九年级数学上册单元评价检测(3)
新人教版初中数学九年级数学上册第三单元《旋转》检测卷(有答案解析)(3)
一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 2.已知点(2,3)A ,O 是坐标原点,将线段OA 绕点O 逆时针旋转90︒,点A 旋转后的对应点1A ,则点1A 的坐标是( )A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)- 3.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .234.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 5.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后得到ACP '△,如果AP =2,那么PP '的长等于( )A .32B .23C .22D .46.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .7.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(20)-,C .(﹣1,﹣1)D .(02)-, 8.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 9.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1) 10.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形 11.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°12.如图,把△ABC 绕着点A 逆时针旋转40°得到△ADE ,∠1=30°,则∠BAE =( )A .10°B .30°C .40°D .70°二、填空题13.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.14.如图,将ABC 绕点A 逆时针旋转得到AB C ''△.若B '落到BC 边上,50B ∠=︒,则CB C ''∠的度数为______.15.点()1,2--A 绕点()10B ,旋转180︒得到点C ,则点C 坐标为_______________________.16.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.17.在Rt ABC △中,90ACB ∠=︒,将ABC 绕顶点C 顺时针旋转得到A B C '',点M 是BC 的中点,点P 是A B ''的中点,连接PM .若4BC =,30A ∠=︒,则在旋转一周的过程中线段PM 长度的最大值等于_____.18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.如图,在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为_____.20.直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____.三、解答题21.(探索发现)如图①,四边形ABCD 是正方形,M ,N 分别在边CD 、BC 上,且45MAN=∠︒,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将ADM ∆绕点A 顺时针旋转90︒,点D 与点B 重合,得到ABE ∆,连接AM 、AN 、MN .(1)试判断DM ,BN ,MN 之间的数量关系,并写出证明过程.(2)如图②,点M 、N 分别在正方形ABCD 的边BC 、CD 的延长线上,45MAN=∠︒,连接MN ,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB=AD ,120BAD=∠︒,180B+D=∠∠︒,点N ,M 分别在边BC ,CD 上,60MAN=∠︒,请直接写出线段BN ,DM ,MN 之间的数量关系.22.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE .(1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.23.如图1,ABC 和DEF 都是等腰直角三角形, 90A ∠=︒,90E ∠=︒,DEF 的顶点D 恰好落在ABC 的斜边BC 中点,把ADEF 绕点D 旋转,始终保持线段DE 、DF 分别与线段AB 、AC 交于M 、N ,连接MN .在这个变化过程中,小明通过观察、度量,发现了一些特殊的数量关系.(1)于是他把DEF 旋转到特殊位置,验证自己的猜想.如图2,当//BC MN 时, ①通过计算BMD ∠和NMD ∠的度数,得出BMD ∠________NMD ∠(填>,<或=); ②设22BC =,通过计算AM 、MN 、NC 的长度,其中NC =____,进而得出AM 、MN 、NC 之间的数量关系是_______.(2)在特殊位置验证猜想还不够,还需要在一般位置进行证明.请你对(1)中猜想的线段AM 、MN 、NC 之间的数量关系进行证明.24.实践与探究已知:△ABC 和△DOE 都是等腰三角形,∠CAB=∠DOE=90°,点O 是BC 的中点,发现结论:(1)如图1,当OE 经过点A ,OD 经过点C 时,线段AE 和CD 的数量关系是 ,位置关系是 .(2)在图1的基础上,将△DOE 绕点O 顺时针旋转α(090α︒<<︒)得到图2,则问题(1)中的结论是否成立?请说明理由.(3)如图3在(2)的基础上,当AE=CE 时,请求出α的度数.(4)在(2)的基础上,△DOE 在旋转的过程中设AC 与OE 相交于点F ,当△OFC 为等腰三角形时,请直接写出α的度数.25.如图1,AC ⊥CH 于点C ,点B 是射线CH 上一动点,将△ABC 绕点A 逆时针旋转60°得到△ADE (点D 对应点C ).(1)延长ED 交CH 于点F ,求证:FA 平分∠CFE ;(2)如图2,当∠CAB >60°时,点M 为AB 的中点,连接DM ,请判断DM 与DA 、DE 的数量关系,并证明.26.如图,△ABC 各顶点的坐标分别为A (4、4),B (-2,2),C (3,0), (1)画出它的以原点O 为对称中心的△A'B'C'(2)写出 A',B',C'三点的坐标.(3)把每个小正方形的边长看作1,试求△ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D .【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.D解析:D【分析】根据点(,)x y 绕原点逆时针旋转90°得到的坐标为(,)y x -解答即可.【详解】解:A 、1A 两点是绕原点逆时针旋转90︒得到的,1A ∴的坐标为(3,2)-.故选:D .【点睛】考查由旋转得到的两点的坐标的变换;用到的知识点为:点(,)x y 绕原点逆时针旋转90︒得到的坐标为(,)y x -.3.A解析:A【分析】由旋转的性质得O 为DE 中点,可证OB=OE ,∠OBE=∠E ,进而证明AF=BF ,然后设设AF=BF=x ,根据勾股定理求解即可.【详解】解:∵ABC ∆≌EDB ∆,∴BE=AC=4, ∠A=∠E , ∠C=∠DBE=90°.∵O 为AB 中点,且△ABC 绕点O 旋转,∴O 为DE 中点,∴OB=OE ,∴∠OBE=∠E ,∴∠OBE=∠A ,∴AF=BF ,设AF=BF=x ,则CF=4-x ,∵222BC CF BF +=,∴2223(4)x x +-=, ∴258x =, ∴258BF =, ∴257488EF BE BF =-=-=. 故选A .【点睛】 本题考查了全等三角形的性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质,以及勾股定理等知识,熟练掌握各知识点是解答本题的关键.4.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m 的取值范围.解:点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),∵P′(m ,3-m ),在第二象限,∴030m m <⎧⎨->⎩, ∴m <0.故选:C .【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.5.C解析:C【分析】由旋转的性质可得出AP AP '=,B C AP AP '∠∠=,由90BAC ∠=︒可得90PAP '∠=︒,所以APP '是等腰直角三角形,由AP 的长度结合勾股定理计算出'AP 的长度即可.【详解】由旋转的性质可得:AP AP '==2,B C AP AP '∠∠=,∴BAP APC CAP APC '∠+∠=∠+,∴=90BAC PAP '∠=∠︒,∴PP '==.故选:C .【点睛】本题主要考查旋转的性质以及勾股定理,根据旋转的性质得出对应角的度数是解题关键. 6.A解析:A【分析】根据中心对称图形的定义逐一判断即可.【详解】A 是中心对称图形,故A 正确;B 是轴对称图形,故B 错误;C 不是中心对称图形,故C 错误;D 不是中心对称图形,故D 错误;故选A .【点睛】本题考查了中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称. 7.C【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),B4(-1,-1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(-1,-1)故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.8.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,但不是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 9.A解析:A【解析】试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称10.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、不是轴对称图形,是中心对称图形.故不符合题意;C 、是轴对称图形,不是中心对称图形.故不符合题意;D 、是轴对称图形,也是中心对称图形.故符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F .则∠AFB=90°,∴在Rt △ABF 中,∠B=90°-∠BAD=25°,∴在△ABC 中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.12.D解析:D【分析】先找到旋转角,根据∠BAE =∠1+∠CAE 进行计算.【详解】解:根据题意可知旋转角∠CAE =40°,所以∠BAE =30°+40°=70°.故选D .【点睛】本题主要考查了旋转的性质,解题的关键是找准旋转角.二、填空题13.【分析】由旋转角∠BAB′=30°可知∠DAB′=90°﹣30°=60°;构造全等三角形用S 阴影部分=S 正方形﹣S 四边形AB′ED 计算面积即可【详解】如图连接根据旋转角为可知在与中在中故答案为:【点解析:36-【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′ED ,计算面积即可.【详解】如图,连接AE ,根据旋转角为30,可知,30BAB '∠=︒,9060DAB ∴∠=︒-30︒='︒,在Rt ADE △与Rt AB E '中,AD AB AE AE '=⎧⎨=⎩()Rt ADE Rt AB E HL '∴△△≌,1302EAD B AD DAB '∴∠=∠=∠='︒, ∴在Rt ADE △中,6AD =,ED =11262ADE AD E S D ⋅∴=⨯=⨯=△2ADEB ADE S S '=∴=△,2636ABCD S ==正方形,36ADEB ABCD S S S '∴-==阴影正方形--.故答案为:36123【点睛】本题考查了正方形的性质及旋转的性质,熟练添加辅助线,证明全等,灵活计算阴影面积是解题关键.14.80【分析】由旋转的性质可得AB=AB∠ABC=50°再根据据等腰三角形的性质得到∠B=∠BBA=50°最后根据平角的定义即可解答【详解】解:由旋转的性质可得:AB=AB∠ABC=50°∵AB=AB解析:80【分析】由旋转的性质可得AB=AB',∠AB' C'=50°,再根据据等腰三角形的性质得到∠B=∠BB'A=50°,最后根据平角的定义即可解答.【详解】解:由旋转的性质可得:AB=AB',∠AB' C'=50°.∵AB=AB',∴∠B=∠BB'A=50°.∵∠BB'A+∠AB' C'+∠CB' C' =180°.∴∠CB'C'=180°-(∠BB'A+∠AB' C')=80°.故答案为80°.【点睛】本题主要考查的是旋转的性质、等腰三角形的性质,灵活运用旋转的性质是解答本题的关键.15.【分析】过AC两点向x轴作垂线构造全等三角形得到CF和AE相等BF和BE相等即可得到结果【详解】解:过点A作AE⊥x轴过点C作CF⊥x轴∴∠AEB=∠CFB=90°由旋转性质可得AB=BC∵∠CBF32,解析:()【分析】过A、C两点向x轴作垂线,构造全等三角形,得到CF和AE相等,BF和BE相等,即可得到结果.【详解】解:过点A作AE⊥x轴,过点C作CF⊥x轴,∴∠AEB=∠CFB=90°,由旋转性质可得AB=BC ,∵∠CBF=∠EBA ,∴△ABE ≌△CFB∴CF=AE ,BF=EB ,又∵EB=2,∴BF=2,CF=2,∴OF=2+1=3,∴C (3,2)故答案为:(3,2).【点睛】本题考查旋转变换和三角形全等的判定和性质,正确作出辅助线证明全等是解题的关键. 16.【分析】先根据正方形的性质可得再根据旋转的性质可得从而可得点在同一条直线上然后根据线段的和差可得最后在中利用勾股定理即可得【详解】四边形ABCD 是正方形由旋转的性质得:点在同一条直线上则在中故答案为 解析:5【分析】先根据正方形的性质可得90,3ABC D C CD BC AB ∠=∠=∠=︒===,再根据旋转的性质可得1,90BE DE ABE D ''==∠=∠=︒,从而可得点,,E B C '在同一条直线上,然后根据线段的和差可得4E C '=,最后在Rt ECE '中,利用勾股定理即可得.【详解】四边形ABCD 是正方形,90,3ABC D C CD BC AB ∴∠=∠=∠=︒===,1DE =,312CE CD DE ∴=-=-=,由旋转的性质得:1,90BE DE ABE D ''==∠=∠=︒,180ABC ABE '∴∠+∠=︒,∴点,,E B C '在同一条直线上,134E C BE BC ''∴=+=+=,则在Rt ECE '中,22222425EE CE E C ''=++=, 故答案为:5【点睛】本题考查了正方形的性质、旋转的性质、勾股定理等知识点,熟练掌握正方形与旋转的性质是解题关键.17.6【分析】连接PC 由直角三角形的性质及旋转的性质可得根据可进行求解【详解】解:连接PC 如图所示:在Rt △ABC 中∵∠A=30°BC=4∴AB=8根据旋转的性质可得:∴∴PC=4∵CM=BM=2又∵即解析:6【分析】连接PC ,由直角三角形的性质及旋转的性质可得8A B AB ''==,4PC =,根据PM PC CM ≤+,可进行求解.【详解】解:连接PC ,如图所示:在Rt △ABC 中,∵∠A=30°,BC=4,∴AB=8,根据旋转的性质可得:8A B AB ''==,∴A P B P PC ''==,∴PC=4,∵CM=BM=2,又∵PM PC CM ≤+,即6PM ≤,∴PM 的最大值为6(此时P 、C 、M 共线);故答案为6.【点睛】本题主要考查旋转的性质及直角三角形的斜边中线定理,熟练掌握旋转的性质及直角三角形的斜边中线定理是解题的关键.18.120°【解析】试题分析:若△ABC 以O 为旋转中心旋转后能与原来的图形重合根据旋转变化的性质可得△ABC 旋转的最小角度为180°﹣60°=120°故答案为120°考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.19.(21)【分析】观察图形根据中心对称的性质即可解答【详解】∵点P (11)N (20)∴由图形可知M (30)M1(12)N1(22)P1(31)∵关于中心对称的两个图形对应点的连线都经过对称中心并且被对解析:(2,1)【分析】观察图形,根据中心对称的性质即可解答.【详解】∵点P (1,1),N (2,0),∴由图形可知M (3,0),M 1(1,2),N 1(2,2),P 1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分, ∴对称中心的坐标为(2,1),故答案为(2,1).【点睛】本题考查了中心对称的性质:①关于中心对称的两个图形能够完全重合; ②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.20.(32)【分析】根据题目已知条件写出A1A2A3的坐标找出规律即可解决问题【详解】解:作点A 关于y 轴的对称点为A1是(﹣32);作点A1关于原点的对称点为A2是(3﹣2);作点A2关于x 轴的对称点为解析:(3,2).【分析】根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题.【详解】解:作点A 关于y 轴的对称点为A 1,是(﹣3,2);作点A 1关于原点的对称点为A 2,是(3,﹣2);作点A 2关于x 轴的对称点为A 3,是(3,2).显然此为一循环,按此规律,2019÷3=673,则点A 2019的坐标是(3,2),故答案为:(3,2).【点睛】本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.三、解答题21.(1)MN DM BN =+,证明见解析;(2)MN BN DM =-,证明见解析;(3)MN DM BN =+.【分析】(1)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+; (2)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN BN DM =-;(3)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+; 【详解】证明:(1)如图①,∵四边形ABCD 是正方形∴AB=AD ,ABCADC BAD =90 将ADM 绕点A 顺时针旋转90︒,得到ABE ∴ADM ≌ABE ∴AMAE,DM BE,MAD EAB MAE BAD 90 ∵MAN 45EANMAN 45 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS≌ MN EN∵EN EB BN DM BN =+=+,∴MN BN DM =+(2)如图②,将ADM 绕点A 顺时针旋转90,得到ABE∵四边形ABCD 是正方形∴AB=AD ,ABCADC BAD =90 ∵ADM 绕点A 顺时针旋转90,得到ABE∴ADM ≌ABE∴AM AE,DM BE,MAD EABMAE BAD 90, ∵MAN 45EANMAN 45 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS ≌MN EN∵BNEB EN DM MN , 即:MN BN DM =-;(3)如图,∵AB AD =,BAD 120∠=,BD 180, 将ADM 绕点A 顺时针旋转120,得到ABE ∴ADM ≌ABE ∴AM AE,DM BE,MAD EAB MAEBAD 120 MAN 60EAN MAN 60在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS≌ MN EN ENBE BN MN DM BN ;【点睛】本题主要考查正方形的性质及全等三角形的判定和性质等知识,利用旋转法构造全等三角形是解题的关键是学会.22.(1)90°;(2)5【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE 的度数;(2)根据勾股定理求出AC 的长,根据CD =3AD ,可得CD 和AD 的长,根据旋转的性质可得AD =EC ,再根据勾股定理即可得DE 的长.【详解】解:(1)∵△ABC 为等腰直角三角形,∴∠BAD =∠BCD =45°,由旋转的性质可知∠BAD =∠BCE =45°,∴∠DCE =∠BCE +∠BCA =45°+45°=90°;(2)∵BA =BC ,∠ABC =90°,∴AC == ∵CD =3AD ,∴AD =DC =由旋转的性质可知:AD =EC,∴DE ==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质. 23.(1)①=;②NC =AM NM NC +=;(2)AM NM NC +=,见解析【分析】(1)①由“SAS”可证∴△BMD ≌△CND ,可得∠BMD=∠DNC ,由外角的性质和平行线的性质可证∠BMD=∠CND=∠BDM=∠CMN ;②由等腰三角形的性质可求=NC ,再求出,-2,即可得结论;(2)在CN 上截取CH=AM ,连接AD ,DH ,由“SAS”可证△AMD ≌△CHD ,可得MD=DH ,∠ADM=∠CDH ,再由“SAS”可证△MDN ≌△HDN ,可得MN=HN ,可得结论.【详解】解:(1)①∵△ABC 和△DEF 都是等腰直角三角形,∠A=90°,∠E=90°,∴∠B=∠C=∠EDF=45°,AB=AC ,,∵MN ∥BC ,∴∠AMN=∠B=45°=∠ANM=∠C ,∠DMN=∠BDM ,∴AM=AN ,∴BM=CN ,∵点D 是BC 中点,∴BD=CD , 在△BMD 和△CND 中BM CN B C BD CD =⎧⎪=⎨⎪=⎩∠∠,∴△BMD≌△CND(SAS),∴∠BMD=∠DNC,∵∠MDB=∠C+∠DNC=∠MDN+∠BDM,∴∠BDM=∠CND,∴∠BMD=∠CND=∠BDM=∠CMN,故答案为:=;②∵BC=22,BC=2AB,∴AB=AC=2,∵∠BMD=∠CND=∠BDM,∴BD=BM=12BC=2,∴NC=2,∴AM=2-2,∵AM=AN,∠A=90°,∴MN=2AM=22-2,∴AM+MN=2-2+22-2=2=NC,故答案为:2;AM+MN=NC;(2)如图1,在CN上截取CH=AM,连接AD,DH,∵△ABC是等腰直角三角形,点D是BC中点,∴AD=CD,∠BAD=∠ACD=45°,AD⊥BC,又∵AM=CH,∴△AMD≌△CHD(SAS),∴MD=DH,∠ADM=∠CDH,∵∠ADM+∠ADN=∠MDN=45°,∴∠ADN+∠CDH=45°,∴∠HDN=45°=∠MDN,在△MDN和△HDN中DN DNMDN HDN DM DH=⎧⎪=⎨⎪=⎩∠∠,∴△MDN≌△HDN(SAS),∴MN=HN,∴NC=CH+NH=AM+MN.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,外角的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.24.(1)AE=CD AE⊥CD;(2)成立,理由见解析;(3)45°;(4)45°或22.5°【分析】(1)证明△AOC是等腰直角三角形即可得到结论;(2)连接AO,延长DC交AE于点M,设OE,MD相交于点N,证明△AOE≌△COD可得AE=CD,证明∠DME=90°可得AE⊥CD;(3)证明OE是AC的垂直平分线即可得到结论;(4)分OF=FC和OC=CF两种情况求解即可.【详解】解:(1)∵△ABC是等腰三角形,∠CAB =90°,∴∠ACB=45°∵点O是BC的中点,∴AO⊥BC∴△AOC是等腰直角三角形,∴AO=CO∵△DOE是等腰三角形,∠DOE=90°,∴EO=DO∴EO-AO=DO-CO即AE=CD∵OE经过点A,OD经过点C,∴AE⊥CD故答案为:AE=CD AE⊥CD(2)(1)中的结论仍然成立理由如下:连接AO,延长DC交AE于点M,设OE,MD相交于点N∵△ABC是等腰直角三角形,O是BC的中点∴AO=CO,AO⊥BC∴∠AOC=∠EOD=90°∴∠AOE=∠COD∵OE=OD∴△AOE≌△COD(SAS)∴AE=CD,∠AEO=∠CDO∵∠CDO+∠OND=90°,且∠OND=∠MNE ∴∠AEO+∠MNE=90°∴∠DME=90°∴DM⊥AE即DC⊥AE(3)连接OA,如图3,∵AE=CE,OA=OC∴OE是AC的垂直平分线∴∠AOE=∠COE=45°∴α=45°(4)①若OF=FC时,如图4,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=45°∵AO⊥BC∴∠AOC=90°∴∠AOF=90°-45°=45°,即α=45°;②当OC=FC时,如图5,∵△ABC 是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=1804567.52︒-︒=︒ ∵AO ⊥BC∴∠AOC=90°∴∠AOF=90°-67.5°=22.5°,即α=22.5°;综上所述,α的度数为45°或22.5°. 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.25.(1)见解析;(2)2DM +3AD =DE ,证明见解析.【分析】(1)根据直角三角形全等判定,得到对应角相等,根据角分线定义证明.(2)延长AD 交BC 于F ,连接CD ;利用旋转的到特殊值三角形,运用三角形的中位线定理,将DE 解转化到CB 决问题即可.【详解】(1)如图1中,∵△ADE 由△ABC 旋转得到,∴AC =AD ,∠ACF =∠ADE =∠ADF =90°,AF=AF∴ACF ADF ≌(HL),AFC AFD ∴∠=∠, FA 平分∠CFE ; (2)结论:23DM DE =,理由如下:如图2中,延长AD 交BC 于F ,连接CD ,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴AD=CD=AC,∵∠ACF=90°,∠CAF=60°,∴∠AFC=30°,∴AD=AC=1AF,2∴AD=DF,∴D为AF的中点,又∵M为AB的中点,∴DM=1FB,即FB=2DM2在Rt△AFC中,FC33AD,==+,DE CB FB FCFB FC DM∴+=23∴23=.DM DE【点睛】本题考查图形旋转、30°直角三角形性质及三角形中位线定理,综合运用所学知识,将DE 解转化为CB是解题关键.26.(1)见解析;(2)A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0);(3)2101729【分析】(1)找到各点关于原点对称的点,顺次连接可得到△A′B′C′;(2)结合直角坐标系可得出出A′,B′,C′三点的坐标;(3)根据勾股定理得到AB,AC,BC的长,相加即可求得△ABC的周长.【详解】解:(1)所画图形如下:(2)结合图形可得A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0);(3)2262210AB=+=22AC=+141722BC+=.2529.则△ABC的周长为2101729【点睛】此题考查了旋转作图及中心对称、勾股定理的知识,解答本题的关键是根据旋转的三要素,中心对称的性质,得到各点的对应点,难度一般.。
青岛版九年级数学上册 第三章 対圆的进一步认识 单元评估检测试题(解析版)
青岛版九年级数学上册 第三章 対圆的进一步认识 单元评估检测试卷一、单选题1.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A. 6厘米B. 12厘米C. 23 厘米D. 6厘米 【答案】A【解析】l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键.2. 半径为6,圆心角为120°的扇形的面积是( )A. 3πB. 6πC. 9πD. 12π【答案】D【解析】 试题分析:S=21206360π⨯=12π,故选D . 考点:扇形面积的计算.3.如图,四边形ABCD 内接于⊙O ,若∠A=62°,则∠BCE 等于( )A. 28°B. 31°C. 62°D. 118°【答案】C【解析】【分析】 根据圆内接四边形的任意一个外角等于它的内对角解答即可.【详解】解:由题意得∠BCE=∠A=62°. 故选择C.【点睛】本题考查了圆的内接四边形性质.4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A. 8cmB. 5cmC. 3cmD. 2cm【答案】A【解析】【分析】 根据垂径定理可得出CE 的长度,在Rt △OCE 中,利用勾股定理可得出OE 的长度,再利用AE=AO+OE 即可得出AE 的长度.【详解】∵弦CD ⊥AB 于点E ,CD=8cm ,∴CE=12CD=4cm . 在Rt △OCE 中,OC=5cm ,CE=4cm ,∴22OC CE -=3cm ,∴AE=AO+OE=5+3=8cm .故选A .【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE 的长度是解题的关键. 5.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P ,3那么点P 与⊙O 的位置关系是( )A. 点P 在⊙O 内B. 点P 在⊙O 上C. 点P 在⊙O 外D. 无法确定【答案】D【解析】∵⊙O 的半径为1,∴⊙O 的直径为2,∵32<,且点A 在⊙O 上,∴点P 的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.6.下列命题中的假命题是()A. 三点确定一个圆 B. 三角形的内心到三角形各边的距离都相等C. 同圆中,同弧或等弧所对的圆周角相等 D. 同圆中,相等的弧所对的弦相等【答案】A【解析】【分析】根据确定圆的条件,三角形内心性质,以及圆心角、弧、弦的关系,对各选项分析判断后利用排除法求解.【详解】A、应为不在同一直线上的三点确定一个圆,故本选项错误;B、三角形的内心到三角形各边的距离都相等,是三角形的内心的性质,故本选项正确;C、同圆中,同弧或等弧所对的圆周角相等,正确;D、同圆中,相等的弧所对的弦相等,正确.故选A.【点睛】本题主要考查了确定圆的条件,一定要注意是不在同一直线上的三点确定一个圆,还考查了圆心角、弧、弦的关系,需要熟练掌握.7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A. 82B. 42C. 2πD. π【答案】C【解析】连接OA、OC,如图:∵∠B=135°,∴∠D=180°−135°=45°,∴∠AOC=90°,则弧AC的长=904 180π⨯=2π.故选C.8.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. 15B. 25C. 215D. 8【答案】C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=22=15OC OH ,∴CD=2CH=215.故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键9.如图,⊙O 的半径为5,AB 为弦,点C 为AB 的中点,若∠ABC=30°,则弦AB 的长为( )A. 12B. 5C. 53D. 53【答案】D【解析】【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【详解】连接OC 、OA ,∵∠ABC=30°, ∴∠AOC=60°, ∵AB 为弦,点C 为AB 的中点,∴OC ⊥AB ,在Rt △OAE 中,53 ∴AB=53,故选D .【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.10.已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130°,过D点的切线PD与直线AB 交于P点,则∠ADP的度数为()A. 45°B. 40°C. 50°D. 65°【答案】B【解析】连接BD,由圆内接四边形的对角互补,AB是直径知∠DAB=180°-∠C=50°,∠ADB=90°,所以可求∠ABD=40°;再根据PD是切线,弦切角定理知,∠ADP=∠B=40°.解:连接BD,∵∠DAB=180°-∠C=50°,AB是直径,∴∠ADB=90°,∠ABD=90°-∠DAB=40°,∵PD是切线,∴∠ADP=∠B=40°.故选B.点评:本题利用了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.二、填空题11.如图,已知∠BPC=50°,则∠BAC= 【答案】50°【解析】试题分析:在同圆中,同弧所对的圆周角度数相等,本题中圆周角∠BPC和圆周角∠BAC所对弧都是弧BC,则说明两个角的度数相等.考点:圆周角的度数.12.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为( 3, 0 ),⊙M的切线OC与直线AB交于点C.则∠ACO=________.【答案】30°【解析】∵AB=2,3,∴cos∠BAO=OAAB3,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA-∠BOC=30°.故答案是:30°.13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.【答案】15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.14.正八边形的中心角为______度.【答案】45°【解析】【分析】运用正n边形的中心角的计算公式360n︒计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为360458︒=︒,故答案为45°.【点睛】本题考查了正n边形中心角的计算.15.已知AB,AC是半径为R的圆O中两条弦,AB=3R,AC=2R ,则∠BAC的度数为.【答案】75°或15°.【解析】试题分析:如图(1)(2),根据题意cos∠OAE=332RR=,则∠OAE=30°;cos∠OAD=222RR=,∠OAD=45°,由图(1)∠BAC的度数为30°+45°=75°;由图(2)∠BAC的度数为45°﹣30°=15°.故答案为75°或15°.考点:1.垂径定理;2.解直角三角形.16.直角三角形两直角边长分别为3和4,这个三角形内切圆的半径为_________.【答案】1【解析】试题分析:(1)当3,4都是直角边时,斜边==5,∴r===1.(2)当3为直角边,4为斜边时,直角边==,∴r===.故答案为1或=.考点:1.三角形的内切圆与内心;2.勾股定理;3.分类讨论.17.△ABC中,∠ACB=120°,AC=BC=3,点D为平面内一点,满足∠ADB=60°,若CD的长度为整数,则所有满足题意的CD 的长度的可能值为 .【答案】3、4、5、6【解析】试题分析:分类讨论:由于∠ACB=120°,∠ADB=60°,当点D 在△ABC 的外接圆上,且点D 在优弧AB 上,可计算出圆的直径得到3<CD 长度≤6;当点D 在以C 为圆心、CA 为半径的圆上,则CD=3. 解:∵∠AOB=120°,∠ACB=60°,当点D 在△ABC 的外接圆上,且点D 在优弧AB 上,∴3<OC 长度≤6;当点D′在以O 为圆心、CA 为半径的圆上,则CD′=3,∴CD 长度的可能值为3、4、5、6.故答案为3、4、5、6.考点:三角形的外接圆与外心.18.如图,在半径为5cm 的⊙O 中,弦6cm AB =,OC AB ⊥于点C ,则OC =_______.【答案】4【解析】连接OA ,先利用垂径定理得出AC 的长,再由勾股定理得出OC 的长即可解答.本题解析: 如图:连接OA ,∵AB=6cm,OC⊥AB 于点C , ∴AC=12AB=12×6=3cm, ∵O 的半径为5cm ,∴OC=22OA AC + =2253-=4cm ,故选B.19.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB =_____°.【答案】46°【解析】【分析】根据平行线的性质求出∠OCD ,根据圆内接四边形的性质求出∠BCD ,计算即可.【详解】解:∵OC ∥AD ,∴∠OCD=180°-∠ADC=74°,∵四边形ABCD 内接于⊙O ,∴∠BCD=180°-∠DAB=120°,∴∠OCB=∠BCD-∠OCD=46°,故答案为:46. 【点睛】本题考查了圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键. 20.如图,点A 、B 在直线l 上,AB=10cm ,⊙B 的半径为1cm ,点C 在直线l 上,过点C 作直线CD 且∠DCB=30°,直线CD 从A 点出发以每秒4cm 的速度自左向右平行运动,与此同时,⊙B 的半径也不断增大,其半径r (cm )与时间t (秒)之间的关系式为r=1+t (t≥0),当直线CD 出发 ________秒直线CD 恰好与⊙B 相切.【答案】43或6 【解析】【分析】根据直线与圆相切和勾股定理,圆的半径与BC的关系,注意有2种情况解答即可.【详解】当直线与圆相切时,点C在圆的左侧,∵∠DCB=30°,直线CD与⊙B相切,∴2DB=BC,即2(1+t)=10-4t,解得:t=43,当直线与圆相切时,点C在圆的右侧,∵∠DCB=30°,直线CD与⊙B相切,∴2DB=BC,即2(1+t)=4t-10,解得:t=6,故答案为43或6.【点睛】本题考查了直线与圆的位置关系,关键是根据含30°的直角三角形中30°所对的边是斜边的一半进行分析.三、解答题21.如图,已知AB是⊙O的直径, CD⊥AB ,垂足为点E,如果BE=OE , AB=12,求△ACD的周长【答案】183【解析】试题分析:连接OC,利用垂径定理构造直角三角形分别求得三角形的三边长,然后相加即可得到△ACD的周长.试题解析:解:连接OC.∵AB是⊙O的直径,CD⊥AB,∴CE=DE=12 CD.∵AB=12cm,∴AO=BO=CO=6cm.∵BE=OE,∴BE=OE=3cm,AE=9cm.在Rt△COE中,∵CD⊥AB,∴OE2+CE2=OC2,∴CE=22=33,∴CD=2CE=63cm.63同理可AC=AD=63cm,∴△ACD的周长为183cm.点睛:本题考查了垂径定理及勾股定理,解题的关键是利用垂径定理构造直角三角形并利用勾股定理解之.22.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【答案】证明见解析.【解析】【分析】过圆心O作OE⊥AB于点E,根据垂径定理得到AE=BE,同理得到CE=DE,又因为AE-CE=BE-DE,进而求证出AC=BD.【详解】过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE-DE=AE-CE.即AC=BD.【点睛】本题考查垂径定理的实际应用.23.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.【答案】.【解析】 试题分析:由题意可知,已知了弦,半径的长,可由垂径定理,求出的长,进而可求出的长.试题解析:连接, ∵,, ∴, 在中, ∵,, ∴, ∴. 考点:1.垂径定理的应用;2.勾股定理.24.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,求图中阴影部分的面积.【答案】233π【解析】 试题解析:如图,连接BD .∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 的高为3, ∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯=233π-. 考点:1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.25.如图,已知AB 是半圆O 的直径,∠BAC=32°,D 是弧AC 的中点,求∠DAC 的度数.【答案】29°.【解析】【分析】连接BC,根据圆周角定理及等边对等角求解即可.【详解】连接BC,∵AB是半圆O的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D是弧的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,即∠DAC的度数是29°.【点睛】本题利用了圆内接四边形的性质,直径对的圆周角是直角求解.26. 如图:AB是半圆的直径,O是圆心,C是半圆上一点,E是弧AC的中点,OE交弦AC于D,若AC=8cm,DE=2cm,求OD的长.【答案】3cm【解析】试题分析:由E是弧AC的中点,可得:OE⊥AC.根据垂径定理得:AD=12AC,又OD=OE﹣DE,故在Rt△OAD中,运用勾股定理可将OA的长求出.试题解析:∵E为弧AC的中点,∴OE⊥AC,∴AD=12AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,222OA OD AD=+,即222OA OE24=+(﹣),又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.考点:垂径定理;勾股定理.27.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.【答案】(1)38°;(2)52°.【解析】【分析】(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB 是等腰三角形,根据等边对等角即可求出∠OBA的度数;(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D度数.【详解】(1)连接OA,∵AC与⊙O相切于点A,∴OA⊥AC,∴∠OAC=90°,∵∠BAC=52°,∴∠OAB=38°,∵OA=OB,∴∠OBA=∠OAB=38°;(2)∵∠OBA=∠OAB=38°,∴∠AOB=180°﹣2×38°=104°,∴∠D=12∠AOB=52°.【点睛】此题考查了切线的性质,圆周角定理以及等腰三角形的判定和性质,熟练掌握切线的性质是解本题的关键.28. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.【答案】解:(1)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l.∵AD⊥l,∴OC∥AD.∴∠OCA=∠DAC.∵OA=OC,∴∠BAC=∠OCA.∴∠BAC=∠DAC=30°.(2)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°.∴∠BAF=90°-∠B.∴∠AEF=∠ADE+∠DAE=90°+18°=108°.在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°.∴∠B=180°-108°=72°.∴∠BAF=90°-∠B=180°-72°=18°.【解析】试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°.(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.。
浙教版九年级数学上册第3章综合素质评价试卷附答案
浙教版九年级数学上册第3章综合素质评价一、单选题(每题3分,共30分)1.已知⊙O 的半径为5 cm ,点A 是线段OP 的中点,当OP =8 cm 时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .不能确定 2.圆内接正十边形的外角和为( )A .180°B .360°C .720°D .1 440° 3.下列说法正确的是( )A .等弧所对的圆心角相等B .平分弦的直径垂直于这条弦C .经过三点可以作一个圆D .相等的圆心角所对的弧相等4.如图,在4×4的正方形网格中,小正方形的边长为1,若将△ABC 绕点A 逆时针旋转得到△AB ′C ′,则BB ′︵的长为( ) A .π B .π2 C .7π D .6π5.如图,⊙O 的半径为5,AB 为弦,OC ⊥AB ,垂足为E ,如果CE =2,那么AB的长是( )A .4B .6C .8D .106.如图,四边形ABDC 是⊙O 的内接四边形,∠BOC =110°,则∠BDC 的度数是( )A .110°B .70°C .55°D .125°7.如图,将菱形ABCD绕点A逆时针旋转α得到菱形AB′C′D′,∠B=β.当AC平分∠B′AC′时,α与β满足的数量关系是()A.α=2βB.2α=3βC.4α+β=180°D.3α+2β=180°8.如图,AB是⊙O的直径,点C,D在⊙O上,且OD经过AC的中点E,连结DC并延长,与AB的延长线相交于点P,若∠CAB=16°,则∠BPC的度数为()A.16°B.21°C.32°D.37°9.如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.2 3 B.13 C.4 D.3 210.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点,P是直径MN上一动点,则P A+PB的最小值为()A. 2 B.1 C.2 D.2 2二、填空题(每题4分,共24分)11.直角三角形的两直角边的长分别为8和6,则此直角三角形的外接圆的半径是________.12.如图,在矩形ABCD中,AB=1,AD=2,将边AD绕点A顺时针旋转,当点D落在边BC上的点D′时,∠DAD′=________°.13.如图,A、B、C为⊙O上的点,若∠ACB=20°,则∠BAO的度数为________°.14.如图,在5×3的网格图中,每个小正方形的边长均为1,设经过格点A,C,B 的圆弧与BD交于点E,则阴影部分的面积为__________.(结果保留π)15.如图,一动点从半径为2的⊙O上的点A0出发,沿着A0O方向运动到⊙O上的点A1处,再向左沿着与A1O夹角为60°的方向运动到⊙O上的点A2处,接着从点A2出发,沿着A2O方向运动到⊙O上的点A3处,再向右沿着与A3O 夹角为60°的方向运动到⊙O上的点A4处,…,按该动点此规律运动到点A2023处,则点A2 023与点A0之间的距离是________.16.如图,在△ABC中,∠BAC=60°,∠ABC=45°,AB=2 2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于点E,F,连结EF,则线段EF长度的最小值为________.三、解答题(共66分)17.(6分)如图,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E, CE=1,ED=3.(1)求⊙O的半径;(2)求AB的长.18.(6分)如图,在⊙O 中,已知AB =AC ,∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求∠APB 的度数.19.(6分)如图,⊙M 经过原点O ,且与两坐标轴分别交于点A 和点B ,点A 的坐标为(4,0),C 是⊙M 上一点,∠BCO =120°,求⊙M 的半径和圆心M 的坐标.20.(8分)如图,已知AB 是⊙O 的直径,弦AC 与半径OD 平行. (1)求证:点D 是BC ︵的中点;(2)若AC =OD =6,求阴影部分的面积.21.(8分)如图,在⊙O 中,AB ︵=BC ︵=CD ︵,OC 与AD 相交于点E ,连结BE ,BC ,CD .求证: (1)AD ∥BC ;(2)四边形BCDE 为菱形.22.(10分)已知在△ABC 中,AB =AC ,∠BAC =120°,在BC 边上取一点O ,以点O 为圆心、OB 为半径作圆,且⊙O 过A 点. (1)如图1,若⊙O 的半径为5,求线段OC 的长;(2)如图2,过点A 作AD ∥BC 交⊙O 于点D ,连结BD ,求BDAC 的值.23.(10分)我们新定义一种三角形:两边的平方和等于第三边平方的两倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,小华提出命题“等边三角形一定是奇异三角形”,这个命题是真命题还是假命题?(2)在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a ∶b ∶c .(3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆的中点,C 、D 分别在直径AB 的两侧,若在⊙O 内存在点E ,使AE =AD ,CB =CE .①求证:△ACE 是奇异三角形;②当△ACE 是直角三角形时,求∠AOC 的度数.24.(12分)[问题提出]如图1,AB ,AC 是⊙O 的两条弦,AC >AB ,M 是BAC ︵的中点,MD ⊥AC ,垂足为D ,求证:CD =BA +AD .小敏在解答此题时,利用了“补短法”进行证明,她的方法如下:证明:如图2,延长CA 至E ,使AE =AB ,连结MA ,MB ,MC ,ME ,BC . ∵M 是BAC ︵的中点,∴BM ︵=CM ︵,∴∠MCB =∠MBC .(请你在下面的空白处完成小敏的证明过程)[推广运用]如图3,等边三角形ABC 内接于⊙O ,AB =1,D 是AC ︵上一点,∠ABD =45°,AE ⊥BD ,垂足为E ,则△BDC 的周长是________. [拓展研究]如图4,若将[问题提出]中的“M 是BAC ︵的中点”改成“M 是BC ︵的中点”,其余条件不变,“CD =BA +AD ”这一结论还成立吗?若成立,请说明理由;若不成立,写出CD ,BA ,AD 三者之间的关系,并说明理由.答案一、1.C 2.B 3.A 4.A 5.C 6.D 7.C 8.B 9.B 10.A 二、11.5 12.30 13.70 14.13π16-138 15.4 16. 3 三、17.解:(1)∵CE =1,ED =3,∴CD =CE +ED =4. ∴⊙O 的半径为2.(2)如图,连结OA ,则OA =OC =2,∴OE =OC -CE =2-1=1. ∵CD ⊥AB ,∴AB =2AE ,∠OEA =90°. 在Rt △OEA 中,由勾股定理,得 AE =OA 2-OE 2=22-12= 3. ∴AB =2AE =2 3. 18.(1)证明:∵∠APC =60°,∴ ∠ABC =∠APC =60°. ∵AB =AC ,∴△ABC 是等边三角形.(2)解:由(1)知,∠ACB =∠ABC =60°.∵四边形APBC 是⊙O 的内接四边形,∴∠APB +∠ACB =180°. ∴∠APB =180°-∠ACB =180°-60°=120°.19.解:如图,连结AB .∵BO ⊥AO , ∴AB 过圆心M , 即AB 是⊙M 的直径.∵四边形ABCO 是⊙O 的内接四边形,且∠BCO =120°, ∴∠BAO =60°. ∴∠ABO =30°. ∴在Rt △ABO 中, AB =2OA =8. ∴⊙M 的半径为4.在Rt △ABO 中,BO =AB 2-OA 2=82-42=4 3 . 如图,过点M 作MN ⊥AO ,垂足为N .∵M 是AB 的中点,且MN ∥BO , ∴MN =12BO =2 3, ON =12OA =2.∴圆心M 的坐标为(2, 2 3 ). 20.(1)证明:如图,连结CO ,∵AC ∥OD ,∴∠A =∠DOB ,∠ACO =∠DOC . ∵OA =OC ,∴∠A =∠ACO , ∴∠DOB =∠DOC ,∴BD ︵=CD ︵, ∴点D 是BC ︵的中点.(2)解:如图,∵AC =OD =OC =OA =6, ∴△AOC 是等边三角形, ∴∠AOC =60°,∴S 扇形AOC =60π×62360=6π.过点C 作CE ⊥AB 于点E ,则∠CEO =90°,∴∠OCE =30°,∴OE =12OC =12×6=3, ∴CE =OC 2-OE 2=3 3,∴S △AOC =12OA ·CE =12×6×3 3=9 3, ∴S 阴影=S 扇形AOC -S △AOC =6π-9 3.21.证明:(1)如图,连结BD ,∵AB ︵=BC ︵=CD ︵,∴∠ADB =∠CBD ,∴AD ∥BC .(2)如图,设OC 与BD 相交于点F . ∵BC ︵=CD ︵,∴BC =CD . ∴易得BF =DF .又∵∠DFE =∠BFC ,∠EDF =∠CBF , ∴△DEF ≌△BCF .∴DE =BC . ∵AD ∥BC ,∴四边形BCDE是平行四边形.又∵BC=CD,∴四边形BCDE是菱形.22.解:(1)∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°.∵OA=OB,∴∠BAO=∠ABO=30°.∴∠AOC=∠ABO+∠BAO=60°.∴∠OAC=90°.∵OA=5,∴OC=2OA=10.(2)如图,连结OD.∵∠AOC=60°,AD∥BC,∴∠DAO=∠AOC=60°.∵OD=OA,∴∠ADO=60°.∴∠DOB=∠ADO=60°.又∵OD=OB,∴△DOB是等边三角形.∴BD=OB=OA.在Rt△OAC中,OC=2OA,AC=3OA,即AC=3BD,∴BDAC=33.23.(1)解:这个命题是真命题.(2)解:易知在Rt△ABC中,有a2+b2=c2.∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2.∴若△ABC是奇异三角形,一定有2b2=a2+c2.∴2b2=a2+(a2+b2).∴b 2=2a 2,解得b =2a .∵c 2=b 2+a 2=3a 2,∴c =3a .∴a ∶b ∶c =1∶2∶ 3.(3)①证明:∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°.在Rt △ACB 中,AC 2+BC 2=AB 2,在Rt △ADB 中,AD 2+BD 2=AB 2.∵D 是半圆的中点,∴AD ︵=BD ︵.∴AD =BD .∴AB 2=AD 2+BD 2=2AD 2.又∵CB =CE ,AE =AD ,∴AC 2+CE 2=2AE 2.∴△ACE 是奇异三角形.②解:由①可得△ACE 是奇异三角形,且AC 2+CE 2=2AE 2.当△ACE 是直角三角形时,由(2)可得AC ∶AE ∶CE =1∶2∶3或AC ∶AE ∶CE =3∶2∶ 1.(Ⅰ)当AC ∶AE ∶CE =1∶2∶3时,AC ∶CE =1∶3,即AC ∶CB =1∶ 3.∵∠ACB =90°,∴∠ABC =30°.∴∠AOC =2∠ABC =60°.(Ⅱ)当AC ∶AE ∶CE =3∶2∶1时,AC ∶CE =3∶1,即AC ∶CB =3∶1.∵∠ACB =90°,∴∠ABC =60°. ∴∠AOC =2∠ABC =120°.∴∠AOC 的度数为60°或120°.24.解:【问题提出】证明:如图2,延长CA 至E ,使AE =AB ,连结MA ,MB ,MC ,ME ,BC ,∵M 是BAC ︵的中点,∴BM ︵=CM ︵,∴∠MCB =∠MBC .∴MB =MC .∵∠BAM =180°-∠MCB ,∠EAM =180°-∠MAC =180°-∠MBC , ∴∠EAM =∠BAM .在△EAM 和△BAM 中,⎩⎨⎧AE =AB ,∠EAM =∠BAM ,AM =AM ,∴△EAM ≌△BAM ,∴ME =MB =MC .又∵MD ⊥AC ,∴ED =CD ,∴CD =AD +AE =BA +AD .【推广运用】1+ 2【拓展研究】不成立,CD ,BA ,AD 三者之间的关系:AD =BA +CD ,理由:如图4,延长MD 交⊙O 于点E ,连结EA ,EC ,连结EB 交AC 于点N .∵M 是BC ︵的中点,∴BM ︵=MC ︵.∴∠BEM =∠CEM .在△EDN 和△EDC 中,⎩⎨⎧∠BEM =∠CEM ,DE =DE ,∠EDN =∠EDC =90°,∴△EDN ≌△EDC ,∴ND =CD ,∠END =∠ECD .∵∠ECD =∠ABE ,∠ENC =∠ANB , ∴∠ANB =∠ABE ,∴AN =AB , ∴AD =AN +ND =BA +CD .。
鲁教版数学九年级数学上册 第三章 二次函数 单元检测卷
鲁教版九年级数学上册第3章《二次函数》 单元检测题一、选择题:1.抛物线y =2(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(3,1)C .(﹣3,2)D .(2,3)2.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示,则满2ax bx c mx n ++>+的x 的取值范围是( )A .30x -<< B .3x <-或0x > C .3x <-或1x > D .03x <<3.已知二次函数2y ax bx c =++的图象的对称轴为直线1x =,其图象如图所示,现有下列结论:①0abc >;①20a b +=;①420a b c -+>;①()a b m am b +≥+;①23c b <.其中正确结论的是( )A .①①①B .①①①C .①①①D .①①①4.根据表格对应值判断关于x 的方程ax 2+bx +c =2的一个解x 的范围是( ) A .1.1<x <1.2B .1.2<x <1.3C .1.3<x <1.4D .无法判定5.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足y=-2(x -20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是( )A .20B .1508C .1550D .1558x 1.1 1.2 1.3 1.4 ax 2+bx +c ﹣0.59 0.84 2.29 3.766.将抛物线y =2x 2经过怎样的平移可得到抛物线y =2(x +3)2+4( ) A .先向左平移3个单位,再向上平移4个单位 B .先向左平移3个单位,再向下平移4个单位 C .先向右平移3个单位,再向上平移4个单位 D .先向右平移3个单位,再向下平移4个单位7.将抛物线y =2x 2先向右平移4个单位,再向上平移5个单位,得到的新抛物A .4B .3C .2D .1 9.把抛物线22y x bx =++的图像向右平移3个单位,再向上平移2个单位,所得到的图像的解析式为247y x x =-+,则b =( )A .2B .4C .6D .810.已知二次函数y =ax 2+bx +c (a≠0)的图像如图所示,有下列5个结论:①c <0;①abc >0;①a -b +c >0;①2a -3b>0;①c -4b >0,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个10.如图所示,二次函数y =ax 2+bx +c (a ≠0)的图象经过点A (﹣1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列四个结论①2a ﹣b <0;①4a ﹣2b +c <0;①c ﹣a >2;①3a +c >0中,错误的个数有( ) A .0 B .1 C .2 D .312.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc <0;①b 2﹣4ac >0;①a +b <0;①2a +c <0,其中正确的个数是( )A .1个B .2个C .3个D .4个 13.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表: x … 2- 1- 0 1 2 …y … 15- 5- 1 3 1 … 则当14x -≤≤时,y 的取值范围是 .14.2(1)1y x a x =+-+是关于x 的二次函数,当x 的取值范围是13x -时,y 只在=1x -时取得最大值,则实数a 的取值范围是 .15.抛物线213222y x x =-+与x 轴交于点()1,0A x ,()2,0B x ,则AB 的长为 . 16.将抛物线2y x 沿直线3y x =方向移动10个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是 .17.将抛物线y=﹣(x +1)2+3向右平移2个单位再向上平移2个单位后得到的新抛物线的表达式为 .18. 已知二次函数224y x x =-+-的图象上两点()()124,,,A y B m y ,若12y y =,则m = .19.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y (件)与每件的销售价格x (元)满足函数关系:2180y x =-+.为保证市场稳定,供货商规定销售价格不得低于75元/件且不得高于90元/件.(1)写出每天的销售利润w (元)与销售价格x (元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?1⎛⎫两点,PAB的面积恒成立,求b的值.关于抛物线的(1)求抛物线的表达式;(2)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时称这样的点N为“美丽点”,共有多少个“美丽点”?请直接写出当点N为“美丽点”时,CMN的面积.23.如图,设抛物线T:y=ax2+c(a> 0)与直线L:y=kx-4(k> 0)交A,B两点(点B在点A的右侧).(1)如图,若点A(12,-52),且a+c=-1.①求抛物线T和直线L的解析式;①求①AOB的面积.(2)设点C是点B关于y轴的对称点,当点A,O,C三点共线时,求实数c的值.。
人教版初中数学9年级 上册 单元评价检测
单元评价检测(三)第二十三章(45分钟100分)一、选择题(每小题4分,共28分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心对称图形,所以既是轴对称图形又是中心对称图形的是选项C.2.已知m<0,则点P(m2,-m+3)关于原点的对称点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限. 【变式训练】若点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是( )A.0<m<3B.m<0C.m>0D.m≥0【解析】选A.∵点Q在第三象限,∴点P在第一象限,即解得0<m<3.3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,则下列结论一定正确的是( ) A.∠BAE=60° B.EF=BCC.AC=AFD.∠EAF=60°【解析】选B.如果点B和点E是对应点,则选项A、选项B和选项C是正确的;如果点B和点F是对应点,则选项B是正确的,所以,无论是哪一种情况,选项B一定正确.【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.4.已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( )A.2B.1C.4D.8【解析】选A.根据题意,列方程组,得解得则y x=21=2.5.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC 于点E,F,下面的结论:(1)点E和点F,点B和点D是关于中心O的对称点.(2)直线BD必经过点O.(3)四边形DEOC与四边形BFOA的面积必相等.(4)△AOE与△COF成中心对称,其中正确的个数为( )A.1B.2C.3D.4【解析】选D.△ABC与△CDA关于点O对称,则AB=CD,AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F,点B和点D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(4)△AOE与△COF成中心对称,正确.所以正确的个数为4.6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A.点AB.点BC.点CD.点D【解析】选B.根据对应点到旋转中心的距离相等,可知旋转中心在对应点连线的垂直平分线上,作图可以得到对应点连线的交点为点B.7.(2014·日照模拟)在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A旋转180°,点C落在C′处,则C,C′两点之间的距离是( )A.2B.4C.2D.无法计算【解题指南】本题涉及的两个知识点1.两个图形关于某一点成中心对称,对应点的连线经过对称中心,且被对称中心平分.2.在直角三角形中,30°所对的直角边等于斜边的一半.【解析】选B.在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2AB=2;又∵点C和点C′关于点A对称,即点C,A,C′在同一直线上,且CC′=2AC=4.二、填空题(每小题5分,共25分)8.一个正方形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转.【解析】正方形绕它的中心旋转90n°(n为正整数)后都能够与原来的图形重合,所以它至少要旋转90°.答案:90°9.如图所示,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,则∠ABD的度数是.【解析】根据旋转的性质,得∠BAD=30°,且AB=AD,所以∠ABD=(180°-∠BAD)÷2=(180°-30°)÷2=75°.答案:75°【互动探究】题中条件不变,则∠ACC′的度数是.【解析】根据旋转的性质,得∠CAC′=30°,且AC′=AC,所以∠ACC′=(180°-∠CAC′)÷2=(180°-30°)÷2=75°.答案:75°10.如图,点A在射线OX上,OA的长等于2cm.如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.如果将OA′再沿逆时针方向继续旋转45°,到OA″,那么点A″的位置可以用表示.【解析】第一个坐标为原点到此点的距离,旋转前后线段长度不变,所以OA″=OA=2,第二个坐标为与射线OX的夹角,为∠A″OA′+∠A′OA=45°+30°=75°,那么点A″的位置可以用(2,75°)表示.答案:(2,75°)11.(2014·聊城模拟)已知点A与点A′关于原点对称,且点A的坐标为(-5,y),点A到原点的距离为13,则点A′的坐标为.【解析】点A到原点的距离为13,即(-5)2+y2=132,解得y=±12,即点A的坐标为(-5,12)或(-5,-12),那么点A′的坐标为(5,-12)或(5,12).答案:(5,-12)或(5,12)12.若m,n是实数,且m,n是方程x2+3x+2=0的两根,则点P(m,n)关于原点的对称点Q的坐标是.【解析】解方程x2+3x+2=0,得x1=-1,x2=-2,所以点P的坐标为(-1,-2)或(-2,-1),那么对称点Q的坐标是(1,2)或(2,1).答案:(1,2)或(2,1)三、解答题(共47分)13.(10分)(2013·安徽中考)如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.【解析】(1)根据中心对称画图如下:(2)点B2的坐标是(2,-1),2<h<3.5.14.(12分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转,使得点B与CA 的延长线上的点D重合.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)求∠AEC的度数.【解析】(1)因为∠BAD=180°-∠BAC=180°-30°=150°,所以△ABC旋转了150°(2)根据旋转的性质,可知AC=AE,所以△AEC是等腰三角形.(3)在△AEC中,∠CAE=∠BAD=150°,所以∠AEC=(180°-∠CAE)÷2=(180°-150°)÷2=15°.15.(12分)如图,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB与CE 交于F,ED与AB,BC分别交于M,H.(1)求证:CF=CH.(2)△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【解题指南】解答本题的两个关键1.读懂图,通过旋转的性质找出三角形全等的条件.2.熟定理,根据旋转角找出判定菱形所需要的条件.【解析】(1)在△ACB和△ECD中,∵∠ACB=∠ECD=90°,∴∠1+∠ECB=∠2+∠ECB,∴∠1=∠2;又∵AC=CE=CB=CD,∴∠A=∠D=45°;在△CFA和△CHD中,∴△CFA≌△CHD,∴CF=CH.(2)四边形ACDM是菱形.证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=45°,∠2=45°.又∵∠E=∠B=45°,∴∠1=∠E,∠2=∠B,∴AC∥MD,CD∥AM,∴四边形ACDM是平行四边形,又∵AC=CD,∴平行四边形ACDM是菱形.16.(13分)把两个全等的等腰直角三角板ABC和EFG(其直角边均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,现将三角板EFG绕点O按顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角形的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?请证明你的发现.【解析】BH=CK.四边形CHGK的面积没有变化.∵△ABC是等腰直角三角形,O为斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,因此△CGK可以看作是由△BGH绕点O顺时针旋转而得, 故BH=CK,S△CGK=S△BGH,∴S四边形CHGK=S△CGK+S△CGH=S△BGH+S△CGH=S△BCG=S△ABC=××4×4=4.即四边形CHGK的面积在旋转过程中没有变化,始终为4.。
【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)
北师大版九年级数学上册(1-3)单元试卷(含答案)第一章检测试卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12 B.9 C.6 D.3(第1题)(第4题)(第6题)2.下列命题为真命题的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .67.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题)(第8题)(第9题)(第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF 10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题)(第12题)(第13题)13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题)(第16题)(第17题)(第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD 交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC 于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF 是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.6.C7.C 8.C9.D点拨:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE =AF =5, ∴BE=AE 2-AB 2=52-42=3.过点F 作FM⊥BC 于点M ,则EM =5-3=2.在Rt △EFM 中,根据勾股定理得EF =EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF =25,∴AF≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE =∠MAE =45°. ∵PM ⊥AC ,∴∠PEA =∠MEA .又∵AE =AE ,∴根据“ASA”可得△APE ≌△AME .故①正确.由①得PE =ME ,∴PM =2PE .同理PN =2PF .又易知PF =BF ,四边形PEOF 是矩形,∴PN =2BF ,PM =2FO .∴PM +PN =2FO +2BF =2BO =BD .故②正确.在Rt△PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12. 13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD =12∠BAD=45°. 由FE⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE =AD ,AF =AF , ∴Rt △AEF≌Rt △ADF(HL ).∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN∥MC ,NF∥ME,EN =12MC ,FN =12MB.又易知MB =MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD =12得AM =6.在Rt △ABM 中,由勾股定理得BM =10.因为点E 是BM 的中点,所以EM =5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC , ∴∠AOE=∠COF=90°,OA =OC. ∵AD∥BC,∴∠OAE=∠OCF. ∴△AOE≌△COF(ASA ). ∴AE=CF.又∵AE∥CF,∴四边形AECF 是平行四边形. ∵EF⊥AC,∴四边形AECF 是菱形. 20.(1)证明:∵DE∥AC,CE∥BD, ∴四边形OCED 为平行四边形. ∵四边形ABCD 为矩形,∴OD=OC. ∴四边形OCED 为菱形. (2)解:∵四边形ABCD 为矩形, ∴BO=DO =12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.21.(1)证明:在△BCE 与△DCF 中, ⎩⎪⎨⎪⎧BC =DC ,∠BCE=∠DCF,CE =CF , ∴△BCE≌△DCF. (2)解:∵△BCE≌△DCF, ∴∠EBC=∠FDC=30°. ∵∠BCD=90°,∴∠BEC=60°. ∵EC=FC ,∠ECF=90°, ∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD∥BC,∠A=∠C=90°, ∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠BDF,∠F=∠A=90°, ∴∠DBC=∠BDF ,∠C=∠F. ∴BE=DE.在△DCE 和△BFE 中, ⎩⎪⎨⎪⎧∠DEC=∠BEF,∠C=∠F,DE =BE , ∴△DCE≌△BFE. (2)解:在Rt △BCD 中, ∵CD=2,∠ADB=∠DBC=30°, ∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°. ∴DE=2EC. ∴(2EC)2-EC 2=CD 2. ∵CD=2, ∴CE=233.∴BE=BC -EC =433.(第23题)23.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AC=AB.∴△ABE≌△ACF.∴BE=CF.(2)解:四边形AECF的面积不变.由(1)知△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC. 如图,过A作AM⊥BC于点M,则BM=MC=2,∴AM=AB2-BM2=42-22=2 3.∴S△ABC=12BC·AM=12×4×23=4 3.故S四边形AECF=4 3.24.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE =90°,∴AC⊥EF.∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程一定是一元二次方程的是( )A .3x 2+2x-1=0 B .5x 2-6y -3=0 C .ax 2-x +2=0 D .3x 2-2x -1=02.一元二次方程5x 2-x =-3,其中二次项系数、一次项系数、常数项分别是( )A .5,-x ,3B .5,-1,-3C .5,-1,3D .5x 2,-1,33.由下表估算一元二次方程x 2+12x =15的一个根的范围,正确的是( )A .1.0<x<1.1B .1.1<x<1.2C .1.2<x<1.3D .14.41<x<15.844.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( )A .2B .1C .-2D .-15.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .289(1-x)2=256B .256(1-x)2=289C .289(1-2x)=256D .256(1-2x)=2896.下列方程,适合用因式分解法解的是( )A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x -4)=0的根,则这个三角形的周长是( )A.11 B.11或13 C.13 D.以上选项都不正确9.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过第( )象限.A.四B.三C.二D.一(第10题)10.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于( )A.0.5 cm B.1 cmC.1.5 cm D.2 cm二、填空题(每题3分,共24分)11.若将方程x2-8x=7化为(x-m)2=n,则m=________.12.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是______________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市准备加大对雾霾的治理力度,2015年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.17.对于实数a,b,定义运算“*”a* b=22(),(), a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2=________.(第18题)18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC 边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.20.已知关于x的一元二次方程(m+1)x2-x+m2-3m-3=0有一个根是1,求m的值及另一个根.21.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.22.已知x1,x2是关于x的一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a 的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.23.楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)24.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10cm?(第24题)25.杭州湾跨海大桥通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.C 3.B 4.D5.A点拨:第一次降价后的价格为289×(1-x)元,第二次降价后的价格为289×(1-x)×(1-x)元,则列出的方程是289(1-x)2=256.6.C7.D8.C9.D10.B点拨:设AC交A′B′于H.∵∠A=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1.即AA′=1 cm.故选B.二、11.412.a<1且a≠013.2 点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1 点拨:由方程x2-4x+3=0,得(x -1)(x -3)=0, ∴x-1=0或x -3=0. 解得x 1=1,x 2=3; 当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a, 解得a =1,经检验,a =1是方程13-1=23+a的解.16.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝ ⎛⎭⎪⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10.经检验.x 1=4,x 2=-10都是分式方程的根,但x =-10不符合题意,故x =4.17.3或-3 点拨:x 2-5x +6=0的两个根为x 1=2,x 2=3或x 1=3,x 2=2.当x 1=2,x 2=3时,x 1*x 2=2×3-32=-3; 当x 1=3,x 2=2时,x 1*x 2=32-2×3=3.18.6 点拨:∵在Rt △ABC 中,∠BAC=90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD=BD =CD =8 2 cm .又∵AP=2t cm ,∴S 1=12AP·BD=12×2t×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE=(82-2t)·2t cm 2.∵S 1=2S 2,∴8t=2(82-2t)·2t.解得t 1=0(舍去),t 2=6. 三、19.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5. 所以x =-b ±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52, x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.20.解:∵(m+1)x 2-x +m 2-3m -3=0有一个根是1, ∴(m+1)·12-1+m 2-3m -3=0.整理,得m 2-2m -3=0,∴(m-3)(m +1)=0.又∵方程(m +1)x 2-x +m 2-3m -3=0为一元二次方程, ∴m+1≠0,∴m-3=0.∴m=3. ∴原方程为4x 2-x -3=0, 解得x 1=1,x 2=-34.∴原方程的另一个根为-34.21.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5, 原方程可变形,得[(x -1)-2][(x -1)+2]=5, 整理,得(x -1)2-22=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2. 22.解:(1)存在.Δ=4a 2-4a(a -6)=24a , ∵一元二次方程有两个实数根, ∴Δ≥0,即a≥0.又∵a-6≠0,∴a≠6.∴a≥0且a≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a .解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24.(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +a a -6+1=-6a -6.∵-6a -6为负整数, ∴实数a 的整数值应取7,8,9,12. 23.解:(1)当x≤5时,y =30.当5<x≤30时,y =30-(x -5)×0.1=-0.1x +30.5. ∴y=⎩⎪⎨⎪⎧30(x≤5,且x 为正整数),-0.1x +30.5(5<x≤30,且x 为正整数).(2)当x≤5时,(32-30)×5=10<25,不合题意. 当5<x≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. ∴该月需售出10辆汽车.(第24题)24.解:(1)设P ,Q 两点从出发开始到x s 时,四边形PBCQ 的面积为33 cm 2,则AP =3x cm ,CQ =2x cm ,所以PB =(16-3x)cm .因为(PB +CQ)×BC×12=33,所以(16-3x +2x)×6×12=33.解得x=5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm .如图,过点Q 作QE⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ). 在Rt △PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245s 时,点P 和点Q 之间的距离是10 cm . 25.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km . (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y-1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.第三章达标检测卷 (120分,90分钟)一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A .110B .25C .15D .3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A .12B .14C .18D .1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P(C)<P(A)=P(B)B .P(C)<P(A)<P(B)C .P(C)<P(B)<P(A)D .P(A)<P(B)<P(C)(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A .12B .13C .14D .166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A .12B .14C .16D .187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P(x ,y),那么点P 落在函数y =-2x +9的图象上的概率为( )A .118B .112C .19D .168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A .316B .38C .916D .131610.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A .14B .25C .23D .59(第9题)(第10题)(第14题)(第18题)二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n=________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a ,b ,将其作为点M 的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A ,B ,C ,D 四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级 (1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?答案一、1.C 2.D 3.D 4.B 5.C6.C点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C . 7.B 点拨:列表如下:∴有36种等可能情况,点P(x ,y)落在y =-2x +9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=112. 8.C9.C 点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P =916,故选C .(第10题)10.B 点拨:如图,正六边形中连接任意两点可得15条线段,其中AC ,AE ,BD ,BF ,CE ,DF 这6条线段的长度为3,∴所求概率为615=25. 二、11.34点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34. 12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716 .三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即10元与20元,所以P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即10元与50元,20元与50元,所以P(B)=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平. 理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下:共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13.(3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去.当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子。
九年级数学上学期单元评估试卷3
九年级数学(上)单元评估试卷第三章 证明(三)(总分:100分;时间: 分) 姓名 学号 成绩 一、精心选一选,相信自己的判断!(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、四边形的四个内角中,最多时钝角有A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为 A ︒30 B ︒45 C ︒60 D ︒75 6、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是 A 2 对 B 3对 C 4对 D 5 对 7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B. 平行四边形; C. 菱形; D. 正方形9、 如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。
每小题3分,共24分)。
11. 如图,在 ABCD 中,对角线相交于点O ,AC ⊥CD , AO = 3,BO = 5,则CO =_____,CD=______,AD =________ABCDABCDAB C DO1 2. 如图,在 ABCD 中,AB 、BC 、CD 的长度分别为2x +1, 3x ,x +4,则 ABCD 的周长是_____________1 3. 在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DCE 的周长为__________1 4. 在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,∠B=40°,则∠A=_____,∠C=____,∠D=_____. 15. 菱形的对角线长分别为24和10,则此菱形的周长为___________,面积为____________. 16. 已知 ABCD 中,∠A -∠B = 30°,则∠C = __________,∠D = __________. 17. 判定一个四边形是正方形主要有两种方法,一是先证明它是矩形,然后证明______________,二是先证明它是一个菱形,再证明_____________________.18. 如图,已知四边形ABCD 是一个平行四边形,则只须 补充条件__________________,就可以判定它是一个菱形 三、细心做一做:(本大题共5小题,每小题6分,共30分) 19、已知:如图,平行四边形ABCD 中,AB = 12,AB 边上的高 为3,BC 边上的高为6,求平行四边形ABCD 的周长为20、如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若DG :GF = 1:4,求矩形DEFG 的面积是;BACDA BCDEFA B CD FG21、在Rt ⊿ABC 中,∠C =︒90,周长为cm )325(+;斜边上的中线CD =cm 2,求Rt ⊿ABC 的面积为22\已知:菱形ABCD 中,对角线AC = 16 cm ,BD = 12 cm ,BE ⊥CD 于点E ,求菱形ABCD 的面积和BE 的长.23\如图,在平行四边形ABCD 中,BC = 2AB ,E 为BC 的中点,求∠AED 的度数;BACDOEA B C DE四、勇敢闯一闯:(本大题共 2小题,每小题 8分,共16分)24、如图,四边形ABCD中,AD = BC,AE⊥BD,CF⊥BD,垂足为E、F,AE= CF,求证:四边形ABCD是平行四边形;25、在正方形ABCD的对角线AC上取一点 E,使 AE = AB,过 E 作EF⊥AC 交BC 于F ,求证:⑴ BF = EF⑵ BF = CEF A B。
新人教版初中数学九年级数学上册第三单元《旋转》检测题(答案解析)
一、选择题1.如图,在ABC 中,15B ∠=︒,将ABC 绕点A 逆时针旋转得到ADE ,当点B ,C ,D 恰好在同一直线上时,50CAD ∠=︒,则E ∠的度数为( )A .50°B .75°C .65°D .60°2.道路千万条,安全第一条,下列交通标志是中心对称图形的为( )A .B .C .D .3.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3) 4.下列图形中,是中心对称但不是轴对称的图形是( ) A .平行四边形 B .矩形 C .菱形 D .等边三角形 5.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形 ).A.1个B.2个C.3个D.4个6.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕A逆时针转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是 ( )A.2 B.23C.4 D.不能确定7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是( )A.22B.4 C.23D.不能确定9.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.菱形10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A .60 °B .75°C .85°D .90°11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 12.如果齿轮A 以逆时针方向旋转,齿轮E 旋转的方向( )A .顺时针B .逆时针C .顺时针或逆时针D .不能确定二、填空题13.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.14.如图,直角ABC 中,60ACB ∠=︒,在水平桌面上ABC 绕C 点按顺时针方向旋转到ECD 位置,且点B 、C 、E 在一条直线上,那么旋转角是______度.15.已知点()2,3A x -与点()4,5B y -关于原点对称,则xy 的值等于______. 16.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .17.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.18.如图,BD 为正方形ABCD 的对角线,BE 平分∠DBC ,交DC 与点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,若CE =1 cm ,则BF =__________cm .19.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.20.如图,在Rt ABC 中,∠C =90°,AC =6cm ,BC =8cm .将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连结BB ',则BB '的长度为_________.三、解答题21.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,求FM 的长.22.如图,在等腰直角三角形MNC 中,90CNM ∠=︒且CN MN =,将MNC 绕点C 顺时针旋转60︒,得到ABC ,连接AM .(1)判断CAM 的形状并证明;(2)若32AB =,求AM 的长.23.如图将三角形绕点B 顺时针旋转得到A BC ''△,使点A '落在AC 上,已知45,4,2,//C BC A A C C BC '∠==︒'=求:(1)A BC '∠的度数;(2)AC 的长度.24.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .25.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .(1)若30θ=︒时,求点A 的坐标;(2)设MBN △的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论;26.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为()6,1-,点B 的坐标为()3,1-,点C 的坐标为()3,3-.(1)将Rt ABC 先沿x 轴正方向平移7个单位长度,再沿y 轴负方向平移1个单位长度得到111Rt A B C △,请在图上画出111Rt A B C △并标明相应字母,并写出点1A 的坐标; (2)若Rt ABC 内部一点P 的坐标为(),a b ,则按(1)中的方式平移后点P 的对应点1P 的坐标是 ;(3)将Rt ABC 绕点O 顺时针旋转180︒得到222RtA B C ,请在图上画出222Rt A B C 且标明相应字母,并写出点2A 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由旋转的性质得出AD=AB ,∠E=∠ACB ,由点B ,C ,D 恰好在同一直线上,则△BAD 是底角为15°的等腰三角形,求出∠BAD=150°,可得100BAC ∠=︒,由三角形内角和定理即可得出结果.【详解】解:∵将ABC 绕点A 逆时针旋转得到ADE ,∴AD=AB ,∠E=∠ACB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是底角为15°的等腰三角形,∴∠BDA=15B ∠=︒,∴∠BAD=150°,∵50CAD ∠=︒,∴100BAC ∠=︒∴1801001565BCA -∠=︒-=,∴65∠=.E故选:C【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD是等腰三角形是解本题的关键.2.D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.D解析:D【分析】根据绕原点顺时针旋转90︒的点坐标变换规律即可得.【详解】绕原点顺时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将纵坐标变为相反数,A-,(3,1)A,(1,3)故选:D.【点睛】本题考查了绕原点顺时针旋转90︒的点坐标变换规律,熟练掌握绕原点顺时针旋转90︒的点坐标变换规律是解题关键.4.A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B、矩形是中心对称图形,也是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项错误;D、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.C解析:C【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误.【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S 四边形AOBO′=S △AOO′+S △OBO′=122④错误; 故选:C .【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点. 6.B解析:B【分析】根据旋转的性质,即可得到∠ACQ =∠60B =°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值.【详解】解:由旋转可得∠ACQ =∠60B =°.因为点D 是AC 的中点,所以CD =4.当DQ ⊥CQ 时,DQ 的长最小,此时∠CDQ =30︒. 所以122CQ CD ==,DQ ==所以DQ 的最小值是故选B .【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.7.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,也是中心对称图形,故此选项正确.故选:D .【点睛】本题考查了轴对称与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C解析:C【分析】依据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=4,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=1CD=2,2∴22-=,4223∴DQ的最小值是3故选:C.【点睛】此题考查旋转的性质,解题关键在于掌握对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.9.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、不是轴对称图形,是中心对称图形.故不符合题意;C、是轴对称图形,不是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.11.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E以逆时针方向旋转,【点睛】此题考查旋转问题,关键是根据图示进行解答.二、填空题13.【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x轴上∴∠POP´=∠A解析:【分析】根据旋转的性质,AOP绕点O顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP的长,进而可求得PP´的长.【详解】解:∵AOP绕点O顺时针方向旋转,使OA边落在x轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P坐标为(3,4),∴5=,∴PP´=故答案为:【点睛】本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.14.120【分析】首先要确定旋转中心再找到一对对应点对应点与旋转中心连线的夹角就是旋转角求出这个角即可【详解】∵直角△ABC在水平桌面上绕点C 按顺时针方向旋转到△EDC的位置∴点B的对应点就是D点则旋转解析:120【分析】首先要确定旋转中心,再找到一对对应点,对应点与旋转中心连线的夹角就是旋转角,求出这个角即可.【详解】∵直角△ABC在水平桌面上绕点C按顺时针方向旋转到△EDC的位置,∴点B的对应点就是D点,则旋转角等于∠BCD,又∵在直角△ABC中,∠ACB=60°,∴∠ACB=∠ECD=60°,所以∠BCD=180°-60°=120°.故答案为:120.【点睛】本题考查了旋转的性质,要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.解答此题要熟悉旋转的定义并熟练掌握旋转的性质.15.-4【分析】利用关于原点对称点的性质求出xy 的值进而求出答案【详解】解:∵点与点关于原点对称∴x-2=-4y-5=-3∴x=-2y=2∴xy=(-2)×2=-4故答案为:-4【点睛】本题考查了关于原解析:-4【分析】利用关于原点对称点的性质求出x ,y 的值,进而求出答案.【详解】解:∵点()2,3A x -与点()4,5B y -关于原点对称,∴x-2=-4,y-5=-3,∴x=-2,y=2,∴xy=(-2)×2=-4.故答案为:-4【点睛】本题考查了关于原点对称点的性质,根据与原点对称的点的坐标特点(纵坐标,横坐标都互为相反数)得出x ,y 的值是解题关键.16.30°110°【分析】根据旋转的性质得到利用∠AOB=∠A′OB′以及三角形内角和定理计算即可【详解】∵△AOB 中∠B=30°将△AOB 绕点O 顺时针旋转得到△A′OB′∠A′=40°∴∠B=∠B′=解析:30°, 110°【分析】根据旋转的性质得到,利用∠AOB=∠A′OB′以及三角形内角和定理计算即可.【详解】∵△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,∠A′=40°,∴∠B=∠B′=30°,∠A′=∠A=40°,则∠B′=30°,∠AOB=180°-∠A-∠B=110°.故答案为30,110.考点:旋转的变换17.120°【解析】试题分析:若△ABC 以O 为旋转中心旋转后能与原来的图形重合根据旋转变化的性质可得△ABC 旋转的最小角度为180°﹣60°=120°故答案为120°考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.18.2+【详解】过点E作EM⊥BD于点M如图所示:∵四边形ABCD为正方形∴∠BAC=45°∠BCD=90°∴△DEM为等腰直角三角形∵BE平分∠DBCEM⊥BD∴EM=EC=1cm∴DE=EM=cm由解析:2+2【详解】过点E作EM⊥BD于点M,如图所示:∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE2EM2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF22cm.故答案为219.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P(12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P'(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.20.4【分析】由勾股定理得到AB=10然后根据旋转的性质求出△BB′C′的边长最后根据勾股定理求出BB′即可【详解】∵在Rt△ABC中∠C=90°AC=6cmBC=8cm∴又由旋转的性质知AC′=AC=解析:5【分析】由勾股定理得到AB=10,然后根据旋转的性质求出△BB′C′的边长,最后根据勾股定理求出BB′即可.【详解】∵在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,∴2210AB AC BC+=.又由旋转的性质知,AC′=AC=6,B′C′=BC=8∴BC′= AB-AC′=4∵B′C′⊥AB,∴在Rt△BB′C′中,2245BB B C BC=+''=''.故答案为5【点睛】本题主要考查了旋转的性质和勾股定理,此题实际上是利用直角三角形的性质和旋转的性质将所求线段BB'与已知线段AC、BC的长度联系起来求解的.三、解答题21.5 2【分析】由旋转可得DE=DM ,∠EDM 为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF ,再由DF=DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF ;则可得到AE=CM=1,正方形的边长为3,用AB-AE 求出EB 的长,再由BC+CM 求出BM 的长,设EF=MF=x ,可得出BF=BM-FM=BM-EF=4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【详解】解:∵∆DAE 逆时针旋转90°得到∆DCE ,∴∠FCM=∠FCD+∠DCM=180°,∴F 、C 、M 三点共线,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在∆DEF 和∆DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩∴∆DEF ≌∆DMF(SAS),∴EF=MF ,设EF=MF=x ,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x ,∵EB=AB-AE=3-1=2,在Rt∆EBF 中222EB BF EF +=即2222(4)x x +-=解得x=52, ∴FM=52【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.22.(1)CAM 为等边三角形;见解析;(2)AM 6=.【分析】(1)根据有一个角为60︒的等腰三角形为等边三角形进行证明即可;(2)根据勾股定理即可求解.【详解】(1)CAM 为等边三角形.证明:∵MNC 绕点C 顺时针旋转60︒,得到ABC ,∴CA CM =,ACM 60∠=︒∴CAM 为等边三角形;(2)∵NC M 是等腰直角三角形∴ABC 是等腰直角三角形 ∵B A =∴AC 6=== ∵CAM 为等边三角形∴AM 6=【点睛】此题主要考查等边三角形的判定、勾股定理,熟练掌握等边三角形的判定定理是解题关键.23.(1)22.5︒;(2)4【分析】(1)根据平行和旋转的性质证明ABC 和ABA '△是等腰三角形,利用等腰三角形的性质求出A BC ∠''的度数,就可以求得A BC '∠的度数;(2)由(1)知ABC 是等腰三角形,可得AC=BC=4.【详解】解:(1)∵//AC BC ',∴AA B A BC '''∠=∠,∵旋转,∴AB A B '=,∴A AA B '∠=∠,∴A A BC ''∠=∠,∵ABC A BC ''∠=∠,∴A ABC ∠=∠,∵45C ∠=︒,∴1804567.52A BC ABC ︒-︒''∠=∠==︒, ∵//AC BC ',∴45C CBC '∠=∠=︒,∴67.54522.5A BC A BC CBC ''''∠=∠-∠=︒-︒=︒;(2)由(1)知A ABC ∠=∠,∴AC=BC=4.【点睛】本题考查等腰三角形的性质,旋转和平行的性质,解题的关键是熟练运用这些性质定理进行求解.24.(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD.(2)依据平移的方向和距离,即可得到MN;(3)延长QO与AD的交点即为点P.【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.25.(1)(2,23);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,3∴A的坐标是(2,3(2)P 值无变化.证明:延长BA 交y 轴于E 点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS )∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS )∴MN=ME=AM+AE ,∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点睛】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.26.(1)见解析,()11,0A ;(2)()7,1a b +-;(3)见解析,()26,1A - 【分析】(1)把三角形顶点向右平移7个单位,再沿y 轴负方向平移1个单位长度,连接各点,画出Rt △A 1B 1C 1的图形,进而写出点A 1的坐标;(2)根据三角形向右平移7个单位,再沿y 轴负方向平移1个单位长度,三角形上每个点都向右平移7个单位,向下平移1个单位,进而得到点P 的对应点P 1的坐标; (3)直接画出关于原点对称的三角形,进而写出点A 2的坐标即可.【详解】(1)如图,111Rt A B C △即为所求作三角形.点1A 的坐标为:()11,0A ; (2)三角形向右平移7个单位,再沿y 轴负方向平移1个单位长度则平移后点P 的对应点P 1的坐标为:()7,1a b +-,故答案为:()7,1a b +-;(3)如图,222Rt A B C 即为所求作三角形.点2A 的坐标为:()26,1A -.【点睛】本题考查了利用平移变换作图以及旋转变换作图的知识,熟练掌握网格结构准确找出对应点的位置是解题的关键,此题难度不大.。
2022-2022人教版初中数学9年级上册单元评价检测(3)
单元评价检测(三)第二十三章(45分钟100分)一、选择题(每题4分,共28分)1.(2022·河北中考)以下列图形中,既是轴对称图形又是中心对称图形的是( )【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心对称图形,所以既是轴对称图形又是中心对称图形的是选项C.2.m<0,那么点P(m2,-m+3)关于原点的对称点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限. 【变式训练】假设点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取值范围是( )A.0<m<3B.m<0C.m>0D.m≥0【解析】选A.∵点Q在第三象限,∴点P在第一象限,解得0<m<3.即{m>0,−m+3>0,3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,那么以下结论一定正确的选项是( ) A.∠BAE=60° B.EF=BCC.AC=AFD.∠EAF=60°【解析】选B.如果点B和点E是对应点,那么选项A、选项B和选项C是正确的;如果点B和点F是对应点,那么选项B是正确的,所以,无论是哪一种情况,选项B 一定正确.【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.4.点A(x,y-4)与点B(1-y,2x)关于原点对称,那么y x的值是( )A.2B.1C.4D.8【解析】选A.根据题意,列方程组,得{x=y−1,y−4=−2x,那么y x=21=2.解得{x=1,y=2,5.如下列图,△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:(1)点E和点F,点B和点D是关于中心O的对称点.(2)直线BD必经过点O.(3)四边形DEOC与四边形BFOA的面积必相等.(4)△AOE与△COF成中心对称,其中正确的个数为( )A.1B.2C.3D.4【解析】选D.△ABC与△CDA关于点O对称,那么AB=CD,AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,那么有:(1)点E和点F,点B和点D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(4)△AOE与△COF成中心对称,正确.所以正确的个数为4.6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,那么其旋转中心可能是( )A.点AB.点BC.点CD.点D【解析】选B.根据对应点到旋转中心的距离相等,可知旋转中心在对应点连线的垂直平分线上,作图可以得到对应点连线的交点为点B.7.(2022·日照模拟)在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A旋转180°,点C落在C′处,那么C,C′两点之间的距离是( )A.2B.4C.2√3D.无法计算【解题指南】此题涉及的两个知识点1.两个图形关于某一点成中心对称,对应点的连线经过对称中心,且被对称中心平分.2.在直角三角形中,30°所对的直角边等于斜边的一半.【解析】选B.在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2AB=2;又∵点C和点C′关于点A对称,即点C,A,C′在同一直线上,且CC′=2AC=4.二、填空题(每题5分,共25分)8.一个正方形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转. 【解析】正方形绕它的中心旋转90n°(n为正整数)后都能够与原来的图形重合,所以它至少要旋转90°.答案:90°9.如下列图,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,那么∠ABD的度数是.【解析】根据旋转的性质,得∠BAD=30°,且AB=AD,所以∠ABD=(180°-∠BAD)÷2=(180°-30°)÷2=75°.答案:75°【互动探究】题中条件不变,那么∠ACC′的度数是.【解析】根据旋转的性质,得∠CAC′=30°,且AC′=AC,所以∠ACC′=(180°-∠CAC′)÷2=(180°-30°)÷2=75°.答案:75°10.如图,点A在射线OX上,OA的长等于2cm.如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.如果将OA′再沿逆时针方向继续旋转45°,到OA″,那么点A″的位置可以用表示.【解析】第一个坐标为原点到此点的距离,旋转前后线段长度不变,所以OA″=OA=2,第二个坐标为与射线OX的夹角,为∠A″OA′+∠A′OA=45°+30°=75°,那么点A″的位置可以用(2,75°)表示.答案:(2,75°)11.(2022·聊城模拟)点A与点A′关于原点对称,且点A的坐标为(-5,y),点A 到原点的距离为13,那么点A′的坐标为.【解析】点A到原点的距离为13,即(-5)2+y2=132,解得y=±12,即点A的坐标为(-5,12)或(-5,-12),那么点A′的坐标为(5,-12)或(5,12).答案:(5,-12)或(5,12)12.假设m,n是实数,且m,n是方程x2+3x+2=0的两根,那么点P(m,n)关于原点的对称点Q的坐标是.【解析】解方程x2+3x+2=0,得x1=-1,x2=-2,所以点P的坐标为(-1,-2)或(-2,-1),那么对称点Q的坐标是(1,2)或(2,1).答案:(1,2)或(2,1)三、解答题(共47分)13.(10分)(2022·安徽中考)如图,A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.假设将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.【解析】(1)根据中心对称画图如下:(2)点B2的坐标是(2,-1),2<h<3.5.14.(12分)如图,∠BAC=30°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合.(1)△ABC旋转了多少度(2)连接CE,试判断△AEC的形状.(3)求∠AEC的度数.【解析】(1)因为∠BAD=180°-∠BAC=180°-30°=150°,所以△ABC旋转了150°(2)根据旋转的性质,可知AC=AE,所以△AEC是等腰三角形.(3)在△AEC中,∠CAE=∠BAD=150°,所以∠AEC=(180°-∠CAE)÷2=(180°-150°)÷2=15°.15.(12分)如图,在△ABC 和△EDC 中,AC=CE=CB=CD,∠ACB=∠ECD=90°,AB 与CE 交于F,ED 与AB,BC 分别交于M,H.(1)求证:CF=CH.(2)△ABC 不动,将△EDC 绕点C 旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形 并证明你的结论.【解题指南】解答此题的两个关键1.读懂图,通过旋转的性质找出三角形全等的条件.2.熟定理,根据旋转角找出判定菱形所需要的条件.【解析】(1)在△ACB 和△ECD 中,∵∠ACB=∠ECD=90°,∴∠1+∠ECB=∠2+∠ECB,∴∠1=∠2;又∵AC=CE=CB=CD,∴∠A=∠D=45°;在△CFA 和△CHD 中,{∠1=∠2,∠A =∠D,CA =CD,∴△CFA ≌△CHD,∴CF=CH.(2)四边形ACDM 是菱形.证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=45°,∠2=45°.又∵∠E=∠B=45°,∴∠1=∠E,∠2=∠B,∴AC ∥MD,CD ∥AM,∴四边形ACDM 是平行四边形,又∵AC=CD,∴平行四边形ACDM 是菱形.16.(13分)把两个全等的等腰直角三角板ABC 和EFG(其直角边均为4)叠放在一起(如图1),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕点O 按顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角形的重叠局部(如图2).在上述旋转过程中,BH 与CK 有怎样的数量关系 四边形CHGK 的面积有何变化 请证明你的发现.【解析】BH=CK.四边形CHGK 的面积没有变化.∵△ABC 是等腰直角三角形,O 为斜边中点,∴CG=BG,CG ⊥AB,∴∠ACG=∠B=45°,∵∠BGH 与∠CGK 均为旋转角,∴∠BGH=∠CGK,因此△CGK 可以看作是由△BGH 绕点O 顺时针旋转而得,故BH=CK,S △CGK =S △BGH ,∴S 四边形CHGK =S △CGK +S △CGH =S △BGH +S △CGH =S △BCG=12S △ABC =12×12×4×4=4. 即四边形CHGK 的面积在旋转过程中没有变化,始终为4.。
湘教版九年级数学上册《第三章图形的相似》单元评估检测试卷(有答案)
湘教版九年级数学上册第三章图形的相似单元评估检测试卷一、单选题(共10题;共30分)1.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点G,且AG=2,GB=1,BC=5,则DEEF的值为()A. 12B. 35C. 25D. 23.若两个图形位似,则下列叙述不正确的是()A. 每对对应点所在的直线相交于同一点B. 两个图形上的对应线段之比等于位似比C. 两个图形上的对应线段必平行D. 两个图形的面积比等于位似比的平方4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.ADAE =ACABD.ADAC=AEAB5如图,在平行四边形ABCD中,E为AD的中点,△BCF的面积为4,则△DEF的面积为()A. 1 B. 2 C. 3 D. 46.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A. 8SB. 9SC. 10SD. 11S7.若两个相似三角形的面积比为4:1,那么这两个三角形的对应边的比为()A. 4:1B. 1:4C. 2:1D. 16:18.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( ).A. ABAE =AGADB. DFCF=DGADC. FGAC=EGBDD. AEBE=CFDF9.若2a=3b=4c,且abc≠0,则a+bc−2b的值是()A.2B.-2C.3D.-310.如图,身高1.8m的小超站在某路灯下,发现自己的影长恰好是3m,经测量,此时小超离路灯底部的距离是9m,则路灯离地面的高度是()A. 5.4mB. 6mC. 7.2mD. 9m二、填空题(共10题;共32分)11.已知△ABC∽△DEF ,且它们的面积之比为4:9,则它们的相似比为________ .12.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF:S△ABC的值为________.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.BC,DE∥AC,与AB15.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=13边的交点为E,若DE=4,则BE的长为________.16.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.17.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.18.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.19.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.20.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE 于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三、解答题(共8题;共58分)21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求AE的值.AC22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.23.如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.24.如图所示,正方形ABCD的边长为2,点E是AB的中点,MN=1,线段MN的两端在CB、CD上滑动,当CM为多少时,△AED与以M、N、C为顶点的三角形相似?25.一个师傅要将一个正方形ABCD(四个角都是直角,四边都相等,边长的余料,修剪成如四边形ABEFBC,F是CD的中点.的零件. 其中CE=14(1)试用含a的代数式表示AF2+EF2值;(2)连接AF,则△AEF是直角三角形吗?为什么?26.如图,在△ABC中,∠B=∠AED,AB=5,AD=3,CE=6,求证:(1)△ADE∽△ABC;(2)求AE的长.27.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.⑴求证:△ADE≌△BGF;⑵若正方形DEFG的面积为16,求AC的长.28.如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.(1)探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);(2)延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;(3)应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK 交于点E、G.试求四边形EFKG的周长及面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】C二、填空题11.【答案】2:312.【答案】213.【答案】914.【答案】515.【答案】816.【答案】25417.【答案】6√2或2√1018.【答案】319.【答案】3220.【答案】①②③④三、解答题21.【答案】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴AEAC = DEBC= 2322.【答案】解:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,∴DEAB =DCBC,则DE 6=510,解得:DE =3.23.【答案】解:∵ED ∥BC,DF ∥AB , ∴∠ADE=∠C ,∠DFC=∠B , ∴∠AED=∠B , ∴∠AED=∠DFC ∴△ADE ∽△DCF24.【答案】解:∵正方形ABCD 的边长为2,点E 是AB 的中点, ∴∠A=90°,AB=AD=2,AE=12AB=1, ∴DE= √22+12=√5, 分两种情况:①CM 与AE 是对应边时,△AED ∽△CMN , ∴CM AE=MNDE,即CM 1=√5,解得:CM=√55;②CM 与AD 是对应边时,△AED ∽△CNM , ∴CM AE=MNDE,即CM 2=√5,解得:CM=2√55.综上所述:当CM 为√55或2√55时,△AED 与以M 、N 、C 为顶点的三角形相似.25.【答案】解:(1)连接AE ,则AB=a ,BE=34a , ∵∠B=90° ∴AE 2=2516a 2;∵CE :CF=DF :AD=1:2, ∠C=∠D=90°; ∴△ADF ∽△FCE , ∴∠CFE+∠AFD=90° ∴∠AFE=90° ∴AF 2+EF 2=AE 2=2516a 2;(2)由(1)中AF 2+EF 2=AE 2 , 可知△AEF 是直角三角形。
鲁教版(五四制)九年级数学上册《第三章二次函数》单元检测卷及答案
鲁教版(五四制)九年级数学上册《第三章二次函数》单元检测卷及答案一、单选题1.在平面直角坐标系中,平移抛物线2(2)1y x =+-使其经过原点,下列操作不正确的是( )A .向上平移1个单位长度B .向下平移3个单位长度C .向右平移1个单位长度D .向右平移3个单位长度2.设二次函数()()y a x m x m k =---(0a >,m ,k 是实数),则( )A .当2k =时,函数y 的最小值为a -B .当2k =时,函数y 的最小值为2a -C .当4k =时,函数y 的最小值为a -D .当4k =时,函数y 的最小值为2a -3.二次函数2(0)y ax bx c a =++≠图象上部分点的坐标(,)x y 对应值列表如下: x … -2 12- 0 1 2 …y … 1 14 1 4 9 …则该函数图象的对称轴是直线( )A .2x =-B .y 轴C .1x =-D .12x =-4.如图,抛物线的顶点坐标是()13P -,,则函数y 随自变量x 的增大而增大的x 的取值范围是()A .3x >B .3x <C .1x >D .1x <5.已知二次函数()223=--+y x ,且11x -≤≤,下列说法正确的是 ( )A .当2x =时,函数有最大值3B .当1x =-时,函数有最大值-6C .函数y 的取值范围是23y ≤≤D .函数y 的取值范围是62y -≤≤6.抛物线2y ax bx c =++的对称轴为直线1x =-,部分,下列判断中:①0abc >;①240b ac ->;①930a b c -+=;①若点()10.5,y -()22,y -均在抛物线上,则12y y >;①当31x -<<时,0y <;其中正确的个数有( )A .2B .3C .4D .57.如图,在ΔABC 中90,3,5C BC AC ︒∠===,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90︒,点B 的对应点为E ,连接AE ,则AE 长的最小值为( )A .1B 2C .2D 38.若3b x b ≤≤+时,二次函数22y x bx b =++的最小值为15,则b 的值为( )A .5-317-+B 5317--C .25317-+D .25-59.将抛物线2(1)2y x =--,先向上平移2个单位,再向左平移3个单位,所得新抛物线的函数关系式为( ) A .2(2)y x =+ B .2(4)y x =- C .2(4)4y x =-- D .2(1)1y x =++10.如图,已知抛物线y = ax 2+ bx + c (a≠0)的图象,结论:①abc >0;①a - b + c <0;①2a + b > 0;①ax 2+bx +c =2018有两个解,其中正确的个数是( )A .1B .2C .3D .4二、填空题11.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc > ②0a b c ++> ③2a -0b = ④当0x <时,y 随x 的增大而增大,其中正确结论的序号有 .12.设计师以2248=+y x x -的图形为灵感设计杯子如图所示,若43AB DE =,=,则杯子的高CE = .13.下表是一组二次函数235y x x =+-的自变量x 与函数值y 的对应值: x1 1.1 1.2 1.3 1.4 y 1- 0.49- 0.04 0.59 1.16那么方程2350x x +-=的一个近似根是 ;14.2y ax =向 (h >0)或向 (h <0)平移|h |个单位长度,再向 (h >0)或向 (h <0)平移|k |个单位长度,得到2()y a x h k =-+15.已知抛物线()230y ax bx a =+-≠经过点()2,5-和()1,4-,则这条抛物线的函数表达式是 .16.如图所示,抛物线2y x 在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为1A 2A 3A … n A 将抛物线2y x 沿直线l :y x =向上平移 得到一系列抛物线 且满足条件:①抛物线的顶点1M 2M 3M … n M 都在直线y x =上;①抛物线依次经过点1A 2A 3A … n A 则顶点2021M 的坐标为 .17.某西瓜经营户以2元/千克的价格购进一批西瓜,以3元/千克售出,每天可售出200千克,经调查,售价每降0.1元,每天多卖40千克,另外,每天的其它固定成本24元.当定价为 元能获得最大利润. 18.如图,二次函数2y ax bx c =++的图象过点A (3,0),对称轴为直线1x =,给出以下结论:①0abc <;①30a c +=;①2ax bx a b +≤+;①若M (-3,1y )、N (6,2y )为函数图象上的两点,则12y y <,其中正确的是 .(只要填序号)三、解答题19.某文具零售店准备从批发市场选购A 、B 两种文具,批发价A 种为12元/件,B 种为8元/件.若该店零售A 、B 两种文具的日销售量y (件)与零售价x (元/件)均成一次函数关系.(如图)(1)求y 与x 的函数关系式;(2)该店计划这次选购A 、B 两种文具的数量共120件,所花资金不超过1200元,并希望全部售完获利不低于178元,若按A种文具日销售量6件和B种文具每件可获利1元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高4元/件,求两种文具每天的销售利润(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?20.已知二次函数y=a2x+bx+c中自变量x和函数值y的部分对应值如下表:x…﹣10123…y…105212…(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)写出y≤5时自变量x的取值范围(可以结合图象说明).21.某市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果篮莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为:()76(120,)2030,mx m x x y n x x -≤<⎧⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/十克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =______ ,n =______ ;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的前20天中(不包含第20天),当天利润不低于870元的共有多少天?22.已知二次函数()()231222y t x t x =++++在0x =和2x =时的函数值相等.(1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点()3,A m -,求m 和k 的值;(3)把二次函数的图象与x 轴两个交点之间的部分记为图象G ,把图象G 向左平移(0)n n >个单位后得到的图象记为M ,请结合图象回答:当(2)中得到的直线与图象M 有公共点时,求n 的取值范围.23.如图,抛物线212y x bx c =-++与x 轴交于点A ,B ,与y 轴交于点C .直线22y x =+经过点A ,C .(1)求出此抛物线的表达式及点B 的坐标;(2)已知点P 是第一象限内抛物线上一动点.①当点P 在何位置时,以点P ,B ,C 为顶点的三角形面积最大?最大面积是多少?①再取x 轴上一点H ,是否存在以点A ,C ,P ,H 为顶点的平行四边形?若存在,请直接写出点P 和H 的坐标;若不存在,请说明理由.参考答案1.A2.A3.C4.C5.D6.B7.B8.B9.A10.C11.②④12.1113.1.214. 右 左 上 下15.223y x x =--16.()4041,404117.2.7518.①①①19.(1)20y x =-+;(2)有三种进货方案,分别是①进A 种58件,B 种62件;①进A 种59件,B 种61件;①进A 种60件,B 种60件;(3)()221632y x =--+,A 文具零售价为16元,B 文具零售价为12元时利润最大.20.(1)y =2x ﹣4x +5;(2)略;(3)0≤x ≤421.(1)12- ;25 (2)销售蓝莓第18天时,当天利润最大,最大为968元(3)当天利润不低于870元的天数共有12天22.(1)21(1)22y x =--+;(2)6m =-,k=4;(3)1922n 23.(1)213222y x x =-++ ()4,0B (2)①点P 的坐标为()2,3时,以点P ,B ,C 为顶点的三角形面积最大,最大面积是4;①存在 ()3,2P ()2,0H 或()4,0-。
浙江省杭州市萧山区九年级数学上册 3.3-3.4 单元评估 浙教版
3.3-3.4 单元评估(考试工夫:60分钟 满分:120分)一、选择题(每小题4分,共40分) 1. 以下说法正确的是( )A .相等的圆心角所对的弧相等B .等弧所对的圆周角相等C .相等的弦所对的圆心到弦的距离相等D .圆周角相等,则圆周角所对弦相等2.如图,A 、B 、C 是⊙O 上的三点,∠BAC =45°,则∠BOC 的大小是( )A .900B .60°C .45°D .22.5°3. 如图,AC 是⊙O 的直径,点B 、D 在⊙O 上,那么图中等于BOC 21的角有( )A .1个B .2个C .3个D .4个4. 如图,AC 是⊙O 的直径,∠BAC =20°,P 是⌒A B 的中点,则∠PAB 等于( )A .40° B.50° C.60° D.70°5. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,⌒BC =⌒A D ,连接AD 、AC ,若∠DAB =55°,则∠CAB 等于( )C DABO E(第2题)(第3题)ACBP。
O(第4题)(第5题)CA.35° B.34° C.30° D.16°6. 如图,锐角△ABC的顶点A、B、C均在⊙O上,∠OAC=20°,则∠B 的度数为( )A.40°B.60°C.70°D.80°7. 如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这类方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是()A. 52°B. 60°C. 72°D. 76°BOA C(第6题) (第7题) (第8题) (第9题)8. 如图A,B,C,D四点均在一圆弧上,BC∥AD,且直线AB与直线CD相交于E点.若∠BCA=10°,∠BAC=60°,则∠BEC=()A. 35°B. 40°C. 60°D. 70°9. 如图,AB为⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB交AB于点D,E是OB上一点,直线CE与⊙O交于点F,连接AF 交直线CD于点G.若AC=22,则AG·AF=()A.10 B.12 C.8 D.1610. 如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB 的平分线交⊙O 于C ,弦EF 过AC 、BC 的中点M 、N ,则EF 的长是( ).A .43 B .23 C .6 D .25二、填空题(每小题4分,共24分)11. 弦MN 把⊙O 分成两段弧, 它们的度数比为4:5, 如果T 为劣弧MN 的中点, 那么∠MOT =________.12. 在圆中长度等于半径的弦所对圆心角的度数是___ ____,该弦所对圆周角度 数___ _.13. 如图, 在△ABC 中, ∠C 是直角, ∠A =32°, 以C 为圆心, BC 为半径作圆交AB 于D ,交AC 于E ,则⌒DE 的度数是______.14. 如图,在ΔABC 中,∠A =700,⊙O 截ΔABC 的三条边,所截得的弦长相等,则∠BOC = .15. 如图,在⊙O 中,弦AC 、BD 相交于点E ,且 ⌒AB = ⌒BC = ⌒CD ,若∠BEC =130°,则∠ACD 的度数为 .16. 如图,点A 、B 、C 、D 是⊙O 上四点,060=∠AOD ,BD 平分ABC ∠,P 是BD上一点,PE ∥AB 交BC 于点C ,且5=BE ,则点P 到弦AB 的距离为 .ABC.O(第10题)(第13题)(第14题)(第15题)(第16题)三、解答题(共66分)17.(8分)如图,点A 、B 、C 、D 在圆上,AB =8,BC =6,AC =10,CD =4,求AD 的长.18.(8分)如图,AB 为⊙O 的弦,在⊙O 的上找到点C ,使得△ABC 是等腰三角形,用直尺和圆规找出一切满足条件的C 点,保留作图痕迹,不写作法.19.(10分)如图,AB 和CD 是⊙O 的两条直径,AB ⊥CD ,AB =2,∠EAB =150,AE 、DB 的延伸线交于点F ,求:(1)求∠FAD 的度数; (2)△ADF 的面积.ADBFECOAB.O20. (8分)如图,CD 是⊙O 的直径,A 为DC 的延伸线上一点,点E 在⊙O 上,∠EOD =81°,AE 交⊙O 于B ,且AB =OC ,求∠A 的度数.21. (10分)如图,Rt△BDE 中,∠BDE =90°,BC 平分∠DBE 交DE 于点C ,AC ⊥CB 交BE 于点A ,△ABC 的外接圆半径为r .(1) 求证:ED r BD EC ⋅=⋅;(2) 若BD =3,DE =4,求AE 的长.(第19题)(第20题)(第21题)BDCEA22. (10分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动工夫为t(s)(0≤t<3),连结EF,求当t值为几秒时,△BEF是直角三角形.23. (12分)如图,已知AB是⊙O中一条固定的弦,点C是优弧⌒ACB上的一个动点(点C不与A、B重合).(1)如图①,CD⊥AB于D,交⊙O于点N,若CE平分∠ACB,交⊙O于点E,求证:∠ACO=∠BCD.(2) 如图②,设AB=8,⊙O半径为5,在(1)的条件下,四边形ACBE的面积能否是定值?若是定值,求出这个定值,若不是定值,求出四边形ACBE面积的取值范围.B A(第22题)3.3—3.4单元评估1. B2. A3. C4. A5. A6. C7. A8. B9. C 10. A 11. 80012. 600,300或150013. 26014. 125015. 105016. 32517. 212 18. 4个C 点,图略 19.(1)600(2)3 20. 2721. (1)略 (2)45 22.49471或或=t 23. (1)略 (2)不是定值, 408≤<ACBE S 四边形科学睡眠 健康成长——在国旗下的发言各位尊敬的老师、各位亲爱的同学:大家上午好!我是来自预备二班的***。
九年级数学(上)单元评估试卷 (3)
P OFE DCB A九年级数学(上)单元评估试卷第三章 证明(三)(总分:100分;时间: 分) 姓名 学号 成绩1.下面给出的条件中,能判定一个四边形是平行四边形的是 ( )。
A .一组邻角互补,一组对角相等。
B .一组对边平行,一组邻角相等。
C .一组对边相等,一组对角相等。
D .一组对边相等,一组邻角相等。
2.顺次连接矩形四条边的中点,所得到的四边形一定是 ( )。
A .矩形 B .菱形 C .正方形 D .平行四边形 3.下列说法错误的是 ( )。
A .有一组对边平行但不相等的四边形是梯形。
B .有一个角是直角的梯形是直角梯形。
C .等腰梯形的两底角相等。
D .直角梯形的两条对角线不相等。
4.如图1把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置。
若∠EFB =65°,则∠AED ′等于 ( )。
A.50° B.55° C.60° D.65° 5. ABCD 中,O 是对角线的交点,不能判定这个平行四边形是正方形的是 ( )。
A .∠BAD=90°,AB=ADB .∠BAD=90°,AC ⊥BD C .AC ⊥BD ,AC=BD D .AB=AC ,∠BAD=∠BCD6.如图2,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则四边形BCEF 的周长为 ( )A.8.3B.9.6C.12.6D.13.67.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形.其中错误命题的个数是 ( ) A.1 B.2 C.3 D.4如图2 如图38、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是( ) A 2 对 B 3对 C 4对 D 5 对 9、 菱形具有而平行四边形不具有的性质是 ( ) A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 10、如图3,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为 ( )A.513 B.25 C.2 D.512 二、耐心填一填:(把答案填放相应的空格里。
北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。
北师版九年级数学上册第三章学情评估卷含答案
北师版九年级数学上册第三章学情评估卷一、选择题(共8小题,每小题3分,共24分)1.向上抛掷两枚质地均匀的硬币,落地后出现一个正面、一个反面的概率是()A.34 B.14 C.13 D.122.[2023德阳]在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是()A.13 B.12 C.23 D.143.嘉嘉和淇淇按如图所示的规则玩一次“石头、剪刀、布”游戏.嘉嘉认为每次不是胜就是输,所以每个人获胜的概率都是12,这个游戏规则公平.淇淇说嘉嘉的分析过程不正确,下列判断正确的是() A.淇淇说的不对,嘉嘉分析的对B.淇淇说的对,每个人获胜的概率为13,这个游戏规则公平C.淇淇说的对,淇淇获胜的概率大,这个游戏规则不公平D.淇淇说的对,嘉嘉获胜的概率大,这个游戏规则不公平游戏规则若一个人出“石头”,另一个人出“剪刀”,则出“石头”者胜;若一个人出“布”,另一个人出“石头”,则出“布”者胜;若一个人出“剪刀”,另一个人出“布”,则出“剪刀”者胜;若两人出相同的手势,则两人平局.(第3题)(第4题)4.[2024北京海淀区月考]某数学兴趣小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,并绘制了如图所示的统计图,那么符合这一结果的试验最有可能的是()A.从标有1,2,3,4,5,6的卡片中任抽一张是偶数B.一副只有四种花色的52张普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛掷一个质地均匀的骰子,向上的面的点数是4D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球5.[2023武汉]某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100 m”“400 m”四个项目中,随机选择两项,则他选择“100 m”与“400 m”两个项目的概率是()A.12 B.14 C.16 D.1126.如图是两个可以自由转动的质地均匀的转盘A,B,每个转盘被平均分成三个扇形,游戏规定:小美与小丽分别转动转盘A,B,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分隔线上,那么重转一次,直到指针指向某一数字所在的扇形为止),若指针指向的数字较大者获胜,则小美获胜的概率是()A.13 B.23 C.49 D.597.[2023渭南模拟]如图,正方形ABCD内有一个圆⊙O(⊙O的直径等于正方形的边长).电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数为a,⊙O内的点数为b(在正方形边上和⊙O 边上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是()A.π≈ab B.π≈4ba C.π≈ba D.π≈4ab8.同一元素中质子数相同,中子数不同的各种原子互为同位素,如612C与613C、816O与817O.在一次制取CO的实验中,612C与613C的原子个数比为21,816O与817O的原子个数比为1 :1,若实验恰好完全反应生成CO,则反应生成612C816O的概率是()A.16 B.13 C.23 D.12(第6题)(第7题)二、填空题(共5小题,每小题3分,共15分) 9.[2023扬州]某种绿豆在相同条件下发芽试验的结果如下:每批粒数n2 5 10 50 100 500 1 000 1 500 2 0003 000 发芽的频数m2 4 9 44 92 463 928 1 396 1 866 2 794发芽的频率m n(精确到0.001)1.000 0.800 0.900 0.880 0.920 0.926 0.928 0.931 0.933 0.931 这种绿豆发芽的概率的估计值为________(精确到0.01).10.在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有________个.11.若从-1,1,2这三个数中,任取两个数分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.12.[2024西安交大附中模拟]如图,经过某丁字路口的汽车,它可能向左转,也可能向右转,且这两种可能性的大小相同.若三辆汽车经过这个丁字路口,则至少有两辆汽车向左转的概率为________.(第12题)13.已知关于x 的一元二次方程x 2+bx +c =0,从-1,2,3三个数中任取一个数,作为方程中b 的值,再从剩下的两个数中任取一个数作为方程中c 的值,能使该一元二次方程有实数根的概率是________.三、解答题(共6小题,共61分)14.(8分)[2024西安新城区模拟]我省高考从2025年起将采用“3+1+2”模式:“3”是指语文、数学、外语三科为必选科目....,“1”是指在物理、历史两科中任选一.科.,“2”是指在化学、生物、思想政治、地理四科中任选两科...若小华在“1”中选择了历史,用画树状图或者列表的方法求他在“2”中选择化学和生物的概率.(化学、生物、思想政治、地理分别用字母A,B,C,D表示)15.(8分)[2024西安陕师大附中二模]2023年9月21日,“天宫课堂”第四课在中国空间站开讲,神舟十六号航天员景海鹏、朱杨柱、桂海潮面向全国青少年进行太空科普授课.航天员演示了四个太空实验:A.球形火焰实验;B.奇妙“乒乓球”实验;C.动量守恒实验;D.又见陀螺实验.(1)若小明从以上4个实验中随机选取1个实验的录像进行回看,则所选的是B实验的概率是________;(2)若小明从以上4个实验中随机选取2个实验的录像进行回看,求小明选择B和D这2个实验的概率.16.(10分)太阳发出的光经过三棱镜折射后,可以形成红、橙、黄、绿、蓝、靛、紫等色光组成的光带,这是光的色散现象,说明太阳发出的白光是由不同色光组成的.自然界大部分彩色的光都可以通过红、绿、蓝三种颜色的光按照不同比例混合而成,所以这三种色光又被称为光的“三原色”.在一次数学课上,老师利用光的三原色设计了一个“配紫色”游戏,如图所示是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,分别对应红、绿、蓝三种颜色,转动转盘2次,记下两次指针指向的区域(若指针指向扇形分界线,则需要重新转动),如果转出的两种颜色分别是红色和蓝色,则可以配成紫色.(1)用列表或画树状图的方法表示出所有可能出现的结果;(2)求转动2次转盘,恰好可以配成紫色的概率.17.(10分)陕西秦岭四宝“朱鹮、大熊猫、羚牛、金丝猴”深受大众喜爱.一天,爸爸买回来四个秦岭四宝编程积木机器人,让兄弟俩每人挑选两个,哥哥和弟弟都想先挑选,于是爸爸设计了如下游戏来决定谁先挑选.游戏规则是:如图所示,将一个可自由转动的转盘分成了四个大小相等的扇形,分别标有数字1,2,3,4;另有一个不透明的袋子,装有分别标有数字7,8,9的三个小球,三个小球除所标数字外完全相同.哥哥转动转盘,弟弟从袋中摸球,当转盘停止后,指针所指区域的数字与随机从袋中摸出小球的数字之和为偶数时,哥哥先挑选;否则弟弟先挑选(指针指向分界线时重转).你认为这个游戏对双方公平吗?请用列表或画树状图的方法说明理由.18.(12分)[2024金华期末]有甲、乙两个不透明的口袋,甲口袋装有两个相同的球,给它们分别标上数-2,2,乙口袋中装有三个相同的球,给它们分别标上数-6,m,6.小金和小东进行摸球游戏,规则如下:先从甲口袋中随机摸出一个球,其上的数记为a;再从乙口袋中随机摸出一个球,其上的数记为b.若a<b,则小金胜;若a=b,则为平局;若a>b,则小东胜.(1)若m=-2,用画树状图或列表的方法求出小金获胜的概率;(2)当小金和小东的获胜概率相同时,求整数m的值.19.(13分)一个不透明的袋子里装有若干个编号分别为1,2,3的球(除编号外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为1 3.(1)求袋子里2号球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.答案一、1.D 2.C 3.B 4.C 5.C 6.D 7.B 8.B二、9.0.93 10.3 11.13 12.1213.12 点拨:画树状图如图:共有6种等可能的结果,其中b 2-4c ≥0的结果有3种,即能使该一元二次方程有实数根的结果有3种,∴能使该一元二次方程有实数根的概率=36=12. 三、14.解:列表(表略)可知共有12种等可能的结果,其中选化学和生物的结果有2种,∴他在“2”中选择化学和生物的概率为212=16.15.解:(1)14(2)画树状图(图略)可知共有12种等可能的结果,其中小明选择B 和D 这2个实验的结果有2种,∴小明选择B 和D 这2个实验的概率为212=16.16.解:(1)列表如下.红 绿 蓝 红(红,红) (红,绿) (红,蓝) 绿(绿,红) (绿,绿) (绿,蓝) 蓝 (蓝,红) (蓝,绿) (蓝,蓝)(2)由(1)中的表可知,共有9种等可能的结果,其中转出的两种颜色是红色和蓝色的结果有2种,∴转动2次转盘,恰好可以配成紫色的概率为29.17.解:列表(表略)可知共有12种等可能的结果,其中指针所指区域的数字与随机从袋中摸出小球的数字之和为偶数的结果有6种,指针所指区域的数字与随机从袋中摸出小球的数字之和为奇数的结果有6种,∴哥哥先挑选的概率=弟弟先挑选的概率=612=12.∴这个游戏对双方公平.18.解:(1)当m =-2时,列表(表略)可知共有6种等可能的结果,其中小金获胜的结果有2种,∴小金获胜的概率为26=13.(2)根据题意列表如下:共有6种等可能的结果.∵小金和小东的获胜概率相同,∴可知a<b的结果有3种,a>b的结果有3种.∴由表可得-2<m<2,即整数m为±1或0. 19.解:(1)设袋子里2号球的个数为x个,根据题意,得x1+x+3=13,解得x=2.经检验,x=2是原分式方程的解,∴袋子里2号球的个数为2个.(2)列表(表略)可知共有30种等可能的结果,易知其中点A(x,y)在直线y=x 下方的结果有11种,∴点A(x,y)在直线y=x下方的概率为1130.。
九年级数学(上)单元评估试卷(3、5章)
九年级数学(上)单元评估试卷(3、5章)姓名 班级 成绩一、精心选一选,相信自己的判断!(每小题3分,共30分)1、从1到9这九个自然数中任取一个,既是2的倍数又是3的倍数的概率是( )(A ) 91 (B ) 31 (C ) 21 (D ) 97 2、从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于 ( )(A ) 1 (B )12 (C ) 13 (D )233、下列说法正确的是( )A 、投掷一枚图钉,钉尖朝上、朝下的概率一样B 、投掷一枚均匀的硬币,正面朝上的概率是21 C 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次就会出现一次“1点”. 4、关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等5、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( )A 、 1001B 、10001C 、100001D 、100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如右图),从中任意一张是数字3的概率是( )A 、1/6B 、1/3C 、1/2D 、2/37、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A 、 41B 、 31C 、 32D 、 21 8、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、 21B 、 83C 、 41D 、 31 9、有一实物如图,那么它的主视图是 ( )A B C D10、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定二、耐心填一填:(把答案填放相应的空格里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学九年级上册
单元评价检测(三)
第二十三章
(45分钟 100分)
一、选择题(每小题4分,共28分)
1.(2020·河北中考)下列图形中,既是轴对称图形又是中心对称图形的
是( )
【解析】选C.选项B、选项C和选项D是轴对称图形;选项A、选项C是中心
对称图形,所以既是轴对称图形又是中心对称图形的是选项C.
2.已知m<0,则点P(m2,-m+3)关于原点的对称点Q所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】选C.∵m<0,∴m2>0,-m+3>0,即点P在第一象限,所以点Q在第三象限.
【变式训练】若点P(m,-m+3)关于原点的对称点Q在第三象限,那么m的取
值范围是( )
A.0<m<3
B.m<0
C.m>0
D.m≥0
【解析】选A.∵点Q在第三象限,
∴点P在第一象限,
即解得0<m<3.
3.△ABC绕点A按顺时针方向旋转了60°,得到△AEF,则下列结论一定正确的是
( )
A.∠BAE=60°
B.EF=BC
C.AC=AF
D.∠EAF=60°
【解析】选B.如果点B和点E是对应点,则选项A、选项B和选项C是正确的;如果点B和点F是对应点,则选项B是正确的,所以,无论是哪一种情况,选项B一定正确.
【特别提醒】利用分类讨论思想,分析点B的对应点,点B可能和点E对应,还有可能和点F对应,做题时,常常忽略了其中的一种情况.
4.已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( )
A.2
B.1
C.4
D.8
【解析】选A.根据题意,列方程组,得
解得则y x=21=2.
5.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC 于点E,F,下面的结论:
(1)点E和点F,点B和点D是关于中心O的对称点.
(2)直线BD必经过点O.
(3)四边形DEOC与四边形BFOA的面积必相等.
(4)△AOE与△COF成中心对称,其中正确的个数为( )
A.1
B.2
C.3
D.4
【解析】选D.△ABC与△CDA关于点O对称,则AB=CD,AD=BC,所以四边
形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F,点B和点D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(4)△AOE与△COF成中心对称,正确.所以正确的个数为4.
6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到
△M1N1P1,则其旋转中心可能是( )
A.点A
B.点B
C.点C
D.点D
【解析】选B.根据对应点到旋转中心的距离相等,可知旋转中心在对应点连线的垂直平分线上,作图可以得到对应点连线的交点为点B.
7.(2020·日照模拟)在△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕点A 旋转180°,点C落在C′处,则C,C′两点之间的距离是( )
A.2
B.4
C.2
D.无法计算
【解题指南】本题涉及的两个知识点
1.两个图形关于某一点成中心对称,对应点的连线经过对称中心,且被对称中心平分.
2.在直角三角形中,30°所对的直角边等于斜边的一半.
【解析】选B.在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2AB=2;又∵点C 和点C′关于点A对称,即点C,A,C′在同一直线上,且CC′=2AC=4.
二、填空题(每小题5分,共25分)
8.一个正方形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转 .
【解析】正方形绕它的中心旋转90n°(n为正整数)后都能够与原来的图形重合,所以它至少要旋转90°.
答案:90°
9.如图所示,将△ABC绕点A按逆时针旋转30°后,得到△ADC′,则∠ABD的度数是 .。