开关电源中的新技术
开关电源能效标准及新技术
![开关电源能效标准及新技术](https://img.taocdn.com/s3/m/aae717fd4693daef5ef73d5e.png)
一、开关电源能效标准 二、开关电源新技术介绍 ●PSR产品应用案例 ●高PF 单级AC-DC应用案例 三、控制IC介绍【晶门科技】
一 电源能效标准----欧洲EUP
电源能效标准-欧洲EUP
电源能效标准—欧洲EUP
电源能效标准-美国能源之星
电源能效标准-美国能源之星
二、电源新技术-PSR案例
PSR电路特点
• 电源反馈控制在初级侧(源边),取消次 级反馈的基准、光藕等器件 • 恒压、恒流精度优于5% • 取消初级-次级Y电容 • 外围简单,成本低 • 满足最新五级能效标准
二电源新技术-高PF单级转换案例
高PF单级Leabharlann 换电路特点• 高PF值 典型0.95 ---利于载波通讯 • 取消输入端高压电解,解决电源寿命短板 ---利于提高电源寿命 • 效率高 大于80% ---减少发热,节能降耗 • 具软启动、过温保护、输出开路保护功能
PF-EFF 实测数据
同步整流技术
![同步整流技术](https://img.taocdn.com/s3/m/93c63433182e453610661ed9ad51f01dc28157a3.png)
同步整流技术介绍开关电源的同步整流技术同步整流技术简介1概述近年来,为了适应微处理器的发展,模块化电源的发展呈现出两个明显的发展趋势:低电压和快速动态响应。
在过去的10年里,模块化电源极大地改善了分布式电源系统的外观。
即使在安装成本敏感的设备(如线路卡和单板)时,模块电源也提供了一个有吸引力的解决方案。
然而,高速处理器不断降低的工作电压需要一种新的电压方案来适应未来,特别是考虑到肖特级二极管整流模块的效率不能令人满意。
同步整流电路应运而生,以满足低压输出的要求。
由于普通肖特基二极管的正向压降大于0.3V,因此在低电压输出时,模块的效率不可能很高。
一些数据表明,使用肖特基二极管的隔离直流模块电源的效率可以根据以下公式估算:voutvout(0.1voutvcuvf)0.1vout——一次侧和控制电路的损耗vcu―印制板的线路损耗VF-整流器传导压降损失我们假设采用0.4v的肖特基整流二极管,印制板的线路损耗为0.1v,则1.8v的模块最大的估算效率为72%。
这意味着28%的能量被模块内部损耗了。
其中由于二极管导通压降造成的损耗占了约15%。
随着半导体工艺的发展,低压功率mos管的的有着越来越小的通态电阻,越来越低的开关损耗,现在ir公司最新的技术可以制作30v/2.5mω的mos管,在电流为15a时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。
所以近年来对同步整流电路的研究已经引起了人们的极大关注。
在中大功率低压输出的dc-dc变换器的产品开发中,采用低压功率mosfet替代肖特基二极管的方案得到了广泛的认同。
今天,采用同步整流技术的on-board模块已经广泛应用于通讯的所有领域。
2同步整流电路的工作原理介绍开关电源的同步整流技术图1同步整流正激电路原理图(无复位绕组)同步整流电路与普通整流电路的区别在于它采用了mos管代替二极管,而mos管是它驱的开关器件,必须采用一定的方式控制mos管的开关。
电源工程师B卷答案(通用部分)
![电源工程师B卷答案(通用部分)](https://img.taocdn.com/s3/m/0194375fbe23482fb4da4c57.png)
电源工程师电源工程师岗位培训试题岗位培训试题岗位培训试题((B 卷)(通用知识部分通用知识部分 共共50分) 题 序一 二 三 总分 计分人 复核人 得 分一、诚信判断题诚信判断题((共10分)二、判断题判断题((每小题1分,共20分。
请在括号里正确的填确的填√√,错误的填错误的填××)1. 三端稳压电源用于大部分板载电源的场合,在这种场合成本和易用性是它的优势。
√2. 在正激式开关电源电路中,续流二极管的作用就是由于电感上的电流不能突变,电感电流就通过该二极管继续供给。
√√3. KA(UC)3844B 控制芯片,是电压型PWM 控制IC 。
╳4. 在仪器或设备中出现EMI 干扰应采用合理布局、机壳正确的接地处理,出现FRI 干扰应采用滤波处理。
╳5. 正激式变压器的第三个绕组称为钳位绕组,它主要是在晶体管截至时,使高频变压器的磁通复位。
√√6. 正激式变压器由两个作用,第一、实现输入和输出之间的电隔离;第二、升高或降低经脉宽调制以后的交流输入电压幅值。
√√7. 磁性元器件的设计是一个优秀的开关电源设计的关键。
√√8. 在电源的输入电路中,浪涌抑制部分要放在EMI 前,整流和滤波电容后,这样效果更好。
╳9. 不管是正激式开关方式还是反激式工作方式的电源中,制作变压器都要开一定的气隙以防止变压器饱和。
╳10. 推挽式变换电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反。
√√11. 铁氧体性能参数是由其本身的材料和体积决定的,因此在任意温度下其饱和磁通密度都是固定不变的。
╳12. 直流滤波扼流圈安装在开关电源的输出侧,以进一步抑制开关电源输出的电压和电流的纹波。
√√13. 流过直流滤波电感的电流是在一个直流电流上叠加了小的交流分量的电流。
√√14. 过电压保护的目的是防止控制电路出现故障时,输出电流过高烧坏元器件。
╳15. 为了减少滤波电容的等效串联电阻,经常会把多个电容串联使用。
《开关电源技术》PPT课件
![《开关电源技术》PPT课件](https://img.taocdn.com/s3/m/c0b2848ef01dc281e43af04e.png)
CR
iS
t
O
uVD
t
O
t0
t1
a)
b)
图5-2 硬开关电路及波形
a)电路图 b)理想化波形
(显示放大图)
2021/4/25
6
5-31.2 零电压开关与零电流开关
❖ 零电压开通和零电流关断要靠电路中的谐振来实现。
❖ 零电压关断:与开关并联的电容能使开关关断后电 压上升延缓,从而降低关断损耗,有时称这种关断 过程为零电压关断。
❖ 软开关: – 在电路中增加了小电感、电容等谐振元件,在开关过程前后 引入谐振,使开关条件得以改善。 – 降低开关损耗和开关噪声。 – 软开关有时也被成为谐振开关。
❖ 工作原理: – 软开关电路中S关断后Lr与Cr间发生谐振,电路中电压和电流 的波形类似于正弦半波。谐振减缓了开关过程中电压、电流 的变化,而且使S两端的电压在其开通前就降为零。
a)基本开关单元 b)降压斩波器中的基本开关单元
c)升压斩波器中的基本开关单元 d)升降压斩波器中的基 本开关单元
2021/4/25
9
5-3.2 软开关电路的分类
1. 准谐振电路 ❖ 准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。 ❖ 为最早出现的软开关电路,可以分为:
– 零电压开关准谐振电路(Zero-Voltage-Switching Quasi-Resonant Converter—ZVS QRC);
– 零电压开关多谐振电路(Zero-Voltage-Switching Multi-Resonant Converter—ZVS MRC);
– 用于逆变器的谐振直流环节(Resonant DC Link)。
特点:
– 谐振电压峰值很高,要求器件耐压必须提高;
开关电源的工作原理及技术趋势
![开关电源的工作原理及技术趋势](https://img.taocdn.com/s3/m/6e893367e55c3b3567ec102de2bd960591c6d945.png)
2021.11科技论坛开关电源的工作原理及技术趋势赵利华(四川长虹电子控股集团有限公司,四川绵阳,621000)摘要:在家用电器、电子设备的应用实践中,电源是不可缺少的部分,而且其性能的优劣会对家用电器、电子设备的技术指标以及使用安全性造成显著的影响,所以明确电源的具体价值和要求,对电源利用做分析与讨论有突出的现实意义。
关键词:开关电源;工作原理;技术趋势Working principle and technical trend of switching power supplyZhao Lihua(Sichuan Changhong Electronic Holding Group Co.,LTD.,Mianyang Sichuan,621000) Abstract:In the application practice of household appliances and electronic equipment,the power supply is an indispensable part,and its performance will have a significant impact on the technical indicators and use safety of household appliances and electronic equipment,so the specific power supply is clear Values and requirements,analysis and discussion of power utilization have outstanding practical significance.Keywords:switching power supply;working principle;technology trend1开关电源要明确开关电源的工作原理和技术趋势,必须要对开关电源有清楚的认知。
陈为-开关电源高频磁集成技术
![陈为-开关电源高频磁集成技术](https://img.taocdn.com/s3/m/987ec13d0912a21614792918.png)
10
Cuk电路电感的磁集成
N1
+ v1 vi v2 vo +
Vc
N2
-
v1
vi vo
v2 vi vo ∵ Vc=Vi+Vo ∵ v1=v2 ∴ ϕ1=ϕ2 if N1=N2
11
磁集成Cuk电路的纹波减小与零纹波条件
L1 v1 M L2 v2
i1
i2
-
+
v1
v1=v2 vi vo
By: Cuk, Slobodan M. US 4257087 Date: March 17, 1981
i1
Φ1
Vo
Φc
Φ2
i2
Np Np
Np
Np
Np
ΦC=Φ2-Φ1
ΦC=Φ2+Φ1
☺ Less ΔB in central leg ☺ Reversely coupled of L ☺ BDC canceled in outside legs ☺ Larger Lm of TX ☺ Less leakage of TX BDC exists in central leg Longer Pri. winding wire L is limited by TX turn-ratio
D = εE
B = μH J = γE
B = μH J = γE
Ampere’s Law: 线圈上的激磁电流安匝 Ampere’s Law: 线圈上的激磁电流安匝 Faraday’s Law: 线圈上的感应电动势 Faraday’s Law: 线圈上的感应电动势
磁芯内的磁动势,磁场强度 磁芯内的磁动势,磁场强度 磁芯内的磁通量,磁通密度 磁芯内的磁通量,磁通密度
开关电源的设计毕业论文
![开关电源的设计毕业论文](https://img.taocdn.com/s3/m/44c16bbf900ef12d2af90242a8956bec0975a5d4.png)
开关电源的设计毕业论文开关电源的设计一、引言开关电源是现代电子设备中常用的电源供应方式之一,其具有高效率、小体积和稳定性好等优点,在各个领域得到广泛应用。
本文将探讨开关电源的设计方法和关键技术,以及其在毕业论文中的应用。
二、开关电源的基本原理开关电源的基本原理是利用开关管(MOSFET)的开关特性,通过周期性开关和关闭来调整输入电压,从而实现对输出电压的稳定控制。
其主要由输入滤波电路、整流电路、功率变换电路、输出滤波电路和控制电路等组成。
三、开关电源设计的关键技术1. 开关管的选型开关管是开关电源中最关键的元件之一,其性能直接影响到整个电源的效率和稳定性。
在选型时需要考虑开关管的导通电阻、开关速度和耐压能力等因素,以满足设计要求。
2. 控制电路的设计控制电路是开关电源中的核心部分,其主要功能是对开关管的开关频率和占空比进行控制。
常用的控制方法有脉宽调制(PWM)和频率调制(FM)等。
在设计过程中需要考虑控制电路的稳定性和抗干扰能力。
3. 输出滤波电路的设计输出滤波电路主要用于滤除开关电源输出端的高频噪声和纹波,以保证输出电压的稳定性和纹波系数的要求。
常用的滤波电路包括LC滤波电路和Pi型滤波电路等,设计时需要根据具体应用场景选择合适的滤波电路结构。
四、开关电源在毕业论文中的应用开关电源在毕业论文中的应用非常广泛,可以用于各种电子设备的电源供应,如无线通信设备、嵌入式系统和工业自动化设备等。
在毕业论文中,可以通过对开关电源的设计和优化,提高电源的效率和稳定性,从而为论文的研究成果提供可靠的电源支持。
五、开关电源设计的挑战和发展趋势开关电源设计面临着一些挑战,如电磁干扰、温升和成本等问题。
为了应对这些挑战,研究人员正在不断提出新的设计方法和技术,如谐振开关电源、多电平开关电源和混合开关电源等。
未来,开关电源设计将更加注重节能、高效和可靠性,以满足不断发展的电子设备需求。
六、结论开关电源是一种高效、小体积和稳定性好的电源供应方式,在毕业论文中具有重要的应用价值。
开关电源并联运行及其均流技术
![开关电源并联运行及其均流技术](https://img.taocdn.com/s3/m/97ba1b6f168884868762d6bf.png)
图7 主从均流法
采用这种均流法,精度很高,控制结构简单,模块间联线复杂。缺点是一旦主模块出现故障,整个系统将完全瘫痪,宽带电压回路容易产生噪声干扰。使用中主、从模块间的联线应尽量短。
3.2.4 其他均流方法
基于三种控制结构和三种母线连接方式,可以设计出其他均流方法。图8为双环调整和平均配置相结合的均流方法文献。这种控制方式降低了电压环和均流环相互之间的影响,设计灵活,是权衡环外调整和环内调整优缺点的折中方案。此外,热应力自动均流法是按照每个模块的温度来实现均流,使温度高的模块减小输出电流,温度低的模块增加电流。外部控制器法是外加一个均流控制器,比较各模块的电流信号,并据此补偿相应的反馈信号以均衡电流。该法需要附加控制器且联线较多[1]。
图4 三种控制结构
均流母线连接方式指如何从所有的模块中获取公共电流参考信号,表明了模块间的主从关系。图5显示了三种均流母线的连接:自主配置、平均配置和指定配置。自主配置(图5a)中,各个模块和母线之间通过二极管连接,只有具备最大电流的模块对应的二极管才能导通,均流母线上代表的是最大电流信号;平均配置(图5b)中,各个模块和母线之间通过参数完全一致的电阻连接,均流母线上代表的是平均电流;指定配置(图5c)中,只有人为指定的模块直接连接均流母线,成为主模块。
图 8 双环并行调整的均流方法
4 总结
开关电源并联均流技术
![开关电源并联均流技术](https://img.taocdn.com/s3/m/c6a7d885ec3a87c24028c4ae.png)
开关电源并联均流技术1引言在实际应用中,往往由于一台直流稳定电源的输出参数(如电压、电流、功率)不能满足要求,而满足这种参数要求的直流稳定电源,存在重新开发、设计、生产的过程,势必加大电源的成本、延长交货时间、影响工程进度。
因此在实用中往往采用模块化的构造方法,采用一定规格系列的模块式电源,按照一定的串联或并联方式,分别达到输出电压、输出电流、输出功率扩展的目的。
但是电源输出参数的扩展,仅仅通过简单的串、并联方式还不能完全保证整个扩展后的电源系统稳定可靠的工作。
不论电源模块是扩压还是扩流,均存在一个“均压”、“均流”的问题,而解决方法的不同,对整个电源扩展系统的稳定性、可靠性都有很大的影响。
由于目前稳定电源输出扩流应用较多,本文仅讨论开关电源并联均流技术。
均流的主要任务是:(1)当负载变化时,每台电源的输出电压变化相同。
(2)使每台电源的输出电流按功率份额均摊。
2提高系统可靠性方法(1)在电源并联扩流过程中,为了提高系统工作稳定性,可采用N+m冗余的方法。
其中m表示冗余份数,m值越大,系统工作可靠性越高,但是系统成本也相应增加。
(2)采用均流技术保证系统正常工作。
在电源并联扩流中,应用较为广泛的办法是自动均流技术。
它通过取样、电子控制调节环路来保证整个系统的输出电流按每个单元的输出能力均摊,以达到既充分发挥每个单元的输出能力,又保证每个单元可靠工作的目的。
(3)均流技术应满足条件:·所有电源模块单元应采用公共总线。
·整个系统应有良好的均流瞬态响应特性。
·整个并联输出扩流系统有一个公共控制电路。
(4)常用的几种并联均流技术:·改变单元输出内阻法(斜率控制法)·主/从控制法(master/slave)·外部控制电路法·平均电流型自动负载均流法·最大电流自动均流法(自动主/从法、民主均流法)·强迫均流法3关于均流技术中常用的一些概念3.1稳压源(CV)电路框图和特性曲线分别如图1(a)、(b)所示,输出电压UO=RFUREF/R1(a)(b)图13.2稳流源(CC)电路框图和特性曲线分别如图2(a)、(b)所示,输出电流IO=RFUREF/(RSR1)(a)(b)图23.3CV/CC(恒压/恒流交叠)特性曲线如图3所示图34常用几种均流技术的工作原理4.1改变单元输出内阻法(斜率控制法、电压下垂式、输出特性斜率控制式)实现方式:·UO固定,改变斜率·斜率固定,改变输出电压(1)工作原理和特性曲线(a)(b)图4见图4(a)、(b),图中△Imax=△UOImax/△Uslope,内阻RO=△UO/△IO当单元输出电流IO1增加时,IO1在电流检测电阻RS上的压降增加,致使A1输出电压增加,与单元电压反馈信号Uf 叠加后送至A2反相输入端,经A2放大后输出Ur变负,利用这个Ur电压控制单元输出电流,从而实现均流。
浅析开关电源技术的发展趋势
![浅析开关电源技术的发展趋势](https://img.taocdn.com/s3/m/45d44a3e83c4bb4cf7ecd18d.png)
开关 电源 的节能是相辅相成的。 在大力提倡节能环保 的环境下, 对开关 电源节 能的研究 、提高开关 电源的效率就显得意义重大, 它适应了当今 科技发展 的潮流, 也符合人们生活的需要 。 开关 电源 的发展趋势将以 “ 四化 ” 为主流即应用技能 的智能化 、 硬
用 部分谐 振转换 回路技术 ,原理上在提高频率 的同时又可以降低噪声。 所 以 ,开关电源的又一发展方 向是尽可能地降低噪声影响。
2 、 数 字 化
件结构 的模块化 、 软件控 制的数字化 、 产品性能的绿色化 , 这些会使 产
品性能可靠 、成熟 、经济 、实用。
5 、 开 关 电源 技 术 发 展 的 前 景 展 望
传统 的开关 电源技术 中, 是靠模 拟式信号控制来设计 和T作 的。几 十年前 , 开关电源技术完全是建立在模 拟电路 的基础之上 的。 但 是数字 信号处理技术 日臻完善成熟, 越来越多的优 点被显示 出来 : 便于计算机处
的开关损耗方法主要是软开关技术 , 理论 上说是可 以将开关电源的开关 损耗降低到零 , 使其更加节能环保。可见 开关 电源小型化 的发展趋势与
理论分析 以及实践经验表 明,当我们把供电频率提高的时候 , 用电 设备 的体 积重量 以其供 电频率 的平方根成反 比地减小 。 这正是开关 电源 新 技术得 以实现 功率变频 而带来 明显效益 的根本原 因。 以此方法应用到
可见, 模 块化的 目的不 仅在于使用方便 , 缩小整机体积, 更 重要的是取消
和低成本发展使 电源应该拥有 以轻 、 薄、 小为特 点的质感 , 但是在坚持
可持 续发展观 的基础上也 为了电源的小型化更好发展 ,电源的高频化 、 高效率化 、 数 字化 、 模块化 以及绿 色化是 开关电源技术 必然的发展趋势。
电力电子技术发展的新技术与新趋势
![电力电子技术发展的新技术与新趋势](https://img.taocdn.com/s3/m/f3cb5f3f10661ed9ad51f3ea.png)
班级:10电51 学号:10285011 姓名:孙文杰电力电子技术发展的新技术与新趋势摘要:随着计算机应用技术在电力系统中不断发展和普及化,对于电力电子技术的重视程度也越发增加。
面对我国电力系统的不断建设和庞大的用电量,电力电子技术为我国当代电力生产供应系统提供了良好的技术平台,为电力系统的发电、配电、输电功能给予了支持。
关键词:电力电子技术;电力系统;应用分析电力电子技术是计算技术在电力系统中的具体实现,随着电力系统计算机化和信息化的水平不断提高,电力电子技术在电力系统中的作用也越发明显。
简单的说,电力电子技术就是通过计算机技术将强电和弱电进行有效的组合,它是计算机应用技术、电子技术、电路技术还有电力控制技术为一体的服务性的技术。
笔者就电力电子技术在我国电力系统中的应用和发展进行了重点阐述,说明电力电子技术在电力系统中的重要性。
电力电子器件的发展:电力电子技术产生自以后在电力系统中有了十足的发展。
第一代的电力电子器件主要以电力二极管和晶闸管为代表。
第一代电力电子器件的特点是体积小、耗能低。
在电力电子技术产生以后其迅速的取代了原有电力系统中的老式汞弧整流器,为电力电子技术的推广和发展奠定了良好的基础。
同时,电力二极管对于电路系统中电路性能的改善作用十分明显,它在降低电路损耗和提高电源使用率方面也各有建树。
电力电子技术发展到现在,整流二极管的种类各式各样,功能也各不相同。
随着电力系统的不断发展,第二代电力电子器件在上世纪79年代产生,第二代电子电力器件的特点是具有自动关断能力(例如可关断晶闸管和静电感应晶体管等)。
第二代全自动可控型的电力电子器件较第一代晶闸管相比,开关速度有了明显的提升,可以用于开关频率较高的电路中。
第三代电力电子器件的产生是在上世纪末90年代,随着电力系统的不断建设和发展,电力电子装置的结构和体积得到了进一步的改良,第三代电力器件的体积更小,结构也更为紧凑。
并且出现了将几种电力器件相结合的电子模块形式,为电力器的发展和使用创造了很大的方便。
开关电源的共模干扰抑制技术
![开关电源的共模干扰抑制技术](https://img.taocdn.com/s3/m/eec145ceda38376baf1faea1.png)
开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解0 引言由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。
传导是电力电子装置中干扰传播的重要途径。
差模干扰和共模干扰是主要的传导干扰形态。
多数情况下,功率变换器的传导干扰以共模干扰为主。
本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。
理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。
这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。
1 补偿原理共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。
如图1所示。
共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。
图2给出了这种新型共模噪声抑制电路所依据的本质概念。
开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。
抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。
即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。
根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。
图1 CM及DM噪声电流的耦合路径示意图图2 提出的共模噪声消除方法2 基于补偿原理的共模干扰抑制技术在开关电源中的应用本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。
开关电源的工作原理及技术趋势
![开关电源的工作原理及技术趋势](https://img.taocdn.com/s3/m/5637442526d3240c844769eae009581b6bd9bdd2.png)
开关电源的工作原理及技术趋势开关电源是一种将交流电转换成直流电的电力转换装置。
它通过开关元件(如晶体管或MOS管等)的开通与断开,控制输入电流的通断,从而实现电能的转换。
开关电源的基本工作原理是将交流电输入后,通过整流电路将交流电转换成直流电。
然后,通过控制开关元件的开通与断开,将直流电转换成一系列的短脉冲信号。
接着,通过滤波电路将短脉冲信号转换成平稳的直流电。
通过稳压电路对输出电压进行调整和稳定。
开关电源的技术趋势主要体现在以下几个方面:1.高频化:为了提高能量转换效率和减小电路体积,开关电源逐渐向高频方向发展。
高频化可以缩小电感和电容的尺寸,降低开关元件的开关损耗,并减小输出滤波器的体积。
2.数字化:随着数字电源控制技术的发展,开关电源逐渐向数字化方向靠拢。
数字控制可以实现精确的开关控制比例,并具有较高的稳定性和可编程性。
数字化还可实现远程控制和监测。
3.集成化:为了减小电路体积和提高工作效率,开关电源逐渐向集成化方向发展。
集成化可以将多个电路组件集成到一个芯片或模块中,从而减少电路元件的数量和连接线路的长度,提高电路的可靠性和稳定性。
4.节能环保:随着全球环保意识的增强,开关电源逐渐向节能环保的方向发展。
新型开关电源采用先进的能量管理技术和低功耗元件,以提高能量转换效率,并减少对环境的影响。
5.可靠性增强:开关电源在工业控制、通信、计算机等领域的应用越来越广泛。
提高开关电源的可靠性成为一个重要的技术趋势。
通过使用高可靠性的元件、设计合理的散热系统和增强的故障保护措施,可以提高开关电源的可靠性和稳定性。
开关电源的工作原理是通过开关元件的开通与断开,实现交流电到直流电的转换。
未来开关电源的技术趋势主要包括高频化、数字化、集成化、节能环保和可靠性增强。
这些趋势将为开关电源的应用提供更高效、可靠和环保的解决方案。
电力电子技术在高频开关电源中的应用
![电力电子技术在高频开关电源中的应用](https://img.taocdn.com/s3/m/8ba332016c175f0e7cd1373b.png)
电力电子技术在高频开关电源中的应用摘要: 对电力电子技术的特点及开关电源的工作原理和发展趋势作了归纳总结,在此基础上针对开关电源设计的关键技术:功率器件、软开关技术、同步整流技术和控制技术,进行了分析,并论述了电力电子各项技术在开关电源中的作用及发展前景。
关键词: 电力电子技术; 高频开关电源; 功率半导体器件; 功率变换1 电力电子技术概述电力电子技术以功率处理为对象,以实现高效率用电和高品质用电为目标,通过采用电力半导体器件,并综合自动控制计算机(微处理器)技术和电磁技术,实现电能的获取、传输、变换和利用。
电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面。
电力电子技术起始于20世纪50年代末60年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(P-MOSFET)为代表的全控型器件全速发展,使电力电子技术的面貌焕然一新进入了新的发展阶段。
80年代末期和90年代初期发展起来的、以绝缘栅极双极型晶体管(IGBT)为代表的复合型器件集驱动功率小,开关速度快,通泰压降小,载流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。
2高频开关电源概述高频开关电源是交流输入直流整流,然后经过功率开关器件(功率晶体管、MOS管、IGBT等)构成放入逆变电路,将高压直流(单相整流约300V,三相整流约500V)变换成方波(频率为20kHz)。
高频方波经高频变压器降压得到低压的高频方波,再经整流滤波得到稳定电压的直流输出。
高频开关电源的特点[1]:1、重量轻,体积小由于采用高频技术,去掉了工频(50Hz)变压器,与相控整流器相比较,在输出同等功率的情况下,开关电源的体积只是相控整流器的1/10,重量也接近1/10。
2、功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7,以上,而小负裁时,但为0.3左右。
开关电源数字化控制技术研究
![开关电源数字化控制技术研究](https://img.taocdn.com/s3/m/a0150a0766ec102de2bd960590c69ec3d5bbdb2a.png)
开关电源数字化控制技术研究摘要:随着我国经济的飞速发展和社会的发展,在科学技术发展的同时,各种自动化技术也得到了迅速的发展。
因此,数字控制电路被广泛地用于高频开关电源的设计。
本文从理论上探讨了基于 BUCK变换器的软切换技术,建立了基于BUCK变换器的高稳定性的移相全桥变换器的小信号模型。
关键词:数字化;控制电路;高频开关电源引言在电力系统中,开关电源是电力系统中重要的辅助电源。
当前,这种电源是以高频开关电源模块并联方式工作的,但是由于开关电源的开关频率高,电流大,开关损耗大, EMI干扰大,因此软切换技术应运而生,并随着控制技术的发展,以及微机的快速发展,直流系统开关电源的发展趋势是将软切换技术与数字智能控制技术有机地结合起来。
1.开关电源的了解内容1.1开关电源的概念开关电源是一种高频功率转换器,也称开关电源。
切换电源的作用就是把一种电压转化为不同的体系结构,转化为使用者所需的电压和电流,在日常的使用中起到了很大的作用,它可以改变不合适的电压和电流,还可以在一定程度上节省电能,保证居民的生活和使用。
开功率技术是目前最流行的一种技术,它的发展速度非常快,但也正因为如此,它才能在技术上更上一层楼。
开关电源是指开关电源,同时具备开关、高频、直流三种功能的电源。
目前有多种控制方式,数字控制技术是目前比较成熟的一种。
数字控制技术主要采用软切换技术和软切换技术。
由于电力电子技术的迅速发展,使其与人类的生产、生活紧密地联系在一起。
它具有对电力系统的内部状况进行实时监测、内外通讯,并将其内部的状况反馈到整个电力系统,从而达到对电力系统的全方位监测与控制。
开关电源的优点是功率转换效率高,电压稳定范围宽,重量轻。
开关电源的发展,改变了过去体积大、携带不便的弊端,而传统的开关电源技术存在着许多弊端,如功率转换技术不方便、切换损失大,但随着技术的发展,这种弊端也逐渐被解决。
1.2开关电源的发展和应用目前,开关控制技术在许多领域都比较成熟,其发展前景十分广阔,其发展趋势是:高频、高可靠性、高性能、低功耗、低噪声、等方向发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源中的几项最新技术
BUCK模式的PFC-IC
ICC控制方式的DC-DC
控制功率MOS源极的反激变换器
李龙文
2010.7.10-上海
BUCK模式的PFC
1, 有高达97%的低端输入电压时的转换效率。
2, 有较低的主功率MOS的电压应力(330V)。
3, 让后面DC-DC的输入电压降到100V以下。
TI公司的BUCK模式的PFC控制IC
UCC29910
主要优点如下:
1,主开关为BUCK模式开关,使转换效率提高。
2,工作频率设定在100KHZ,将EMI的范围远离
150KHZ以上的范围。
3,输出纹波和噪声降低。
4, 极大地改善110VAC输入时的效率,达到97%,BOOST模式此时只有94%。
UCC29910的工作原理
主开关工作波形如下
实测波形如下
用UCC29910设计的简化电路
介绍完整周期控制技术(ICC)
1.ICC 即Intergel Cycle Control Technique。
2.实现软开关(ZVS)的半桥拓扑。
3.实现96%以上的转换效率。
4.齐全的保护功能。
5.极低的空载损耗。
用UCC29900设计的ICC电路
主要优点如下:
1.输入电流峰值减半。
输出电流纹波减半。
2.EMI的强度减半,容易处理。
3.转换效率进一步提升,>96%。
4.电感的感量减半。
体积缩小。
5.输出高压电容容量减半。
除非有保持时间的要求。
UCC29900的半桥电路工作波形
用UCC29900的同步整流电路
用UCC29900的过流保护电路
UCC29910和UCC29900组合的最优秀
的AC-DC 适配器电路
T1a T1b 10K
T1c
103
4148414810K
10K
4148
104
4K
4148
10R
10R
4K
1nF
10K
5350T
10K
10K
IB045AS
106
106
228476
100R 160R
4148
104
1K 4148
22610K
100R
5350T
4148
474
10K
10K
10K
471
0.1R
10K
PC123
500K
473
Si71784148
Si7178
Si7178
106
4148
IRFB3077
228106
UCC27200
104106
4148
1R
10K
IRFB3077
104
10K
IRFB3077
IRFB3077
控制功率MOS源极的反激变换器
主要优点
1, 消除了外部电流检测电阻的功耗.
2, 极低的空载功耗.
3, 提升了低段AC电压输入时的转换效率. 4, 更加快速的故障保护,从而更加可靠.
二次侧优秀的同步整流控制IC-NCP4303 主要优点:
1.适合LLC谐振半桥的ZVS式同步整流。
2.适合CCM反激变换器的同步整流。
3.适合DCM和QR反激变换器的同步整流。
4.适合全桥的ZVS式同步整流。
LLC谐振半桥的同步整流电路
DCM和QR反激变换器的同步整流
CCM反激变换器的同步整流。