勾股定理知识点总结(经典、实用)

合集下载

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

勾股定理知识点精典总结

勾股定理知识点精典总结

勾股定理知识点一:勾股定理及其证明一.勾股定理:在ABC Rt ∆中,︒=∠90C1.角与角之间有怎样的关系?︒=∠+∠90B A 直角三角形两锐角互余2.边与边之间有怎样的关系?(1)斜边最长; (2)任意两边之和大于第三边,任意两边之差小于第三边(3)勾股定理: a 2+b 2=c 2对这个等式可以变形为:22b a c += 22a c b -= 22b c a -=1、填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

⑺在Rt △ABC ,∠C=90°,如果a=7,c=25,则b= 。

⑻在Rt △ABC ,∠C=90°,如果∠A=30°,a=4,则b= 。

⑼在Rt △ABC ,∠C=90°,如果∠A=45°,a=3,则c= 。

⑽在Rt △ABC ,∠C=90°,如果c=10,a-b=2,则b= 。

⑾在Rt △ABC ,∠C=90°,如果a 、b 、c 是连续整数,则a+b+c= 。

⑿在Rt △ABC ,∠C=90°,如果b=8,a :c=3:5,则c= 。

二.选择题1.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为 ( ).(A )84 (B )24 (C )24或84 (D )84或242.如下图,线段AB=√2、CD=√5,那么,线段EF 的长度为( )A 、√7B 、√11C 、√13D 、√153.如图,点1为单位正方形内一点,且AE=BE=AB ,延长AE 交CD 于F ,作FG ⊥AB 于点G ,则EG 的长度为( )A 、B 、C 、D 、4.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是 ( )A .2cm B .4√3cm C .6cm D .8cm5.如图所示,有一个长、宽各2米,高为4米且封闭的长方体纸盒,一只昆虫从顶点要爬到顶点,那么这只昆虫爬行的最短路程为( )A 、3米 B 、 5米 C 、4√2米 D 、2√10米6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是 A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1二.填空题1. 如下图,数轴上点A 表示的数为________;2.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=√3,求线段AB 长。

勾股定理重点知识汇集

勾股定理重点知识汇集

勾股定理知识点一:勾股定理1、勾股定理的内容及其应用范围勾股定理:在R t△ABC三角形中,若∠C=90°,则a2+b2=c2.它应用于任何形状的直角三角形。

注意:在用勾股定理时,要看清楚直角边和斜边(常用分类讨论)例1、已知直角三角形ABC中,AB=3cm,BC=4cm.试求AC的长.知识点二:勾股定理逆定理的内容及其基本应用程序勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

作用于判定某个三角形是否为直角三角形。

判定的一般步骤:(1)先确定最大边(如c);(2)验证c2与a2+b2是否相等,若a2+b2=c2,则∠C=90°。

否则不是!知识点三:勾股定理的应用考点1:已知两边求第三边例1 一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm,高为12cm,吸管放进杯里,杯口外面至少要露出4.6cm,如图1,则吸管长 cm.考点2:勾股定理与方程联手求线段的长例2 如图2,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则EB的长是 .考点3:用勾股定理逆定理判别一个三角形是否是直角三角形例3 若一个三角形的周长123cm,一边长33cm,其他两边之差为3cm,则这个三角形是 .考点4:规律探索型问题例4 在直线l上依次摆放着七个正方形,如图4.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S 1+S2+S3+S4= .。

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用) Chapter 3: Pythagorean Theorem1.Key Points:1.1 Pythagorean TheoremThe Pythagorean Theorem states that in a right triangle。

the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides。

In other words。

if the two legs of a right triangle are a and b。

and the hypotenuse is c。

then a^2 + b^2 = c^2.The formula can also be rearranged to solve for a or b: a^2 = c^2 - b^2 or b^2 = c^2 - a^2.Note: This theorem only applies to right triangles。

where one angle is 90 degrees.1.2 Proof of Pythagorean TheoremThere are many ways to prove the Pythagorean Theorem。

but one common method is to use the concept of area。

By showing that two different shapes have the same area。

we can derive the formula for the theorem。

Another method is to use a puzzle-like diagram to rearrange the squares of the sides.Two common methods are shown below:Method 1: 4 SquaresIn the diagram。

八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n的线段1。

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型

勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。

注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。

若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。

(完整版)勾股定理知识点+对应类型

(完整版)勾股定理知识点+对应类型

第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

勾股定理知识点整理

勾股定理知识点整理

勾股定理知识点整理1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。

其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。

2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。

3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

勾股定理知识点总结

勾股定理知识点总结

第18章勾股定理复习一•知识归纳1 .勾股定理内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么a 2 b 2 c 2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边 称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了勾三,股四,弦五"形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2 •勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是在 ABC 中, C 90,则 c a 2 b 2 , b c 2 a 2 , a 、c 2 b 2② 知道直角三角形一边,可得另外两边之间的数量关系 ③ 可运用勾股定理解决一些实际问题① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4SS 正方形EFGHS正方形ABCD,4 -ab (b a)22c 2,化简可证.方法四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为S 4 -ab c 2 2ab c 22大正方形面积为S (a b)2 所以a 2 b 2 c 2方法三:S 梯形-(a b) (a22 2a 2ab bb), S 梯形2SADE S ABE2 — ab - c 2,化简得证2 23 •勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了 对象是直角三角形4 •勾股定理的应用①已知直角三角形的任意两边长,求第三边对于锐角 所考察的ba5、利用勾股定理作长为的线段作长为的线段。

高中勾股定理知识点总结

高中勾股定理知识点总结

高中勾股定理知识点总结一、勾股定理的定义勾股定理又称毕达哥拉斯定理,是指在直角三角形中,直角边的平方之和等于斜边的平方。

具体表达为:设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2 + b^2 = c^2。

其中,a、b、c分别代表直角三角形的三条边的长度。

二、勾股定理的应用1. 检验直角三角形:当我们已知一个三角形的三条边的长度时,可以通过勾股定理来判断这个三角形是否为直角三角形。

如果已知a^2 + b^2 = c^2,那么这个三角形一定是直角三角形。

2. 求直角三角形的未知边长:当我们已知一个直角三角形的其中两条边的长度时,可以通过勾股定理来求解第三条边的长度。

根据a^2 + b^2 = c^2,可以利用这个公式求解出c的值。

3. 解决几何问题:在一些几何问题中,勾股定理也经常发挥重要作用。

例如,在求解直角三角形的面积、周长等问题时,可以先利用勾股定理求解出各边的长度,然后再进行进一步的计算。

三、勾股定理的证明勾股定理最早是由古希腊数学家毕达哥拉斯发现的,所以也被称为毕达哥拉斯定理。

在数学中,勾股定理的证明有多种方法,其中最著名的就是几何证明和代数证明。

1. 几何证明:几何证明是利用几何图形和性质来证明勾股定理。

一种常见的几何证明方法是构造一个正方形,然后证明正方形的对角线长度分别为a+b和c,从而得到a^2 + b^2 = c^2。

2. 代数证明:代数证明是利用代数运算和方程推导来证明勾股定理。

代数证明的思路更加抽象和数学化,需要运用代数知识进行推理和计算。

四、勾股定理的推广除了直角三角形外,勾股定理还可以推广到其他类型的三角形中。

其中最重要的就是斜三角形的勾股定理。

斜三角形的勾股定理表达为:a^2 + b^2 = c^2 - 2ab*cosC。

其中,a、b、c分别代表三角形的三条边的长度,C代表三角形的斜边对应的角的余弦值。

这个定理在解决一些非直角三角形的问题时也具有重要的作用。

勾股定理知识点总结

勾股定理知识点总结

第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4。

勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作.作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是、、、。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

(完整word版)勾股定理知识点+对应类型(良心出品必属精品)

(完整word版)勾股定理知识点+对应类型(良心出品必属精品)

第二章 勾股定理、平方根专题第一节 勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );勾股定理和 平方根勾股定理平方根 立方根 实数近似数、 有效数字判定直角三角形勾股定理的验证定义、性质 开平方运算开立方运算定义、性质(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

勾股定理知识点总结

勾股定理知识点总结

勾股定理知识点总结一、引言勾股定理是数学中的基本定理之一,也是初等几何中最重要的定理之一。

它描述了直角三角形中三条边之间的关系,被广泛应用于数学、物理、工程等领域。

在本篇文章中,我们将深入探讨勾股定理的概念、证明方法、应用领域以及相关基本定理。

二、概念解析2.1 勾股定理的表述方式勾股定理有多种等价的表述方式,最常见的表述方式是:直角三角形斜边的平方等于两直角边平方和。

2.2 勾股定理的几何解释勾股定理可以通过几何方式进行解释,即在平面直角坐标系中,直角三角形的斜边平方等于两直角边平方和。

可以用图形来表示如下:/|/ |/ |/___|在这个图形中,斜边对应的边为c,两直角边分别对应为a和b,根据勾股定理可得c² = a² + b²。

三、勾股定理的证明方法勾股定理有多种证明方法,其中比较常用的方法有几何证明、代数证明和三角函数证明。

3.1 几何证明几何证明是最直观的证明方法,其中比较著名的有毕达哥拉斯的几何证明和欧几里得的几何证明。

这些证明方法利用了几何图形的性质,从而推导出勾股定理的等式关系。

3.2 代数证明代数证明是使用代数运算的方法,通过对三角形的边长平方进行代数计算,推导出勾股定理的等式关系。

代数证明通常需要应用到二次方程、因式分解等数学知识。

3.3 三角函数证明三角函数证明是将三角函数的性质与勾股定理联系起来,通过三角函数的定义和性质,推导出勾股定理的等式关系。

这种证明方法在高等数学中比较常见,对于熟悉三角函数的人来说较为容易理解。

四、勾股定理的应用领域勾股定理作为数学中的基本定理,被广泛应用于各个领域。

以下是几个常见的应用领域:4.1 地球测量学在地球测量学中,勾股定理被用来计算距离和角度。

通过测量两点之间的直角三角形边长,可以计算出两点之间的距离。

同时,勾股定理也被用来计算两条线之间的夹角,从而实现地球测量学相关应用。

4.2 建筑工程在建筑工程中,勾股定理被用来测量和校正建筑物的正方形和直角。

勾股定理中考章节复习知识点+经典题型分析总结)

勾股定理中考章节复习知识点+经典题型分析总结)

AB Ca b c弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤 ① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章、勾股定理 一、知识要点:
1、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。

公式的变形:a 2 = c 2- b 2, b 2= c 2-a 2 。

符号语言:
注意:前提一定是直角三角形.
a ,
b 也可能是斜边,分清斜边直角边.
勾股定理的证明 :勾股定理的证明方法很多,常见的的方法是面积相等---根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
勾股定理的证明方法很多,常见的是拼图的方法 常见方法如下: 方法一:4EFGH
S S S ∆+=正方形正方形ABCD ,221
4()2
ab b a c ⨯+-=,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为221
422S ab c ab c =⨯+=+
大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=
方法三:1()()2S a b a b =+⋅+梯形,211
2S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
勾股定理的适用范围 : 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

2、勾股定理的逆定理
如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.
该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.
②满足的条件:最大边的平方=最小边的平方+中间边的平方.
③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。

c
b a
H
G F E
D
C
B A b
a
c
b
a
c c
a
b
c
a
b a b
c
c b
a
E
D C
B
A
(分类讨论,数形结合)
最大边的平方<最小边的平方+中间边的平方是锐角三角形 最大边的平方>最小边的平方+中间边的平方是钝角三角形
说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:
(1)首先确定最大边,不妨设最长边长为:c ;
(2)分别求出c 2与a 2+b 2,判定c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2
,则△ABC
是以∠C 为直角的直角三角形(若c 2>a 2+b 2
,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2
,则△ABC 为锐角三角形)。

(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)
3、勾股数
满足a 2 + b 2= c 2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

② 一组勾股数扩大相同的正整数倍后,仍是勾股数。

缩小后仍满足a 2 + b 2=
c 2
常见勾股数有:用常见(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )
含字母的代数式表示n 组勾股数:22
1,2,1n n n -+(2,n ≥n 为正整数);
2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)
勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2
,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.
5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.
我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)
4.勾股定理的应用
解决求直角三角形中的边长或直角三角形中线段之间的关系的证明问题
① 已知直角三角形的任意两边长,求第三边。

② ②已知一边和关系,设未知数通过勾股定理得方程求解。

典型问题:最短距离问题:主要运用的依据是两点之间线段最短。

注:解决实际问题
思想:把实际问题转化为纯数学问题
方法:(1)抓主要信息。

1.抓已知条件,2.抓数量关系3.抓所求问题同时(2)画图,标注图,分析图.把题目中的已知数量,关系,所求都标注在图形中,分析他们之间关系。

当不能直接求解时,往往先设出未知数,用未知数表示出其他量,也要标注在图形中。

通过分析图形,找关系,想方法,找出解题思路。

(3)从已知出发,一步一步用符号语言书写推理过程。

推理就是,由已知,先能求出什么,再求出的基础上再求什么,----最后求出结果。

技巧:锁定基本图形。

能力:阅读能力,读题要慢读细读,边读边思考,不明白时,再读。

理解能力,把题目信息,动脑想,弄明白,理解怎么用。

胆大心细,多动手,多分析,从多个角度思考分析。

类型:1.勾股定理求线段长度
2.利用列方程求线段的长(方程思想)
3.折叠问题
4.网格问题
5.最短类问题
6.判断类问题
7.云梯问题
8.地摊问题
9小鸟问题
10航海问题
11路径问题。

相关文档
最新文档