](2)142522=+y x 呢? [生]a=5, b=2, ∴c=21;离心率5212==a c e [师]两个的离心率那股大? [生]第二个大于第一个[师]从椭圆的图形上看,哪个椭圆更扁些?哪个椭圆更圆些?[生]第二个扁些,第一个圆些。
[师]你能得出什么结论来?[生]离心率越大椭圆就越扁,离心率越小,椭圆越圆。
[师]我们可以再用一个动画展示一下椭圆的扁圆程度受离心率影响的情况。
[师](4)e 与a,b 的关系:22221ab a b a ac e -=-==[师]到此为止,我们已学习了椭圆的范围、对称性、顶点及离心率,我们把这些性质总结一下师生共同完成下表标准方程)0(12222>>=+b a b y a x )0(12222>>=+b a bx a y 图形范围 -a ≤x ≤a,-b ≤y ≤b-b ≤x ≤b, -a ≤y ≤a对称性 关于x 轴、y 轴、原点对称顶点坐标 (±a ,0)(0,±b )(±b ,0),(0,±a )离心率)10(<<=e ace[师](指出)以上我们是对焦点在x 轴上的标准椭圆的性质的总结,那么,焦点在y 轴上的椭圆呢?请同学们自己完成表的右半部分[师]下面我们来看看椭圆的这些几何性质的应用。
二、应用(板书)[师]下面同学们自己来看例1求椭圆400251622=+y x 的长轴长,短轴长,离心率,焦点和顶点的坐标。
[师]根据椭圆方程求椭圆的长轴长、短轴长、离心率、焦点和顶点坐标时,首先应该做些什么?[生]首先应将椭圆的方程化成标准方程. [师]然后呢?[师](归纳)解决这类问题的关键是1、将椭圆方程转化为标准方程,再求出椭圆的基本量a 、b 、c 、e 等;2,判断焦点的位置和长轴的位置。
[师](总结)解决这类问题的一般步骤是:①化为标准方程,②求出a 、b 、c 、知,③判断焦点位置,④回答所提问题。