边界条件中湍流设置

合集下载

湍流边界条件参数的设置

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow…标题: [fluent相关]湍流边界条件参数的设置作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。

在FLUENT 中可以使用的湍流模型有很多种。

在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。

本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。

在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。

特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。

在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。

违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。

在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。

下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(Turbulence Intensity)湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。

湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。

在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。

比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

fluent相关问题汇总

fluent相关问题汇总

1、实体、实面与虚体、虚面的区别在建模中,经常会遇到实...与虚...,而且虚体的计算域好像也可以进行计算并得到所需的结果,对二者的根本区别及在功能上的不同对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格Gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点:1.实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split等功能;2.实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,Gambit的建模和网格生成的灵活性增加了很多。

3.在网格生成的过程中,如果有几个相对比较平坦的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量。

对于虚体生成的计算网格,和实体生成的计算网格,在计算的时候没有区别,关键是看网格生成的质量如何,与实体虚体无关。

经常在作复杂模型计算的时候,大部分都是用的虚体,特别是从其他的建模软件里面导进来的复杂模型,基本上不能够生成实体。

至于计算的效果如何,与Fluent的设置和网格的质量有关,与模型无关。

2、什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?问题的初始化就是在做计算时,给流场一个初始值,包括压力、速度、温度和湍流系数等。

理论上,给的初始场对最终结果不会产生影响,因为随着跌倒步数的增加,计算得到的流场会向真实的流场无限逼近,但是,由于Fluent等计算软件存在像离散格式精度(会产生离散误差)和截断误差等问题的限制,如果初始场给的过于偏离实际物理场,就会出现计算很难收敛,甚至是刚开始计算就发散的问题。

因此,在初始化时,初值还是应该给的尽量符合实际物理现象。

这就要求我们对要计算的物理场,有一个比较清楚的理解。

(整理)FLUENT边界条件(2)—湍流设置.

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置(fluent教材—fluent入门与进阶教程于勇第九章)Fluent:湍流指定方法(Turbulence Specification Method)2009-09-16 20:50使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。

其下参数共两项,(1)是Turbulence Intensity,确定方法如下:I=0.16/Re_DH^0.125 (1)其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。

雷诺数Re_DH=u×DH/υ(2)u为流速,DH为水利直径,υ为运动粘度。

水利直径见(2)。

(2)水利直径水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。

水力半径R=A/X (3)其中,A为截面积(管子的截面积)=流量/流速X为湿周(字面理解水流过各种形状管子外圈湿一周的周长)例如:方形管的水利半径R=ab/2(a+b)水利直径DH=2×R (4)举例如下:如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。

则DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径Re_DH=u×DH/υ=10*0.02/10e-6=20000I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%水力半径:润湿周长横截面积=h r , 水力直径:h h r 4D =对圆管而言,管道直径和水力直径是一回事。

CFD分析基础-边界、网格、湍流模型

CFD分析基础-边界、网格、湍流模型

紊流动能 [L2/T2]
ui xj ui xj uj xi
紊流耗散率 [L2/T3]
k
定义耗散率 [1/T]
每种紊流模型计算 μT 都很困难.
T f ~
Spalart-Allmaras:
解模拟紊流粘性的输运方程
标准 k–ε, RNG k–ε, Realizable k–ε
为何采用湍流模式模拟湍流?
直接数值模拟只适合于模拟简单的低雷诺数流动.
作为可行的方法, 改而求解雷诺平均 Navier-Stokes (RANS) 方程:
Uk
Ui xk
p xi
2Ui x jx j
Rij x j
其中
Rij uiu j
(雷诺应力)
时间平均湍流速度脉动通过基于经验常数和主流的信息来求解. 大涡模拟Large Eddy Simulation对大涡进行直接求解,而对小涡采
ui t
uk
ui xk
p xi
x j
ui x j
Rij x j
Rij uiuj
(Reynolds 压力张量)
Reynolds 应力是由附加未知的平均程序引进的,因此为了封闭控制方程组 系统它们必须被模拟 (涉及到平均流动属性).
第十页,编辑于星期五:六点 二十一分。
方程封闭问题
RANS 模型能够在下列方法其中之一下封闭 (1) 漩涡粘性模型 (通过 Boussinesq 假设)
小尺度涡则认为是各向同性的受几何形状与边界条件影 响较小。
大涡模拟通过滤波处理,将小于某个尺度的旋涡从流场中过 滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。
第十八页,编辑于星期五:六点 二十一分。
DES(分离涡模拟模式)

fluent第五章边界条件

fluent第五章边界条件

第五章 边界条件5-1 FLUENT 程序边界条件种类FLUENT 的边界条件包括: 1, 流动进、出口边界条件2, 壁面,轴对称和周期性边界3, Internal cell zones :fluid, solid (porous is a type of fluid zone )4, Internal face boundaries :fan, radiator, porous jump, wall, interior5-2 流动进口、出口边界条件FLUENT 提供了10种类型的流动进、出口条件,它们分别是:★一般形式: ★可压缩流动: 压力进口 质量进口 压力出口 压力远场★不可压缩流动: ★特殊进出口条件: 速度进口 进口通分,出口通风 自由流出 吸气风扇,排气风扇进口出口壁面orifice (interior)orifice_plate and orifice_plate-shadow流体Example: Face and Cell zones associated with Pipe Flow through orifice plate1,速度进口(velocity-inlet):给出进口速度及需要计算的所有标量值。

该边界条件适用于不可压缩流动问题,对可压缩问题不适用,否则该入口边界条件会使入口处的总温或总压有一定的波动。

2,压力进口(pressure-inlet):给出进口的总压和其它需要计算的标量进口值。

对计算可压不可压问题都适用。

3,质量流进口(mass-flow-inlet):主要用于可压缩流动,给出进口的质量流量。

对于不可压缩流动,没有必要给出该边界条件,因为密度是常数,我们可以用速度进口条件。

4,压力出口(pressure-outlet):给定流动出口的静压。

对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。

该边界条件只能用于模拟亚音速流动。

5,压力远场(pressure-far-field):该边界条件只对可压缩流动适合。

Fluent模型几大问题你知道么

Fluent模型几大问题你知道么

FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。

2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。

最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。

3、液固两相流动泥浆流:流体中的大量颗粒流动。

颗粒的stokes数通常小于1。

大于1是成为流化了的液固流动。

水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。

4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。

液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。

栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。

多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。

2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。

3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。

6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。

8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。

CFD分析基础-边界条件和湍流

CFD分析基础-边界条件和湍流
Leabharlann 边界上的数据通过面域给定.
设置边界条件

各区域在前处理过程中划分完成 为特定的域设置边界条件:
Define Boundary Conditions...


在Zone列表中选择域的名称. 在 zone type列表中选择边界类型 点击 Set...按钮进行边界条件的设置

亦可在图形界面中采用鼠标右键来选择边界 进行设置.

注: 在有回流产生的情况下,采用压力出口条件代替出流条 件可能更加有利于求解问题的收敛.
出流 (Outflow)条件的限制

出流条件不能应用于:

可压缩流动. 在采用压力入口的情况下 (通常可用速度入口代替): 密度会改变的非定常流动.
outflow condition ill-posed
在求解过程中或部分区域中出现. 假设方向垂直于边界. 可以减少收敛的难度. 当逆流发生时,设定的静压值作为总压计算.
压力出口条件(pressure outlet) (2)

不可压缩流动:

输入静压定义出口边界条件 其它所有边界参数通过内部流动计算获得. 如果局部超音速,则忽略静压输入. 所有边界参数通过内部流动计算获得.

设定各出口的流量权重: mi=FRWi/FRWi.

各出口静压根据流动的分布不同而不 同.
velocity inlet
FRW1

也可以采用压力出口条件设定.
FRW2
velocity-inlet (v,T0) or pressure-inlet (p0,T0)
pressure-outlet (ps)1 pressure-outlet (ps)2

湍流边界条件的设置

湍流边界条件的设置

在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。

在FLUENT 中可以使用的湍流模型有很多种。

在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。

本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。

在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。

特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。

在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。

违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。

在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。

下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(Turbulence Intensity)湍流强度I的定义为:I=Sq rt(u’*u’+v’*v’+w’*w’)/u_avg (8-1)上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。

湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。

在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。

比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。

内流问题进口处的湍流强度取决于上游流动状态。

如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。

fluent边界条件设置

fluent边界条件设置

fluent边界条件设置边界条件设置问题1、速度⼊⼝边界条件(velocity-inlet):给出进⼝速度及需要计算的所有标量值。

该边界条件适⽤于不可压缩流动问题。

Momentum 动量 thermal 温度 radiation 辐射 species 种类DPM DPM模型(可⽤于模拟颗粒轨迹) multipahse 多项流UDS(User define scalar 是使⽤fluent求解额外变量的⽅法)Velocity specification method 速度规范⽅法: magnitude,normal to boundary 速度⼤⼩,速度垂直于边界;magnitude and direction ⼤⼩和⽅向;components 速度组成Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的⼤⼩Turbulence 湍流Specification method 规范⽅法k and epsilon K-E⽅程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺⼨: 1湍流强度 2 湍流尺度=(L为⽔⼒半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与⽔⼒直径:1湍流强度;2⽔⼒直径2、压⼒⼊⼝边界条件(pressure-inlet):压⼒进⼝边界条件通常⽤于给出流体进⼝的压⼒和流动的其它标量参数,对计算可压和不可压问题都适合。

压⼒进⼝边界条件通常⽤于不知道进⼝流率或流动速度时候的流动,这类流动在⼯程中常见,如浮⼒驱动的流动问题。

starccm边界条件

starccm边界条件

starccm边界条件一、介绍在计算流体力学(Computational Fluid Dynamics, CFD)领域,Star-CCM+是一款广泛应用于工程仿真的商业软件。

该软件具有强大的求解器和多样化的功能,可以模拟各种流体流动问题。

而边界条件则是在建立流动模型时,对流体领域的物理边界进行设定的条件。

本文将深入探讨Star-CCM+中的边界条件及其应用。

二、边界条件的分类在Star-CCM+中,边界条件可以分为三类:入流条件、出流条件和壁面条件。

下面将分别对这三类边界条件进行详细讨论。

2.1 入流条件入流条件是指模拟流体流动时,流体从边界进入计算区域的边界条件。

在Star-CCM+中,有多种入流条件可供选择,如:1.压力入流条件:可以指定边界处的静压力或总压力。

2.质量流率入流条件:可以根据质量流率设定边界处的入流速度。

3.对流入流条件:可根据流体的初始条件和速度场来设定入流边界。

4.指定相对速度入流条件:可指定与其他物体相对运动的速度。

5.指定涡动强度和湍流动能入流条件:适用于模拟湍流流动的入流边界。

2.2 出流条件出流条件是指流体通过边界离开计算区域时的边界条件。

在Star-CCM+中,常见的出流条件有:1.压力出流条件:可以指定边界处的静压力。

2.质量流率出流条件:可以设定边界处的出流速度,保持质量流率不变。

3.对流出流条件:可以设定边界处的出流速度,根据流体在计算区域内的速度场进行模拟。

2.3 壁面条件壁面条件是指流体在与实体边界接触时的边界条件。

Star-CCM+中常见的壁面条件包括:1.粘性壁面条件:适用于粘性流体,可指定壁面处的摩擦系数。

2.光滑壁面条件:适用于非粘性流体,假定流体与壁面无摩擦。

3.孔壁面条件:适用于介质中存在孔隙或孔道的壁面。

4.翼型壁面条件:适用于翼型等具有几何特征的壁面。

三、边界条件的设定在Star-CCM+中设定边界条件需要考虑模拟的具体问题和所需的物理精度。

湍流模型简述

湍流模型简述

u y

一方程模型
/ t C k 1/ 2l
零方程模型和单方程模型适用于简单的流动;对于复杂流 动,系数很难给定,无通用性,故应用较少。
11

两方程模型
由求解湍流特征参数的微分方程来确定湍流粘性。包括k-ε 、 k-ω、 kτ、 k-l 模型等 。其中,应用最普遍的是 k-ε模型。
26
• 气固两相数值模拟
27
气 固 两 相 流 计 算 方 法
Euler-Lagrange方法:
把流体作为连续介质,而将颗粒看作离散体系,在 Euler坐标系下考察流体相的运动,在Lagrange 坐标系 下研究颗粒群的运动,即颗粒轨道模型
Euler-Euler方法:
将流体作为连续介质外,把颗粒也作为拟连续介质或 拟流体,设其在空间有连续的速度和温度分布及等价 的输运性质(粘性、扩散、导热等),两相都在Euler 坐标系下处理,即连续介质模型
标准 k-ε 模型只适用于高 Reynolds 数的湍流流动,不能 用于近壁区,在求解各项异性的流动时遇到较大的困难, 如强旋流、浮力流、曲壁边界层流及圆射流等。
针对不足,许多学者对标准的模型进行了修正。应用较 多的有


重整化群k-ε模型(renormalization group,RNG
model) 可实现k-ε模型(realizable k-ε model) 多尺度k-ε模型(multiscale model of turbulence)
时均值 脉动值
因此,只能得到流场的时均值。要想得到瞬时值,它还必须和 另一些求脉动速度的方法相结合。在实际工程应用中,人们更关心流 动的时均值,而忽略湍流的细节。 因此,目前工程湍流计算还是依 赖于RANS。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:一、Fluent 空气湍流模型的概述二、湍流模型的类型及选择三、设置湍流模型的步骤四、影响湍流模型的因素五、如何获取较好的湍流模型模拟结果正文:Fluent 是一款广泛应用于流体动力学模拟的软件,其中的空气湍流模型是解决实际工程问题的重要工具。

本文将详细介绍Fluent 中的空气湍流模型,包括模型的类型、设置方法以及影响模拟结果的因素。

一、Fluent 空气湍流模型的概述在Fluent 中,空气湍流模型主要分为以下几种:k-ε 模型、k-ω 模型、SST 模型、大涡模拟(LES)等。

这些模型都是基于实际湍流特性进行数学建模,用以预测和分析流体流动中的复杂现象。

二、湍流模型的类型及选择在选择湍流模型时,需要考虑流动特性、雷诺数、模拟精度等因素。

例如,k-ε 模型适用于广泛范围内的流动问题,但其精度相对较低;而k-ω 模型则适用于高速、大涡占主导的流动场合。

具体模型的选择可根据实际情况和需求进行。

三、设置湍流模型的步骤在Fluent 中设置湍流模型主要包括以下步骤:1.打开Fluent 软件,创建或导入计算模型。

2.在“Meshing”模块中,设置网格类型、尺寸和数量。

3.在“Boundary Conditions”模块中,设置进口、出口、壁面等边界条件。

4.在“Turbulence”模块中,选择合适的湍流模型,并设置模型参数。

5.设置其他物理参数,如压力、速度、密度等。

6.进行模拟计算。

四、影响湍流模型的因素湍流模型的选择和设置不仅取决于流动特性,还受到以下因素的影响:1.雷诺数:雷诺数是判断流动状态的重要参数,不同湍流模型适用于不同雷诺数的流动场合。

2.边界条件:边界条件的设置会影响湍流模型的表现,尤其是壁面边界层的影响。

3.网格质量:网格质量直接影响数值模拟的准确性和稳定性,选用合适的网格类型和尺寸至关重要。

五、如何获取较好的湍流模型模拟结果1.选择合适的湍流模型:根据实际流动特性和需求,选择适合的湍流模型。

fluent 风扇 边界条件

fluent 风扇 边界条件

fluent 风扇边界条件fluent风扇作为一种常见的流体动力设备,其工作原理和性能优化一直是科研人员和工程师关注的焦点。

在fluent软件中,通过数值模拟可以预测风扇的流场分布、压力损失、流量特性等参数,从而为优化风扇设计提供理论依据。

而在fluent风扇模拟中,边界条件的设置起着至关重要的作用。

边界条件是指在计算域边界上所施加的物理条件。

在fluent风扇模拟中,合理的边界条件设置有助于提高计算精度和可靠性。

以下是边界条件设置的方法和注意事项:1.进口边界条件:进口边界条件通常包括速度、压力和湍流参数等。

为了使模拟结果更接近实际情况,建议在设置进口边界条件时,充分考虑实际风扇的工作参数,如转速、叶片数、风道形状等。

2.出口边界条件:出口边界条件主要包括压力和湍流参数。

在设置出口边界条件时,应注意保证出口处的流场状态与实际工况相符。

此外,为了避免回流现象,可以设置适当的出口压力边界条件。

3.壁面边界条件:壁面边界条件主要包括壁面函数和壁面粗糙度。

在设置壁面边界条件时,应充分考虑风扇叶片的表面形态和材料特性。

4.旋转边界条件:对于旋转的风扇,还需要设置旋转边界条件。

旋转边界条件包括旋转速度和旋转方向。

在设置旋转边界条件时,应注意与实际风扇的旋转参数相一致。

5.注意事项:- 边界条件的设置应遵循实际工况,以确保模拟结果的可靠性;- 避免使用过于简化的边界条件,以免影响计算精度;- 针对不同类型的风扇,边界条件的设置可能有所不同,需根据实际情况进行调整;- 在设置边界条件时,应注意保持计算域内流场的连续性和稳定性。

总之,在fluent风扇模拟中,合理的边界条件设置对于提高计算结果的可信度和实用性具有重要意义。

因此,在进行风扇模拟研究时,务必重视边界条件的设置,并根据实际工况进行适当调整。

fluent初始化湍流动能和湍流耗散率

fluent初始化湍流动能和湍流耗散率

fluent初始化湍流动能和湍流耗散率
摘要:
1.湍流动能和耗散率的概念
2.湍流动能和耗散率的计算方法
3.湍流动能和耗散率的初始值设置
4.总结
正文:
一、湍流动能和耗散率的概念
湍流动能和耗散率是数值计算中湍流模型的两个重要参数。

湍流动能是指流体在湍流状态下的动能,其数值与流体的速度、压力等有关;而湍流耗散率是指湍流中流体动能转化为热能的速率,其数值与湍流的特性、流体的物理性质等有关。

二、湍流动能和耗散率的计算方法
在实际计算中,湍流动能和耗散率的数值需要根据工况的速度、尺寸等因素进行计算。

一般采用陶文铨院士的《数值传热学》一书中的计算方法进行计算。

此外,还有湍流系数计算器和k-e 经验系数计算器等工具可以简化计算过程,只需要输入流速、特征长度等参数,就可以得到湍流动能和耗散率的初始值推荐值。

三、湍流动能和耗散率的初始值设置
在Fluent 软件中,湍流动能和耗散率的初始值可以通过边界条件进行设置。

在设置时,需要根据实际工况选择合适的湍流模型,并输入计算得到的湍流动能和耗散率数值。

合理的初始值设置可以提高数值计算的精度和效率。

四、总结
湍流动能和耗散率是数值计算中湍流模型的重要参数,需要根据实际工况进行计算。

在Fluent 软件中,可以通过设置边界条件来确定它们的初始值。

fluent水力半径和湍动强度的设置

fluent水力半径和湍动强度的设置

fluent水力半径和湍动强度的设置摘要:一、Fluent 水力半径和湍动强度的设置概述二、水力半径的设置方法及其对模拟结果的影响三、湍动强度的设置方法及其对模拟结果的影响四、总结正文:一、Fluent 水力半径和湍动强度的设置概述在Fluent 中,水力半径和湍动强度是两个重要的设置参数,对于模拟流体动力学问题有着重要的影响。

水力半径主要用于描述管道的粗糙程度,而湍动强度则用于描述流体运动的混乱程度。

这两个参数的设置会直接影响到模拟结果的准确性和可靠性。

二、水力半径的设置方法及其对模拟结果的影响水力半径的设置主要可以通过以下几个步骤完成:1.确定管道的长度和形状。

管道的长度和形状会影响到水力半径的计算。

一般来说,管道越长,水力半径越大;管道越粗,水力半径越大。

2.确定管道的粗糙程度。

管道的粗糙程度可以通过实验测量得到,也可以通过经验公式计算。

一般来说,管道越粗糙,水力半径越大。

3.输入Fluent 中的水力半径参数。

在Fluent 中,可以通过设定zone 属性来输入水力半径参数。

水力半径的设置对模拟结果的影响主要体现在以下几个方面:1.影响流体的摩擦阻力。

水力半径越大,流体的摩擦阻力越大,从而影响到流体的流速和压力分布。

2.影响热传递。

水力半径越大,热传递的效率越高,因为流体与管道壁之间的温差越小。

三、湍动强度的设置方法及其对模拟结果的影响湍动强度的设置主要可以通过以下几个步骤完成:1.确定湍流模型。

在Fluent 中,有多种湍流模型可供选择,如k-ε模型、k-ω模型等。

不同的湍流模型对湍动强度的计算方法不同,因此需要先确定湍流模型。

2.输入湍动强度的参数。

在Fluent 中,可以通过设定material 属性或者zone 属性来输入湍动强度参数。

3.调整湍动强度的边界条件。

在Fluent 中,可以通过设定boundary condition 来调整湍动强度的边界条件。

湍动强度的设置对模拟结果的影响主要体现在以下几个方面:1.影响流体的混合程度。

Fluent经典问题答疑

Fluent经典问题答疑

Fluent经典问题及答疑1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61)2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。

(13楼)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80)4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62)5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81)6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130)7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55)8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56)9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则?10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143)11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35)12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系?13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38)14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169)15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154)16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40)17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170)18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128)19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127)20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41)21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼)22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?(#29)25 燃烧过程中经常遇到一个“头疼”问题是计算后温度场没什么变化?即点火问题,解决计算过程中点火的方法有哪些?什么原因引起点火困难的问题? (#183)26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?(12楼)27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?(#197)28 在利用prePDF计算时出现不稳定性如何解决?即平衡计算失败。

FLUENT边界条件2—湍流设置

FLUENT边界条件2—湍流设置

FLUENT边界条件(2)—湍流设置(fluent教材—fluent入门与进阶教程于勇第九章)Fluent:湍流指定方法(Turbulence Specification Method)2009-09-16 20:50使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。

其下参数共两项,(1)是Turbulence Intensity,确定方法如下:I=0.16/Re_DH^0.125 (1)其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。

雷诺数Re_DH=u×DH/υ(2)u为流速,DH为水利直径,υ为运动粘度。

水利直径见(2)。

(2)水利直径水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。

水力半径R=A/X (3)其中,A为截面积(管子的截面积)=流量/流速X为湿周(字面理解水流过各种形状管子外圈湿一周的周长)例如:方形管的水利半径R=ab/2(a+b)水利直径DH=2×R (4)举例如下:如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。

则DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径Re_DH=u×DH/υ=10*0.02/10e-6=20000I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%水力半径:润湿周长横截面积=h r , 水力直径:h h r 4D =对圆管而言,管道直径和水力直径是一回事。

fluent圆管仿真湍流参数设置

fluent圆管仿真湍流参数设置

一、概述在工程领域中,流体力学仿真是一项十分重要的工作。

在进行流体力学仿真时,对于湍流参数的设置尤为关键。

本文主要讨论在使用fluent软件进行圆管湍流仿真时,如何设置参数以获得准确可靠的结果。

二、湍流模型的选择1. 简介在进行圆管湍流仿真时,首先需要选择合适的湍流模型。

目前常用的湍流模型包括k-ε模型、k-ω模型、SST湍流模型等。

每种湍流模型都有其适用的范围和局限性。

2. 参数设置在fluent软件中,进行湍流模型选择时需要考虑雷诺数、流场特性等因素。

根据具体情况选择合适的湍流模型,并对相应的参数进行设置。

三、网格划分1. 网格类型在进行圆管湍流仿真时,合适的网格划分也是至关重要的。

常见的网格类型包括结构化网格、非结构化网格等。

2. 网格密度对于圆管湍流仿真,网格的密度对结果的准确性有着直接的影响。

在fluent软件中,可以通过设置不同的网格密度来进行网格划分。

四、边界条件设置1. 入口边界条件对于圆管湍流仿真,入口边界条件的设置对结果有着重要的影响。

在fluent软件中,可以通过设定入口速度、湍流强度等参数来进行设置。

2. 出口边界条件出口边界条件的设置同样十分重要。

在fluent软件中,需要考虑出口压力、流速等参数。

五、求解器设置1. 时间步长在进行湍流仿真时,时间步长的选择对结果的精度有着很大的影响。

需要根据具体情况进行合理的设置。

2. 收敛准则在fluent软件中,收敛准则的设置也是必不可少的。

通过调整收敛准则的值来保证计算结果的准确性。

六、计算结果分析1. 流场分布通过fluent软件进行湍流仿真后,可以获得流场的分布情况。

需要对结果进行仔细的分析和比对。

2. 压降计算在圆管湍流仿真中,压降是一个重要的参数。

需要对压降进行精确的计算和分析。

七、总结圆管湍流仿真是流体力学仿真中的重要内容。

在使用fluent软件进行仿真时,正确的参数设置和合理的操作流程至关重要。

通过本文的讨论,相信读者对圆管湍流仿真的参数设置有了更清晰的认识,能够在实际工程中取得更好的仿真结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在入口、出口或远场边界流入流域的流动,FLUENT 需要指定输运标量的值。

本节描述了对于特定模型需要哪些量,并且该如何指定它们。

也为确定流入边界值最为合适的方法提供了指导方针。

使用轮廓指定湍流参量在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。

如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。

一旦你创建了轮廓函数,你就可以使用如下的方法:● Spalart-Allmaras 模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性比之后的下拉菜单中选择适当的轮廓名。

通过将m_t/m 和密度与分子粘性的适当结合, FLUENT 为修改后的湍流粘性计算边界值。

● k-e 模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. KineticEnergy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。

● 雷诺应力模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. KineticEnergy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。

在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。

湍流量的统一说明在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。

比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。

在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。

然而必须注意的是要保证边界值不是非物理边界。

非物理边界会导致你的解不准确或者不收敛。

对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。

你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。

你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。

湍流强度I 定义为相对于平均速度u_avg 的脉动速度u^'的均方根。

小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。

从外界,测量数据的入口边界,你可以很好的估计湍流强度。

例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。

在现代低湍流风洞中自由流湍流强度通常低到0.05%。

.对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。

如果流动完全发展,湍流强度可能就达到了百分之几。

完全发展的管流的核心的湍流强度可以用下面的经验公式计算:()81Re 16.0-≅'≡H D avg u u I例如,在雷诺数为50000是湍流强度为4%湍流尺度l 是和携带湍流能量的大涡的尺度有关的物理量。

在完全发展的管流中,l 被管道的尺寸所限制,因为大涡不能大于管道的尺寸。

L 和管的物理尺寸之间的计算关系如下: L l 07.0=其中L 为管道的相关尺寸。

因子0.07是基于完全发展湍流流动混合长度的最大值的,对于非圆形截面的管道,你可以用水力学直径取代L 。

如果湍流的产生是由于管道中的障碍物等特征,你最好用该特征长度作为湍流长度L 而不是用管道尺寸。

注意:公式L l 07.0=并不是适用于所有的情况。

它只是在大多数情况下得很好的近似。

对于特定流动,选择L 和l 的原则如下:● 对于完全发展的内部流动,选择强度和水力学直径指定方法,并在水力学直径流场中指定L=D_H 。

● 对于旋转叶片的下游流动,穿孔圆盘等,选择强度和水力学直径指定方法,并在水力学直径流场中指定流动的特征长度为L● 对于壁面限制的流动,入口流动包含了湍流边界层。

选择湍流强度和长度尺度方法并使用边界层厚度d_99来计算湍流长度尺度l ,在湍流长度尺度流场中输入l=0.4 d_99这个值湍流粘性比m_t/m 直接与湍流雷诺数成比例(Re_t ?k^2/(e n))。

Re_t 在高湍流数的边界层,剪切层和完全发展的管流中是较大的(100到1000)。

然而,在大多数外流的自由流边界层中m_t/m 相当的小。

湍流参数的典型设定为1 < m_t/m <10。

要根据湍流粘性比来指定量,你可以选择湍流粘性比(对于Spalart-Allmaras 模型)或者强度和粘性比(对于k-e 模型或者RSM )。

推导湍流量的关系式要获得更方便的湍流量的输运值,如:I, L,或者m_t/m ,你必须求助于经验公式,下面是FLUENT 中常用的几个有用的关系式。

要获得修改的湍流粘性,它和湍流强度I 长度尺度l 有如下关系:Il u v avg 23~= 在Spalart-Allmaras 模型中,如果你要选择湍流强度和水力学直径来计算l 可以从前面的公式中获得。

湍动能k 和湍流强度I 之间的关系为: ()223I u k avg = 其中u_avg 为平均流动速度除了为k 和e 指定具体的值之外,无论你是使用湍流强度和水力学直径,强度和长度尺度或者强度粘性比方法,你都要使用上述公式。

如果你知道湍流长度尺度l 你可以使用下面的关系式:l k C 2343με= 其中C μ是湍流模型中指定的经验常数(近似为0.09),l 的公式在前面已经讨论了。

除了为k 和e 制定具体的值之外,无论你是使用湍流强度和水力学直径还是强度和长度尺度,你都要使用上述公式。

E 的值也可以用下式计算,它与湍流粘性比m_t/m 以及k 有关:12-⎪⎪⎭⎫ ⎝⎛=μμμρεμt k C 其中C μ是湍流模型中指定的经验常数(近似为0.09)。

除了为k 和e 制定具体的值之外,无论你是使用湍流强度和水力学直径还是强度和长度尺度,你都要使用上述公式。

如果你是在模拟风洞条件,在风洞中模型被安装在网格和/或金属网格屏下游的测试段,你可以用下面的公式: ∞∞∆≈L kU ε 其中,k ∆是你希望的在穿过流场之后k 的衰减(比方说k 入口值的10%), U ∞自由流的速度L ∞是流域内自由流的流向长度Equation 9是在高雷诺数各向同性湍流中观察到的幂率衰减的线性近似。

它是基于衰减湍流中k 的精确方程U ?k/?x = - e.如果你用这种方法估计e ,你也要用方程7检查结果的湍流粘性比m_t/m ,以保证它不是太大。

虽然这不是FLUENT 内部使用的方法,但是你可以用它来推导e 的常数自由流值,然后你可以用湍流指定方法下拉菜单中选择K 和Epsilon 直接指定。

在这种情况下,你需要使用方程3从I 来计算k 。

当使用RSM 时,如果你不在雷诺应力指定方法的下拉列表中使用雷诺应力选项,明显的制定入口处的雷诺应力值,它们就会近似的由k 的指定值来决定。

湍流假定为各向同性,保证0=j i u u以及k u u 32=αα (下标a 不求和).如果你在雷诺应力指定方法下拉列表中选择K 或者湍流强度,FLUENT 就会使用这种方法。

对大涡模拟(LES )指定入口湍流大涡模拟模型一节中所描述的LES 速度入口中指定的的湍流强度值,被用于随机扰动入口处速度场的瞬时速度。

它并不指定被模拟的湍流量。

正如大涡模拟模型中介绍的边界条件中所描述的,通过叠加每个速度分量的随机扰动来计算流动入口边界处的随机成分.压力入口边界条件压力入口边界条件用于定义流动入口的压力以及其它标量属性。

它即可以适用于可压流,也可以用于不可压流。

压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。

这一情况可用于很多实际问题,比如浮力驱动的流动。

压力入口边界条件也可用来定义外部或无约束流的自由边界。

对于流动边界条件的概述,请参阅流动入口和出口一节。

压力入口边界条件的输入综述对于压力入口边界条件你需要输入如下信息●驻点总压●驻点总温●流动方向●静压●湍流参数(对于湍流计算)●辐射参数(对于使用P-1模型、DTRM模型或者DO模型的计算)●化学组分质量百分比(对于组分计算)●混合分数和变化(对于PDF燃烧计算)●程序变量(对于预混和燃烧计算)●离散相边界条件(对于离散相的计算)●次要相的体积分数(对于多相计算)所有的值都在压力入口面板中输入(Figure 1),该面板是从边界条件打开的。

Figure 1: 压力入口面板压力输入和静压头压力场(p_s^')和压力输入(p_s^' or p_0^')包括静压头r_0 g x 。

也就是FLUENT 以下式定义的压力:s s p gx p +='0ρ或者xp g x p s s ∂+=∂'∂0ρ 这一定义允许静压头放进体积力项(r - r_0)g 中考虑,而且当密度一致时,从压力计算中排除了。

因此你的压力输入不因该考虑静压的微分,压力(p^'_s)的报告也不会显示静压的任何影响。

有关浮力驱动流动的内容请参阅浮力驱动流动和自然对流的信息定义总压和总温在压力入口面板中的Gauge Total Pressure field 输入总压值。

总温会在Total Temperature field 中设定。

记住,总压值是在操作条件面板中定义的与操作压力有关的的总压值。

不可压流体的总压定义为:20v p p s ρ+=对于可压流体为: )120211-⎥⎦⎤⎢⎣⎡-+=γγγM p p s其中:p_0 =总压p_s = 静压M = 马赫数c = 比热比(c_p/c_v)如果模拟轴对称涡流,方程1中的v 包括了旋转分量。

如果相邻区域是移动的(即:如果使用旋转参考坐标系,多重参考坐标系,混合平面或者滑移网格),而且你是使用分离解算器。

那么方程1中的速度(或者方程3中的马赫数)将是绝对的,或者相对与网格速度。

这依赖于解算器面板中绝对速度公式是否激活。

对于耦合解算器,方程1中的速度(或者方程3中的马赫数)通常是在绝对坐标系下的速度。

相关文档
最新文档