2.2 不等式的基本性质(原卷版)

合集下载

2023人教版不等式及不等式的基本性质【十大题型】(举一反三)(人教版)(原卷版)

2023人教版不等式及不等式的基本性质【十大题型】(举一反三)(人教版)(原卷版)

专题9.1 不等式及不等式的基本性质【十大题型】【人教版】【题型1 不等式的概念及意义】 (1)【题型2 取值是否满足不等式】 (1)【题型3 根据实际问题列出不等式】 (2)【题型4 在数轴上表示不等式】 (2)【题型5 利用不等式的性质判断正误】 (3)【题型6 利用不等式性质比较大小】 (4)【题型8 利用不等式性质证明(不)等式】 (5)【题型9 利用不等式性质求取值范围或最值】 (6)【题型10 不等关系的简单应用】 (6)【知识点1 认识不等式】定义:用符号“<”(或“≤”),“>”(或“≥”),“≠”连接而成的式子,叫做不等式。

用符号这些用来连接的符号统称不等式.【题型1 不等式的概念及意义】【例1】(2022春•郏县期中)在数学表达式:①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3中,不等式有()A.1个B.3个C.4个D.5个【变式1-1】(2022春•苍溪县期末)下列式子是不等式的是()A.x+4y=3B.x C.x+y D.x﹣3>0【变式1-2】(2022春•平泉市期末)某种牛奶包装盒上表明“净重205g,蛋白质含量≥3%”.则这种牛奶蛋白质的质量是()A.3%以上B.6.15gC.6.15g及以上D.不足6.15g【变式1-3】(2022春•曲阳县期末)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是.【题型2 取值是否满足不等式】【例2】(2022春•卧龙区期中)下列数值﹣2、﹣1.5、﹣1、0、1、1.5、2中能使1﹣2x>0成立的个数有个.【变式2-1】(2022春•泸县期末)x=3是下列哪个不等式的解()A.x+2<4B.1x>3C.2x﹣1<3D.3x+2>103【变式2-2】(2022春•雁塔区校级期中)下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【变式2-3】(2022春•夏津县期中)请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:;(2)﹣2,﹣1,0,1都是不等式的解:;(3)0不是这个不等式的解:.【题型3 根据实际问题列出不等式】【例3】(2022春•川汇区期末)小丽和小华先后进入电梯,当小华进入电梯时,电梯因超重而警示音响起,且这个过程中没有其他人进出,已知当电梯乘载的重量超过300公斤时警示音响起,且小丽、小华的体重分别为40公斤,50公斤,若小丽进入电梯前,电梯内已乘载的重量为x公斤,则所有满足题意的x 可用下列不等式表示的是()A.210<x≤260B.210<x≤300C.210<x≤250D.250<x≤260【变式3-1】(2022•南京模拟)据深圳气象台“天气预报”报道,今天深圳的最低气温是25℃,最高气温是32℃,则今天气温t(℃)的取值范围是()A.t<32B.t>25C.t=25D.25≤t≤32【变式3-2】(2022春•玉田县期末)用不等式表示“a是负数”应表示为.【变式3-3】(2022秋•婺城区校级期末)某种药品的说明书上贴有如图所示的标签,一次服用药品的剂量设为x,则x的取值范围是.【题型4 在数轴上表示不等式】【例4】(2022•嘉善县模拟)数轴上所表示的关于x的不等式组的解集为.【变式4-1】(2022春•永丰县期中)不等式x≥a的解集在数轴上表示如图所示,则a=.【变式4-2】(2022秋•衢州期中)在数轴上表示下列不等式(1)x <﹣1 (2)﹣2<x ≤3.【变式4-3】(2022•防城港模拟)在数轴上表示﹣2≤x <1正确的是( )A .B .C .D .【知识点2 不等式的基本性质】性质1:若a <b ,b <c ,则a <c.这个性质叫做不等式的传递性.性质2:不等式两边加(或减)同一个数(或式子),不等号的方向不变。

等式与不等式的性质(原卷版)

等式与不等式的性质(原卷版)

等式与不等式的性质【考纲要求】1、会用不等式表示不等关系;掌握等式性质和不等式性质.2、会利用不等式性质比较大小【思维导图】【考点总结】【考点总结】一、等式的基本性质性质1如果a=b,那么b=a;性质2如果a=b,b=c,那么a=c;性质3如果a=b,那么a±c=b±c;性质4如果a=b,那么ac=bc;性质5 如果a =b ,c ≠0,那么a c =bc .二、不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式. 三、比较两个实数a 、b 大小的依据文字语言符号表示 如果a >b ,那么a -b 是正数; 如果a <b ,那么a -b 是负数; 如果a =b ,那么a -b 等于0, 反之亦然a >b ⇔a -b >0 a <b ⇔a -b <0 a =b ⇔a -b =0[1.上面的“⇔”表示“等价于”,即可以互相推出.2.“⇔”右边的式子反映了实数的运算性质,左边的式子反映的是实数的大小顺序,二者结合起来即是实数的运算性质与大小顺序之间的关系. 四、不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c .推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ; (4)可乘性: ⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ; (5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2). [化解疑难]1.在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件. 2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.【题型汇编】题型一:利用不等式的性质比较数(式)大小 题型二:作差法比较数(式)大小 题型三:利用不等式的性质证明不等式 【题型讲解】题型一:利用不等式的性质比较数(式)大小 一、单选题1.(2022·浙江·三模)已知,,,a b c d ∈R ,且,,()()()a b c c d a d b d c d c d <<≠---+=,则( ) A .d a <B .a d b <<C .b d c <<D .d c >2.(2022·北京·北大附中三模)已知0a b >>,下列不等式中正确的是( ) A .c ca b> B .2ab b <C .12a b a b-+≥- D .1111a b <-- 3.(2022·江西萍乡·三模(理))设2ln1.01a =, 1.021b =,1101c =,则( ) A .a b c << B .c a b << C .b a c <<D .c b a <<4.(2022·北京·二模)“0m n >>”是“()22()log log 0-->m n m n ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e 1b a a b -+=+则下列不等式中恒成立的个数是( ) ①1122b a --< ②11b a a b -<- ③e e b a b a -<- ④52727ln 5a a b b ++-+<+A .1 B .2 C .3 D .46.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是( ) A .a c b c +<+B .11a b< C .ac bc > D .b a c ->7.(2022·陕西渭南·二模(文))设x 、y 都是实数,则“2x >且3y >”是“5x y +>且6xy >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( ) A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>9.(2022·宁夏六盘山高级中学二模(文))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极小值点,则( ) A .a b < B .a b > C .2ab a <D .2ab a >10.(2022·江西·二模(文))已知正实数a ,b 满足1a b +=,则下列结论不正确的是( ) A ab 12B .14a b+的最小值是9C .若a b >,则2211a b < D .22log log a b +的最大值为0 二、多选题1.(2022·全国·模拟预测)已知110a b<<,则下列不等关系中正确的是( ) A .ab a b >-B .ab a b <--C .2b aa b+>D .b a a b> 2.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是( ) A .221a b >+ B .122a b +> C .24a b >D .1ab b>+ 3.(2022·重庆·二模)已知2510a b ==,则( ) A .111a b+> B .2a b > C .4ab > D .4a b +>题型二:作差法比较数(式)大小 一、单选题1.(2022·全国·模拟预测(理))已知10a b a>>>,则下列结论正确的是( ) A .1a bb a -⎛⎫> ⎪⎝⎭B .log log a a bba b <C .log log a b baa b <D .11b a a b-<- 2.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是( ) A .11a b< B .2a b ab +>C .22lg lg a b >D .33a b >3.(2022·江西上饶·二模(理))设e 4ln 2313e 4ln 214e ea b c ===,,其中e 是自然对数的底数,则( ) 注:e 2.718ln 20.693==,A .b a c <<B .b c a <<C .a c b <<D .c a b <<4.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( ) A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>5.(2022·广东广州·一模)若正实数a ,b 满足a b >,且ln ln 0a b ⋅>,则下列不等式一定成立的是( ) A .log 0a b <B .11a b b a->- C .122ab a b ++< D .11b a a b --<6.(2022·山西太原·二模(文))已知32a =,53b =,则下列结论正确的有( ) ①a b < ②11a b ab+<+ ③2a b ab +< ④b a a a b b +<+ A .1个B .2个C .3个D .4个7.(2022·河北衡水中学一模)已知110a b<<,则下列结论一定正确的是( ) A .22a b >B .2b aa b+<C .a ba a <D .2lg lg a ab <8.(2022·重庆·三模)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是( ) A .a b c >>B .c a b >>C .a c b >>D .b a c >>9.(2022·湖南·雅礼中学二模)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是 A .ax by cz ++ B .az by cx ++C .ay bz cx ++D .ay bx cz ++二、多选题1.(2022·山东日照·三模)某公司通过统计分析发现,工人工作效率E 与工作年限()0r r >,劳累程度()01T T <<,劳动动机()15b b <<相关,并建立了数学模型0.141010r E T b -=-⋅,已知甲、乙为该公司的员工,则下列结论正确的是( )A .甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高B .甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率低C .甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短.则甲比乙劳累程度弱D .甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强 2.(2022·辽宁葫芦岛·二模)已知0a b >>,115a b a b+++=,则下列不等式成立的是( ) A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭3.(2022·湖南·长沙市明德中学二模)已知1m n >>,若1e 2e e m n m m m n +-=-(e 为自然对数的底数),则( ) A .1e e 1m n m n +>+ B .11122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭C .4222m n --+>D .()3log 1m n +>4.(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ). A .函数()f x 的定义域为R B .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭5.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是( ) A .1ab a b +>+ B .()2log 1a b +> C .11a b ab+<+D .11a b a b+>+ 15.(2022·山东聊城·三模)已知实数m ,n 满足01n m <<<,则下列结论正确的是( ) A .11n n m m +<+ B .11m n m n+>+ C .n m m n >D .log log m n n m <题型三:利用不等式的性质证明不等式 一、单选题1.(2022·浙江·绍兴一中模拟预测)设,a b ∈R ,则“||1+≤a b ”是“||1a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·浙江省杭州学军中学模拟预测)若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2021·浙江·模拟预测)已知a ,b R ∈,则“a b b ->”是“12b a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.(2021·上海长宁·二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题D .p 是假命题,q 是真命题5.(2021·浙江·模拟预测)已知x ,y ∈R ,则“2214xy +≤”是“12x y +≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2021·全国·模拟预测)已知a ∈R ,()21ln 0ax x a x --+≤在1,22x ⎡∈⎤⎢⎥⎣⎦上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .11,32⎡⎤⎢⎥⎣⎦C .1,3⎡⎫+∞⎪⎢⎣⎭D .1,3⎛⎤-∞ ⎥⎝⎦7.(2021·浙江·模拟预测)已知0a b >>,给出下列命题: 1a b =,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( ) A .1B .2C .3D .48.(2022·四川省泸县第二中学模拟预测(文))已知,a b ∈R 且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( ) A .[0,12]B .[4,10]C .[2,10]D .[2,8]9.(2022·浙江·杭州高级中学模拟预测)已知,,a b c ∈R 且0,++=>>a b c a b c ,则22a c ac +的取值范围是( )A .[)2,+∞B .(],2-∞-C .5,22⎛⎤-- ⎥⎝⎦D .52,2⎛⎤ ⎥⎝⎦10.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围( )A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞二、多选题1.(2021·江苏·扬州中学模拟预测)已知两个不为零的实数x ,y 满足x y <,则下列说法中正确的有( ) A .31x y ->B .2xy y <C .x x y y <D .11x y> 2.(2021·福建·模拟预测)下列说法正确的是( )A .设,x y R ∈,则“222x y +≥”是“1≥x 且1y ≥”的必要不充分条件B .2πα=是“cos 0α=”的充要条件C .“3x ≠”是“3x ≠”成立的充要条件D .设R θ∈,则 “1212ππθ-<”是“1sin 2θ<”的充分而不必要条件 3.(2021·广东·石门中学模拟预测)设,a b 为正实数,下列命题正确的有( ) A .若221a b -=,则1a b -<;B .若111b a -=,则1a b -<;C 1a b =,则1a b -<;D .若331a b -=,则1a b -<.4.(2021·江苏南京·二模)已知0a >,0b >,且221a b +=,则( ) A .2a b +≤B .1222a b -<< C .221log log 2a b -D .221a b ->-。

3.2不等式的基本性质(原卷版)

3.2不等式的基本性质(原卷版)

A.■
B.●
C.▲
D.无法确定
12.已知数轴上两点,表示的数分别为 ― 2,1,那么关于的不等式( ― 2) + > 2的解集,下列说法
正确的是( )
A.若点在点左侧,则解集为 < ―1
B.若点在点右侧,则解集为 < ―1
C.若解集为 < ―1,则点必在点左侧
D.若解集为 < ―1,则点必在点右侧
;当 ― = 0时,一定有 = ;当 ― < 0时,一定有 < .反之亦成立.
解决问题:甲、乙两个班分别从新华书店购进了 A,B 两种图书,A 种图书的进价为 4 元/本,B 种图书的进
价为 10 元/本.现甲班购进 m 本 A 种图书和 n 本 B 种图书,乙班购进 m 本 B 种图书和 n 本 A 种图书.
D. < ―3
7.梓琦同学在进行不等式的变形时,有几道题做错了,请帮助老师找出不等式变形正确的一项(
A.由 > ,得 >
B.由 > ,得 ― 2022 < ― 2022
C.由 > ,得 <
D.由2


1
> 2 1,得 >
8.若 < ,且( ― 2) > ( ― 2),则的取值范围是
由;
(2)已知正整数 k 是一个两位数,且 = 10 + (1 ≤ < ≤ 9,其中 x,y 为整数),将其个位上的数字与十
位上的数字交换,得到新数 m.若 m 与 k 的差是“四倍数”,求出所有符合条件的正整数 k.
17.阅读:通过作差的方式可以比较两个数的大小.例如比较 a,b 两数的大小:当 ― > 0时,一定有 >

2.2不等式的基本性质

2.2不等式的基本性质
若 a b cc
不等式的基本性质2:不等式的两边都乘以
(或除以)同一个负数,不等号的方向_改__变___.
用字母表示: 若 a b,c 0 ,则
ac bc 或
ab cc
第三关:小试牛刀
练习1、已知m n,用“>”或“<”填空
> n 5 m 5 (1)、
(1)x 5 -1 (2)- 2x 3
解:(1)根据不等式的性质1,两边同时加上5,得
x 5 5 -1 5
即 x4
根据不等式的性质3,两边同时除以-2,得
-2x 3 2 2
即 x3 2
完成随堂练习p41第1题
归纳小结
今天你学习了什么?掌握 了那些学习的方法,有哪 些地方掌握不够好,需要 再努力.
_____
依据: 不等式的基本性质1
> m 6 (2)、
_____
> (3)、 1 m _____
3
< 2m (4)、
_____
n6
1n 3
2n
依据: 不等式的基本性质1 依据: 不等式的基本性质2 依据: 不等式的基本性质3
完成随堂练习p41第二题
第四关:乘胜追击
例:将下列不等式化成“x>a”或“x<a”的形式
二、智力大比拼
第一关:脑筋急转弯
有两对父子,为何只有三个人?
我今年 70岁
我今年 30岁
爷爷和爸爸谁大 呢?
70 > 30
五年后: 70+5 > 30+5 二十年前: 70-20 > 30-20
x年后: 70+x > 30+x x年前: 70-x > 30-x

八年级数学下册《2.2 不等式的基本性质》习题(无答案)

八年级数学下册《2.2 不等式的基本性质》习题(无答案)

不等式的基本性质1、已知实数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是().A、bc>ab;B、ac>ab;C、bc<ab;D、c+b>a+b.2、已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是().A、3b<p<3a;B、a+2b<p<2a+b;C、2b<p<2(a+b);D、2a<p<2(a+b).3、若m>n,且am<an,则a的取值应满足条件().A、a>0;B、a<0;C、a=0;D、a 0.4、若a>b,且m为有理数,则am2____bm2.5、同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?6、根据不等式的基本性质,把不等式2x+5<4x-1变为x>a或x<a的形式.7、如图所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?1、设a 、b 、c 、d ∈R 、且a >b ,c >d ,则下列结论中正确的是( ).A 、a +c >b +dB 、a -c >b -dC 、ac >bdD 、c bd a>2、若a 、b 为实数、则a >b >0是a 2>b 2的( ).A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既非充分条件也非必要条件3、若011<<b a ,则下列结论正确的是( ).A 、22b a <B 、2b ab <C 、ab a <2D 、b a >4、“a >b ”是“ac 2>bc 2”成立的( ).A 、必要不充分条件B 、充分不必要条C 、充要条件D 、以上均错5、若b a , 为任意实数且b a >,则( ).A 、22b a >B 、1>b aC 、0)lg(>-b aD 、b a )21()21(<6、“1>a ”是“11<a ”的( ).A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件7、设10<<<a b 、则下列不等式成立的是( ).A 、12<<b abB 、0log log 2121<<a b C 、222<<a b D 、12<<ab a8、1>a b是0)(<-b a a 成立的( ).A 、充分不必要条件B 、充要条件C 、必要不充分条件D 、既不充分不必要条件1、不等式的基本性质1:如果a>b ,那么a+c____b+c ,a-c____b-c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2、设a<b ,用“<”或“>”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b .3、根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4、若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m-a___m-b ;(4)an____bn ;5、下列说法不正确的是( )A 、若a>b ,则ac 2>bc 2(c ≠0);B 、若a>b ,则b<a ;C 、若a>b ,则-a>-b ;D 、若a>b ,b>c ,则a>c .6、根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式.(1)x -3>1;(2)3x<1+2x ;(3)2x>4.1、若000><>+ay a y x ,,,则y x -的值( ). A 、小于0 B 、大于0 C 、等于0 D 、正负不确定2、若a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④b a 22>中,正确的有( ). A 、1个B 、2个C 、3个D 、4个 3、已知a 、b 、c 满足a b c <<,且0<ac ,那么下列选项中不一定成立的是( ). A 、B 、C 、D 、0)(<-c a ac 4、若011<<ba ,则下列不等式①ab b a <+;②;||||b a >③b a <;④02<-ab a 中,正确的不等式有( ). A 、1个 B 、2个 C 、3个 D 、4个5、设010<<-<b a ,,则2ab ab a ,,三者的大小关系为 .6、设R x x x B x A ∈+=+=,,234221且1≠x ,则B A ,的大小关系为 .7、如果01<<<-b a ,则2211a b a b ,,,的大小关系为 .8、设,0>a 0>b ,则b a >是bb a a 11->-成立的 条件.。

不等式的基本性质(原卷版)

不等式的基本性质(原卷版)

3.1 不等式的基本性质【知识点梳理】知识点一、符号法则与比较大小 实数的符号:任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立.两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>⇒+>;0,00a b a b <<⇒+<②两个同号实数相乘,积是正数 符号语言:0,00a b ab >>⇒>;0,00a b ab <<⇒>③两个异号实数相乘,积是负数 符号语言:0,00a b ab ><⇒<④任何实数的平方为非负数,0的平方为0 符号语言:20x R x ∈⇒≥,200x x =⇔=. 比较两个实数大小的法则: 对任意两个实数a 、b ①0b a b a ->⇔>; ②0b a b a -<⇔<; ③0b a b a -=⇔=.对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.知识点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.知识点二、不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:(1)对称性:a b b a >⇔< (2)传递性:, a b b c a c >>⇒>(3)可加性:a b a c b c >⇔+>+(c ∈R ) (4)可乘性:a >b ,000c ac bc c ac bc c ac bc >⇒>⎧⎪=⇒=⎨⎪<⇒<⎩运算性质有:(1)可加法则:,.a b c d a c b d >>⇒+>+ (2)可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅> 知识点诠释:不等式的性质是不等式同解变形的依据. 知识点三、比较两代数式大小的方法 作差法:任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.①0b a b a ->⇔>; ②0b a b a -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小.①1aa b b>⇔>; ②1aa b b<⇔<;③1aa b b=⇔=. 中间量法:若a b >且b c >,则a c >(实质是不等式的传递性).一般选择0或1为中间量.【题型归纳目录】题型一:用不等式(组)表示不等关系 题型二:作差法比较两数(式)的大小 题型三:利用不等式的性质判断命题真假 题型四:利用不等式的性质证明不等式 题型五:利用不等式的性质比较大小题型六:利用不等式的基本性质求代数式的取值范围【典型例题】题型一:用不等式(组)表示不等关系例1.(2022·湖南·怀化五中高二期中)用不等式表示,某厂最低月生活费a 不低于300元 ( ). A .300a ≤ B .300a ≥ C .300a > D .300a <例2.(2022·全国·高一专题练习)某医院工作人员所需某种型号的口罩可以外购,也可以自己生产.其中外购的单价是每个1.2元,若自己生产,则每月需投资固定成本2000元,并且每生产一个口罩还需要材料费和劳务费共0.8元.设该医院每月所需口罩()n n *∈N 个,则自己生产口罩比外购口罩较合算的充要条件是( ) A .800n > B .5000n >C .800n <D .5000n <例3.(2022·湖北·华中科技大学附属中学高一阶段练习)如图两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种关系用含字母(),a b a b ≠的不等式表示出来( )A .()2212a b ab +> B .()2212a b ab +< C .()2212a b ab +≥ D .()2212a b ab +≤例4.(2022·上海·上外附中高一期中)用锤子以均匀的力敲击铁钉钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的()*1N k k∈,已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实例中提炼出一个不等式组:______.例5.(2022·全国·高一课时练习)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人数不超过200人;每个工人年工作时间约计2100h ;预计此产品明年销售量至少80000袋;每袋需用4h ;每袋需用原料20kg ;年底库存原料600t ,明年可补充1200t .试根据这些数据预测明年的产量x (写出不等式(组)即可)为________.【方法技巧与总结】将不等关系表示成不等式(组)的思路 (1)读懂题意,找准不等式所联系的量. (2)用适当的不等号连接. (3)多个不等关系用不等式组表示. 题型二:作差法比较两数(式)的大小例6.(2022·江西·九江县第一中学高二期中(理))若0,01a b ><<,则2,,a ab ab 的大小关系为( ) A .2a ab ab >> B .2a ab ab << C .2ab a ab >>D .2ab ab a >>例7.(2022·江苏·高一)已知a b <,3x a b =-,2y a b a =-,则,x y 的大小关系为( ) A .x y > B .x y < C .x y =D .无法确定例8.(2022·河南河南·高二期末(文))若0a b >>,c 为实数,则下列不等关系不一定成立的是( ). A .22ac bc > B .11a b< C .22a b > D .a c b c +>+例9.(2022·全国·高一专题练习)下列四个代数式①4mn ,①224+m n ,①224m n +,①22m n +,若0m n >>,则代数式的值最大的是______.(填序号).例10.(2022·江苏·高一)(1)比较231x x -+与221x x +-的大小; (2)已知0c a b >>>,求证:a bc a c b>--.【方法技巧与总结】 作差法比较大小的步骤题型三:利用不等式的性质判断命题真假例11.(2022·上海崇明·二模)如果0,0a b <>,那么下列不等式中正确的是( ) A .22a b < B a b -<C .a b > D .11a b<例12.(2022·上海交大附中模拟预测)已知a b <,0c ≥,则下列不等式中恒成立的是( )A .ac bc <B .22a c b c ≤C .22a c b c +<+D .22ac bc ≤例13.(2022·山西师范大学实验中学高二阶段练习)若,,a b c ∈R ,且a b >,则下列不等式中一定成立的是( ) A .a b b c +≥- B .ac bc ≥C .20c a b>-D .2()0a b c -≥例14.(2022·江苏南京·模拟预测)设a 、b 均为非零实数且a b <,则下列结论中正确的是( ) A .11a b> B .22a b < C .2211a b< D .33a b <【方法技巧与总结】运用不等式的性质判断真假的技巧(1)首先要注意不等式成立的条件,不要弱化条件,尤其是不凭想当然随意捏造性质. (2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值一定要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.题型四:利用不等式的性质证明不等式例15.(2022·全国·高一课时练习)(1)已知a b >,0ab >,求证:11a b<; (2)已知0a b >>,0c d <<,求证:a b c d>.例16.(2022·河南·濮阳市油田第二高级中学高二阶段练习(文))(1)33a x y =+,22b x y xy =+,其中x ,y 均为正实数,比较a ,b 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c c a c b c>--.例17.(2022·湖南·高一课时练习)利用不等式的性质证明下列不等式: (1)若a b <,0c <,则()0a b c ->; (2)若0a <,10b -<<,则2a ab ab <<.例18.(2022·全国·高一专题练习)(1)若bc -ad ≥0,bd >0,求证:a b b +≤c dd+; (2)已知c >a >b >0,求证:a bc a c b>--例19.(2022·全国·高一专题练习)已知三个不等式:①0ab >;①c da b>;①bc ad >.若以其中两个作为条件,余下的一个作为结论,请写出一个真命题,并写出推理过程.例20.(2022·江苏·高一专题练习)(1)设0b a >>,0m >,证明:a a m b b m+<+; (2)设0x >,0y >,0z >,证明:12x y zx y y z z x<++<+++.例21.(2022·全国·高一专题练习)若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--;(3)在(2)中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【方法技巧与总结】对利用不等式的性质证明不等式的说明(1)不等式的性质是证明不等式的基础,对任意两个实数a ,b 有0a b a b ->⇒>;0a b a b -=⇒=;0a b a b -<⇒<.这是比较两个实数大小的依据,也是证明不等式的基础.(2)利用不等式的性质证明不等式,关键要对性质正确理解和运用,要弄清楚每一条性质的条件和结论,注意条件的加强和减弱、条件和结论之间的相互联系.(3)比较法是证明不等式的基本方法之一,是实数大小比较和实数运算性质的直接应用.题型五:利用不等式的性质比较大小例22.(2022·新疆·莎车县第一中学高二期中(文))设2a =73b =62c =则a ,b ,c 的大小关系__________.例23.(2022·江西赣州·高二期中(理))已知1t >,且1x t t =+1y t t =-则x ,y 的大小关系是______.例24.(2022·浙江·三模)已知,,,a b c d ∈R ,且,,()()()a b c c d a d b d c d c d <<≠---+=,则( ) A .d a < B .a d b <<C .b d c <<D .d c >例25.(2022·河南·夏邑第一高级中学高二期中(文))若a 是实数,210P a a +,2264Q a a ++P ,Q 的大小关系是( )A .Q P >B .P Q =C .P Q >D .由a 的取值确定例26.(多选题)(2022·湖南·长郡中学高二期中)若0a b <<,0c >,则下列不等式中一定成立的是( ) A .a c b c +<+ B .ac bc <C .c c a b <D .11a b a b->-例27.(多选题)(2022·山西运城·高二阶段练习)已知0b a <<,则下列选项正确的是( ) A .22a b > B .a b ab +< C .||||a b < D .2ab b >例28.(2022·江苏·高一课时练习)(1)已知x ≤1,比较3x 3与3x 2-x +1的大小. (2)已知a ,b ,c 是两两不等的实数,p =a 2+b 2+c 2,q =ab +bc +ca ,试比较p 与q 的大小.例29.(2022·江苏·高一课时练习)已知10x y -<<<,比较1x,1y ,2x ,2y 的大小关系.【方法技巧与总结】 注意点:①记准、记熟不等式的性质并注意在解题中灵活准确地加以应用;②应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则题型六:利用不等式的基本性质求代数式的取值范围例30.(2022·福建·厦门市国祺中学高一期中)若13a b -<+<,24a b <-<,23t a b =+,则t 的取值范围为______.例31.(2022·江苏·苏州大学附属中学高一阶段练习)若实数x ,y 满足121x y -≤+≤且131x y -≤+≤,则9x y +的取值范围是_____________.例32.(2022·全国·高一期中)已知0b >,且445b a c b a c b -≤-≤-≤-≤,则9a cb-的取值范围是___________.例33.(2022·河北·大名县第一中学高一阶段练习)若实数,αβ满足11αβ-≤+≤,123αβ≤+≤,则3αβ+的取值范围为________.例34.(2022·河南·西平县高级中学高一阶段练习)已知实数,x y 分别满足,15x <<,27y <<.(1)分别求23x y +与45x y -的取值范围; (2)若,x y <试分别求x y -及xy的取值范围.例35.(2022·江苏·高一专题练习)已知15a b ≤+≤,13a b -≤-≤,求32a b -的取值范围.例36.(2022·江苏·高一专题练习)实数,a b 满足32a b -≤+≤,14a b -≤-≤. (1)求实数,a b 的取值范围; (2)求32a b -的取值范围.例37.(2022·全国·高一专题练习)(1)若1260a ,1536b ,求2a b -,a b的取值范围;(2)已知x ,y 满足1122x y -<-<,01x y <+<,求3x y -的取值范围.例38.(2022·安徽·阜阳市耀云中学高二期中)已知122a b -<+<且34a b <-<,求5a b +的取值范围.例39.(2022·全国·高一课时练习)设实数x ,y 满足212xy ≤≤,223x y ≤≤,求47x y的取值范围.【方法技巧与总结】利用不等式的性质求取值范围的策略建立待求范围的整体与已知范围的整体的关系,最后利用一次不等式的性质进行运算,求得待求的范围.如已知2030,1518x y x y <+<<-<,要求23x y +的范围,不能分别求出,x y 的范围,再求23x y +的范围,应把已知的“x y +”“x y -”视为整体,即5123()()22x y x y x y +=+--,所以需分别求出51(),()22x y x y +--的范围,两范围相加可得23x y +的范围.“范围”必须对应某个字母变量或代数式,一旦变化出其他的范围问题,则不能再间接得出,必须“直来直去”,即直接找到要求的量与已知的量间的数量关系,然后去求.注意同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.【同步练习】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2022·四川·成都外国语学校高一阶段练习(理))如果实数,a b 满足0a b <<,那么( ). A .0a b ->B .11a b> C .ac bc < D .22a b <2.(2022·浙江衢州·高一阶段练习)随着社会的发展,小汽车逐渐成了人们日常的交通工具.小王在某段时间共加92号汽油两次,两次加油单价不同.现在他有两种加油方式:第一种方式是每次加油200元,第二种方式是每次加油30升.我们规定这两次加油哪种加油方式的平均单价低,哪种就更经济,则更经济的加油方式为( ) A .第一种B .第二种C .两种一样D .不确定3.(2022·宁夏·银川二中高二期中(文))已知0ab >,且()()332a b a b ++=,则下列不等式一定成立的是( ) A .222a b +≤B .222a b +C .2a b +D .2a b +>4.(2022·四川省泸县第二中学模拟预测(文))已知,a b ∈R 且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8]5.(2022·黑龙江·鹤岗一中高二阶段练习)下列命题中,正确的是( )A .若a b >,c d >, 则 a c b d +>+B .若a b >, 则ac bc >C .若0a b >>,0c d >>, 则a b c d >D .若a b >,则22a b >6.(2022·河南·高二期中(文))已知a ,b ,c ∈R ,a b >,且0ab ≠,则下列不等式中一定成立的是( )A .2a b ab +≥B .2ab b >C .22ac bc >D .33a b > 7.(2022·江西·赣州市赣县第三中学高二阶段练习(文))已知a ,b ∈R ,0a b >>,则下列不等式中一定成立的是( )A .11a a b b ->- B .11a b b >- C .11a a b b +>+ D .11a b b a->- 8.(2022·浙江金华·高三阶段练习)若非负实数x 、y 、z 满足约束条件3135x y z x y z -+≤⎧⎨+-≥⎩,则3S x y z =++的最小值为( )A .1B .3C .5D .7二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·重庆巴蜀中学高三阶段练习)下列命题正确的是( )A .若c c a b >,则a b <B .若a b <且0ab >,则11a b> C .若0a b <<,则22a ab b << D .若0,0a b c d >><<,则ac bd < 10.(2022·浙江·温州市第八高级中学高二期中)已知实数x ,y 满足16x <<,23y <<,则( )A .39x y <+<B .13x y -<-<C .218xy <<D .122x y<< 11.(2022·广西·高一阶段练习)若a ,b 为非零实数,则以下不等式中恒成立的是( ).A .222a b ab +≥ B .()22242a b a b ++≤ C .2a b ab a b +≥+ D .2b a a b+≥ 12.(2022·浙江·台州市书生中学高二开学考试)已知0x y z ++=,x y z >>,则下列不等式一定成立的是( )A .xy xz >B .xy yz >C .222x z y +>D .y y z z >三、填空题:本题共4小题,每小题5分,共20分.13.(2022·辽宁·高二阶段练习)已知13a -<<且24b <<,则2a b -的取值范围___________. 14.(2022·广西壮族自治区北流市高级中学高二阶段练习(文))若7,34(0)P a a Q a a a =+=++≥.则P ,Q 的大小关系__________(用“<”,“≤”,“=”连接两者的大小关系)15.(2022·全国·高三专题练习)能够说明“设a ,b ,c 是任意实数.若222a b c >>,则a b c +>”是假命题的一组整数a ,b ,c 的值依次为___________.16.(2022·全国·高一课时练习)设,a b ∈R ,则22222a b a b ++≥+中等号成立的充要条件是_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步棸. 17.(10分)(2022·上海市大同中学高一期中)设x 、y 是不全为零的实数,试比较222x y +与2x xy +的大小,并说明理由.18.(12分)(2022·全国·高一课时练习)设实数a 、b 、c 满足2234644b c a a c b a a ⎧+=-+⎨-=-+⎩试确定a 、b 、c 的大小关系,并说明理由.19.(12分)(2022·广东广雅中学高一阶段练习)一般认为,民用住宅的窗户面积必须小于地板面积,但窗户面积与地板面积的比应不小于10%,而且这个比值越大,采光效果越好.设某所公寓的窗户面积为2m a ,地板面积为2m b ,(1)若这所公寓窗户面积与地板面积的总和为2330m ,则这所公寓的窗户面积至少为多少平方米?(2)若同时增加相同的窗户面积和地板面积,设增加的面积为2m t ,则公寓的采光效果是变好了还是变坏了?请说明理由.20.(12分)(2022·福建·福州三中高一阶段练习)证明下列不等式 (1)若bc -ad ≥0,bd >0,求证:a b c d b d++≤ (2)已知a >0,b >0,求证:22a b a b b a++≥21.(12分)(2022·湖北·武汉市钢城第四中学高一阶段练习)已知:实数12,(0,1)x x ∈,求证:不等式121211x x x x +>+ 成立的充分条件是12x x <.22.(12分)(2022·辽宁·建平县实验中学高一阶段练习)(1)比较3x 与21x x -+的大小; (2)已知a b c >>,且0a b c ++=,①求证:c c a c b c >--. ①求ca 的取值范围.。

不等式的基本性质[整理] [其它]

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

2020中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)

2020中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)

专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键. 2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()3.A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a 的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B 型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。

(完整版)《不等式的基本性质》练习题

(完整版)《不等式的基本性质》练习题

2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。

其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲不等式的基本性质一、单选题1.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【答案】D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2.下列推理正确的是( )A.因为a<b,所以a+2<b+1 B.因为a<b,所以a-1<b-2C.因为a>b,所以a+c>b+c D.因为a>b,所以a+c>b-d【答案】C【解析】【分析】根据不等式的基本性质逐项分析即可.【详解】A. 因为由a<b,变为a+2<b+1,两边不是加的同一个数,故不正确;B. 因为由a<b,变为a-1<b-2,两边不是减的同一个数,故不正确;C. 因为由a>b,所以a+c>b+c,符合不等式的性质1,故正确;D. 因为由a>b,变为a+c>b-d,两边不是同时加上或减去同一个数,故不正确;故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,①a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4.把不等式-3x>-6变形为x<2的依据是不等式的( )A .基本性质1B .基本性质2C .基本性质3D .以上都不是【答案】C【解析】【分析】根据不等式的基本性质,结合变形的方法求解即可.【详解】①把不等式-3x >-6的两边都除以-2可变形为x <2,①变形的依据是不等式的基本性质3.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.若-2a <-3a ,则a 一定满足的条件是( ) A .a >0B .a <0C .a≥0D .a≤0 【答案】A【解析】将原不等式两边都乘以﹣6,得:3a >2a ,移项、合并,得:a >0,故选A .6.设“○”、“□”、“①”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“①”这样的物体,按质量从小到大的顺序排列为( )A.○□①B.○①□C.□○①D.①□○【答案】D【解析】由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个①的质量,因此1个□质量大于1个①质量.故选D7.a,b,c在数轴上的对应点的位置如图所示,下列式子:①b+c>0;①a+b>a+c;①bc>ac;①ab>ac.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据数轴上右边的数总大于左边的数,原点右边表示正数,左边表示负数,结合有理数运算法则进行判断即可求解.【详解】解:依题意得-2<c<-1<0<b<1<2<a①b+c<0,故说法错误;①a+b>a+c,故说法正确;①bc>ac,故说法正确;①a-b>0,故说法正确;①正确的是①①①,共3个.故选C.【点睛】此题主要考查了利用数轴比较两个负数的大小,绝对值大的反而小.8.2a与3a的大小关系()A.2a<3a B.2a>3a C.2a=3a D.不能确定【答案】D【分析】题目中没有明确a的正负,故要分情况讨论.【详解】当a<0时,2a>3a;当a=0时,2a=3a;当a>0时,2a<3a,故选D.【点睛】本题考查的是不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.9.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12【答案】C【解析】试题分析:根据不等式x+5>0,求得x>﹣5,然后可知:A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项符合题意;D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;故选C.考点:不等式的性质10.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【答案】D【解析】试题分析:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.11.在平面直角坐标系中,点A ()7,21m --+在第三象限,则m 的取值范围是( )A .12m >B .12m >-C .12m <-D .12m < 【答案】A【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-2m+1<0,求不等式的解即可.【详解】解:①点在第三象限,①点的横坐标是负数,纵坐标也是负数,即-2m+1<0,解得m >12. 故选A .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 12.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 【答案】A【解析】 分析:先在不等式0<x <1的两边都乘上x ,再在不等式0<x <1的两边都除以x ,根据所得结果进行判断即可.详解:当0<x <1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又①x<1,①x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题13.用“>”“=”或“<”填空:(1) 若a>b,且a<0,则a2________ab;(2) 若a+5<b+5,则-a_________-b.【答案】<>【解析】【分析】(1)根据不等式的性质3求解即可(2)先根据不等式的性质1,再根据性质3求解即可.【详解】(1) ①a>b,且a<0,①a2>ab;(2) ①a+5<b+5,①a<b,①-a>-b.故答案为:(1)< , (2)>.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.14.已知a>b ,选择适当的不等号填空:(1)-3a ________-3b ; (2)1-5a__________1-5b ;(3)ax 2_________bx 2;(4)a(-c 2-1)_________b(-c 2-1).【答案】< < ≥ <【解析】【分析】(1)根据不等式的性质3两边都除以-3解答即可;(2)先用不等式的性质3两边都乘以-5,,再用不等式的性质1两边都加1解答;(3)先判断x 2的取值范围,再根据不等式的性质解答;(4)先判断-c 2-1的取值范围,再根据不等式的性质解答.【详解】(1) ① a >b ,①-3a <-3b ; (2) ① a >b ,①-5a <-5b , ①1-5a <1-5b ;(3) ① a >b ,x 2≥0,①ax 2≥bx 2;(4) ①c2≥0,①-c2≤0,①-c2-1<0;① a>b,①a(-c2-1)<b(-c2-1).故答案为:(1)<;(2) <;(3) ≥ ;(4) <.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.15.若7x+2<7y+2,则x_______y,它经历了两步,第一步是将不等式7x+2<7y+2的两边_______________,第二步是将不等式的两边_______________.【答案】<都减去2 都除以7【解析】【分析】先根据不等式的性质1两边都减去2,再根据不等式的性质2两边都除以7.【详解】若7x+2<7y+2,则x<y,它经历了两步,第一步是将不等式7x+2<7y+2的两边都减去2,第二步是将不等式的两边都除以7.故答案为:<;都减去2 ;都除以7.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.16.当x____________时,代数式2x-3的值是正数.【答案】>3 2先由题意列出不等式,再根据不等式的基本性质即可得到结果.【详解】由题意得2x-3>0,解得x>3 2 .考点:本题考查的是不等式的基本性质【点睛】解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变.三、解答题17.将下列不等式化为“x>a”或“x<a”的形式:(1)2x>3x-4;(2)5x-1<14;(3)-19x<-3;(4) 13x<12x+1.【答案】(1) x<4;(2) x<3;(3) x>27;(4) x>-6.【解析】(1)先根据不等式的性质1两边都减去3x,合并同类项后,再根据不等式的性质3两边都除以-1;(2)先根据不等式的性质1两边都加1,合并同类项后,再根据不等式的性质2两边都除以5;(3)先根据不等式的性质3两边都乘以-9即可;(4)先根据不等式的性质1两边都减去12x,合并同类项后,再根据不等式的性质2两边都除以6.【详解】(1) ①2x>3x-4,①2x-3x>-4,①-x>-4,①x<4;(2) ①5x-1<14,①5x<14+1,①5x<15,①x<3;(3)-19x<-3,①-19x×(-9)>-3×(-9)①x>27;(4) ① 13x<12x+1,①13x-12x<1,①-16x<1,①x>-6.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.指出下列各式成立的条件.(1)由a>b,得ac≤bc;(2)由(a-3)x>a-3,得x>1;(3)由a<b,得(m-2)a>(m-2)b.【答案】(1)c≤0;(2)a>3;(3)m<2.【解析】试题分析:根据不等式的性质,又不等式的不等号的变化判断即可.试题解析:(1)由a>b,得ac≤bc,根据不等式的性质3,可知c≤0;(2)由(a-3)x>a-3,得x>1,根据不等式的基本性质2,可得a-3>0,即a>3;(3)由a<b,得(m-2)a>(m-2)b,根据不等式的性质3,可知m-2<0,解得m<2.19.已知x>0,试比较10x2-3x+2与8x2-3x+2的大小【答案】10x2-3x+2>8x2-3x+2.【解析】【分析】先把两个式子相减,并去括号合并同类项,然后由x>0,结合不等式的性质判断差的正负即可.【详解】解:(10x2-3x+2)-(8x2-3x+2)=2x2,①x>0,①2x2>0,①10x2-3x+2>8x2-3x+2.【点睛】本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.20.已知x>y,试比较(m-1)x与(m-1)y的大小【答案】见解析【解析】【分析】分三种情况①m-1>0,①m-1=0,①m-1<0,根据不等式的性质解答即可.【详解】解:当m-1>0,即m>1时,(m-1)x>(m-1)y;当m-1=0,即m=1时,(m-1)x=(m-1)y;当m-1<0,即m<1时,(m-1)x<(m-1)y.【点睛】本题考查了不等式的基本性质及分类讨论的数学思想,分三种情况解答是解答本题的关键.21.小明从一商店买了3个相同的玻璃杯,平均每个a元,又从另一个商店买了2个相同的玻璃杯,平均每个b 元,后来他以每个2a b +元的价格把玻璃杯全部都卖给了乙,结果赔了钱,你能用不等式的知识说明原因吗?【答案】见解析【解析】【分析】 先理解题意知道赔钱是什么意思,进而利用题中数量关系列出不等式2a b +<3a +2b >5,根据不等式的基本性质变形即可得到赔钱的原因.【详解】 解:因为赔了钱,所以×5<3a +2b ,①5a +5b <6a +4b ,①-a +b <0,即b <a ,①赔钱的原因是b <a.【点睛】本题考查了不等式的基本性质的应用,根据题意列出不等式并能根据不等式的基本性质变形是解答本题的关键.。

2.2 不等式的基本性质(邵天龙)

2.2 不等式的基本性质(邵天龙)

整体建构
1.思维主线 合情推理——得出猜想——演绎推理——验证结论
2.本节重点
(1)掌握不等式的基本性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
3.注意事项
(1)要掌握不等式性质与等式性质的异同点; (2)当不等式两边都乘(或除以)同一个数时,
一定要看清是正数还是负数; 对于未给定范围的字母,应分类讨论.
前情回顾
1. -7 ≤ -5,
3+4>1+4
5+3 ≠ 12-5,
x ≥8
a+2>a+1
x+3<6
(1)上述式子有哪些表示数量关系的符号?
这些符号表示什么关系? (2)这些符号两侧的代数式可随意交换位置吗?
(3)什么叫不等式?
问题探究
1.商场A种服装的价格为60元,B种服装的价格为80元 (1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?
填空:
4>3
ห้องสมุดไป่ตู้
4×(-1) < 3×(-1)
4×(-5) < 3×(-5)
4÷(-2) < 3÷(-2)
性质3,不等式的两边都乘以(或除以)
同一个负数,不等号的方向改变。
如果a>b,c<0 ,那么ac<bc,a b . cc
比较不等式与等式的基本性质
变形
关系式
等式 不等式
两边都加上(或减去) 同一个整式
1.已知x<y,用“<”或“>”填空。
(1)x+2 < y+2 (不等式的基本性质 1 )
(2)1 x < 1 y (不等式的基本性质 2 )
3
3
(3)-x > -y (不等式的基本性质 3 )

2.2 不等式的基本性质

2.2 不等式的基本性质

2.2 不等式的基本性质01 基础题知识点1 不等式的基本性质1.若a<b ,则下列各式中一定成立的是(B)A .-3a<-3bB .a -3<b -3C .a +c>b +cD .2a>2b2.若-2a <-2b ,则a >b ,其依据是(C)A .不等式的基本性质1B .不等式的基本性质2C .不等式的基本性质3D .等式的基本性质23.(梅州中考)若x>y ,则下列式子中错误的是(D)A .x -3>y -3 B.x 3>y 3C .x +3>y +3D .-3x>-3y4.(德宏中考)若a <0,则下列式子错误的是(C)A .5+a >3+aB .5-a >3-aC .5a >3a D.a 5>a 35.(乐山中考)下列说法不一定成立的是(C)A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b6.已知m <n ,下列关于m ,n 的命题:①6m >6n ;②-3m <-3n ;③m -5<n -5;④2m +5>2n +5.其中,所有正确命题的序号是③.7.小燕子竟然推导出了0>5的错误结论.请你仔细阅读她的推导过程,指出问题到底出在哪里.已知x >y ,两边都乘5,得5x >5y.①两边都减去5x ,得0>5y -5x.②即0>5(y -x).③两边都除以(y -x),得0>5.④解:错在第④步.∵x >y ,∴y -x <0.不等式两边同时除以负数(y -x),不等号应改变方向才能成立.知识点2 将不等式化为“x>a ”或“x<a ”的形式8.下列不等式变形正确的是(C)A .由4x -1≥0得4x >1B .由5x >3得x >3C .由y 2>0得y >0 D .由-2x <4得x <-29.将下列不等式化成“x>a”或“x<a”的形式.(1)x -5<1; (2)2x>x -2;解:x<6. 解:x>-2.(3)12x>-3; (4)-5x<-2. 解:x>-6. 解:x>25.02 中档题10.若点P(x -2,y -2)在第二象限,则x 与y 的关系正确的是(D)A .x ≥yB .x >yC .x ≤yD .x <y11.(绵阳中考)设“▲”,“●”,“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为(C)A .■●▲B .▲■●C .■▲●D .●▲■12.已知有理数a ,b ,c 在数轴上的位置如图所示,则下列式子中正确的是(A)A .cb >abB .ac >abC .cb <abD .c +b >a +b13.若不等式(a -2)x>a -2可以变形为x<1,则a 的取值范围为a<2.14.下列变形是怎样得到的?(1)由x >y ,得12x -3>12y -3; 解:两边都除以2,得12x >12y. 两边都减去3,得12x -3>12y -3.(2)由x >y ,得12(x -3)>12(y -3); 解:两边都减去3,得x -3>y -3.两边都除以2,得12(x -3)>12(y -3).(3)由x >y ,得2(3-x)<2(3-y).解:两边都除以-1,得-x <-y.两边都加上3,得3-x <3-y.两边都乘以2,得2(3-x)<2(3-y).15.阅读下面的解题过程,再解题.已知a >b ,试比较-2 016a +1与-2 016b +1的大小.解:因为a >b ,①所以-2 016a >-2 016b.②。

北师大版八年级数学下册2.2 不等式的基本性质

北师大版八年级数学下册2.2 不等式的基本性质
10 < x 4 0.02
导入新知
2、等式有哪些性质?你能分别用文字语言和符号语言表示吗?
文字语言
符号语言
性质1
等式两边同时加(或减) 同一个数(或式子),结 果仍是等式.
如果a=b, 那么a+c=b+c,
a-c=b-c
性质2
等式两边同时乘同一个 数,或除以同一个不为 0的数,结果仍是等式.
如果a=b, 那么ac=bc,
Hale Waihona Puke 4 l 2>l 2 , π
不等式的两边都除以l2,由不等式基本性质2,得
4 >1,
π
因为上式是恒等式,所以
l2 >l2
4π 16
也为恒等式.
巩固练习
变式训练
已知a<0,用“<”“>”填空:
(1)a+2 _<___2; (2)a-1 __<___-1;
(3)3a___<___0;
(4)
a 4
__>____0;

x>4.
(2)不等式的两边都除以-2,由不等式基本
性质3,得 x< 3 .
2
巩固练习
变式训练
将下列不等式化成“x>a” “x<a”的形式.
(1)x -7 < 8 ;
(2) 3x < 2x -3 .
解:(1) x -7 < 8,
不等式的两边都加上7,由不等式基本性质1,得
x -7+7 < 8+7,
用字母表示: 若a>b,则a+c >b+c(或a-c >b-c).
探究新知
探究二:已知2<3,完成下面填空:
题组一: 2×5<3×5;
2÷5 <3÷5;
2×1<3× 1 ; 22

专题2.2不等式的基本性质-重难点题型(举一反三)(北师大版)(原卷版)

专题2.2不等式的基本性质-重难点题型(举一反三)(北师大版)(原卷版)

专题2.2 不等式的基本性质重难点题型【北师大版】【题型1 利用不等式的性质判断正误】【例1】(2021•江干区三模)若a <b ,则下列结论不一定成立的是( ) A .a ﹣1<b ﹣1B .2a <2bC .a3<b3D .a 2<b 2【变式11】(2021春•南海区期末)下列不等式变形正确的是( ) A .由4x ﹣1≥0得4x >1 B .由5x >3得x >15C .由﹣2x <4得x <﹣2D .由y2>0得y >0【变式12】(2021春•睢宁县校级月考)若x +y >x ﹣y ,y ﹣x >y ,那么(1)x +y >0,(2)y ﹣x <0,(3)xy ≤0,(4)yx <0中,正确结论的序号为 .【变式13】(2021•常州)已知a 、b 、c 、d 都是正实数,且a b<cd,给出下列四个不等式:①aa+b <cc+d;②cc+d<aa+b;③dc+d<ba+b;④ba+b<dc+d其中不等式正确的是()A.①③B.①④C.②④D.②③【题型2 利用不等式性质比较大小】【例2】(2021春•朝阳区期末)阅读材料:小明对不等式的有关知识进行了自主学习,他发现,对于任意两个实数a和b比较大小,有如下规律:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.上面的律反过来也成立.课上,通过与老师和其他同学的交流,验证了上面的规律是正确的.参考小明发现的规律,解决问题:(1)比较大小:3+√5√10+√5;(填“<”,“=”或“>”)(2)已知x+2y﹣2=0,且x≥0,若A=5xy+y+1,B=5xy+2y,试比较A和B的大小.【变式21】(2021•利州区模拟)若x>y,比较3−25x与3−25y的大小,并说明理由.【变式22】(2021春•武侯区期末)已知﹣x﹣1>﹣y+1,试比较3x﹣4与3y﹣4的大小.【变式23】(2021•佛山)小雨的爸爸从市场买回来四个大西瓜,爸爸为了考一考小雨,让小雨把四个大西瓜依次边上①,②,③,④号后,按质量由小到大的顺序排列出来(不准用称),小雨用一个简易天平操作,操作如下:(操作过程中,天平自身损坏忽略不计)根据实验,小雨很快就把四个编好号的大西瓜的质量由小到大排列起来了.你认为小雨的实验于结果都是真实的吗?(即通过上述实验能找出它们质量的大小吗?)请说明你的理由,并与同学交流.【题型3 利用不等式性质化简不等式】【例3】(2021春•岳麓区校级期中)根据不等式的性质把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x ﹣3 (3)15x <25.【变式31】(2021秋•郴州校级月考)把下列不等式化成x >a 或x <a 的形式. (1)2x +5>3; (2)﹣6(x ﹣1)<0.【变式32】(2021秋•滨江区期末)不等式(a ﹣2)x >b 的解集是x <ba−2,求a 的取值范围.【变式33】(2021春•九江期中)用“>”或“<”填空:(1)如果x ﹣2<3,那么x 5;(2)如果−23x <﹣1,那么x23;(3)如果15x >﹣2,那么x ﹣10;(4)如果﹣x >1,那么x ﹣1; (5)若ax >b ,ac 2<0,则x b a.【题型4 利用不等式性质证明(不)等式】【例4】(2021春•濉溪县期中)已知实数a ,b ,c 满足:a +b +c =0,c >0,3a +2b +c >0. 求证:(1)a >c ;(2)﹣2<b a<−1.【变式41】(2021秋•滨江区期末)求证:如果a >b ,e >f ,c >0,那么f ﹣ac <e ﹣bc .【变式42】(2021•利州区模拟)(2021春•泗水县期末)请类比不等式性质:不等式的两边加(或减)同一个整式,不等号的方向不变.完成下列填空:已知 用“<”或“>”填空{5>32>1 5+2 3+1{−3>−5−1>−2﹣3﹣1 ﹣5﹣2{1<4−2<11﹣2 4+1一般地,如果{a >bc >d ,那么a +c b +d .(选用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?【变式43】(2021•余姚市校级自主招生)已知实数a,b,c满足不等式|a|≥|b+c|,|b|≥|c+a|,|c|≥|a+b|,求证:a+b+c=0.【题型5 利用不等式性质求取值范围或最值】【例5】(2021春•海淀区校级期末)阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围.解:∵x ﹣y =2. ∴x =y +2, 又∵x >1, ∴y +2>1. ∴y >﹣1. 又∵y <0, ∴﹣1<y <0.① ∴﹣1+2<y +2<0+2. 即1<x <2.②①+②得﹣1+1<x +y <0+2. ∴x +y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >﹣1,y <0,则x 的取值范围是 ;x +y 的取值范围是 ; (2)已知x ﹣y =a ,且x <﹣b ,y >2b ,若根据上述做法得到3x ﹣y 的取值范围是﹣5<3x ﹣y <5,求a 、b 的值.【变式51】(2021•杭州)若a +b =﹣2,且a ≥2b ,则( ) A .ba有最小值12B .ba有最大值1C .ab有最大值2D .ab有最小值−89【变式52】(2021•利州区模拟)(2017春•十堰期末)已知a,b,c为三个非负实数,且满足{a+b+c=302a+3b+4c=100,令W=3a+2b+5c,则W的最大值为()A.90B.130C.150D.180【变式53】(2021春•唐河县期中)【提出问题】已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围.【分析问题】先根据已知条件用一个量如y取表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同法再确定另一未知量x的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1,∴y>﹣1.又∵y<0,∴﹣1<y<0,…①同理得1<x<2…②由①+②得﹣1+1<y+x<0+2.∴x+y的取值范围是0<x+y<2.【尝试应用】已知x﹣y=﹣3,且x<﹣1,y>1,求x+y的取值范围.【题型6 不等关系的简单应用】【例6】(2021春•博野县期末)5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则( ) A .a+b 2>c+d 2B .c+d 2>a+b 2C .c+d 2=a+b 2D .以上都不对【变式61】(2021春•内乡县期中)有一个两位数,个位上的数字为a ,十位上的数字为b ,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a 与b 哪个大?【变式62】(2021•雨花区校级开学)江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式63】(2021春•自贡期末)如图,某班进行拔河比赛,一共有两个老师,一个男老师,一个女老师,六个学生,三个男学生,三个女学生.其中每个男学生的力量相同,每个女学生的力量相同.如果有三场比赛的结果是:第一场:一个男老师为一方,五个同学(两男三女)为另一方进行比赛,男老师输了;第二场:女老师为一方,五个同学(一男四女)为另一方进行比赛,女老师赢了;第三场:男老师加一个男同学为一方,女老师与三个女同学为另一方进行比赛,男老师一方赢了.问:女老师加两个男同学与男老师加上三个女同学进行比赛,结果将会怎么样?为什么?。

(完整版)不等式的基本性质习题

(完整版)不等式的基本性质习题

不等式的基本性质习题一、选择题1.若m>n ,且am<an ,则a 的取值应满足条件( )A .a>0B .a<0C .a=0D .a ≥02.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0mn < D .-m >-n3.下列说法正确的是 ( )A.若a 2>1,则a >1B.若a <0,则a 2>aC.若a >0,则a 2>a D .若,则4.如果x >0,那么a +x 与a 的大小关系是( )A .a +x >aB .a +x <aC .a +x≥aD .不能确定5.已知5<7,则下列结论正确的( )①5a <7a ②5+a <7+a ③5-a <7-aA. ①②B. ①③C. ②③D. ①②③6.如果a<b<0,下列不等式中错误的是( )A. ab >0B.C.D.7.-2a 与-5a 的大小关系( )A .-2a <-5aB .2a >5aC .-2a =-5bD .不能确定二、填空题1.用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若5a>5b ,则a____b ; (4)若-5a>-5b ,则a___b .2.x <y 得到ax >ay 的条件应是____________.3.若m +n >m -n ,n -m >n ,那么下列结论(1)m +n >0,(2)n -m <0,(3)mn≤0, 1<a a a <20<+b a 1<b a0<-b a(4)n m<0中,正确的序号为________. 4.满足-3x >-18的非负整数有________________________.5.若am <b ,ac 4<0,则m________.6.如果a -3>-5,则a ;如果-2a <0,那么n . 三、解答题1.如图所示,一个已倾斜的天平两边放有重物,其质量分别为a 和b ,如果在天平两边的盘内分别加上相等的砝码c ,看一看,盘子仍然像原来那样倾斜吗?2.同桌甲和同桌乙正在对7a>6a 进行争论,甲说:“7a>6a 正确”,乙说:“这不可能正确”,你认为谁的观点。

2.2 不等式的基本性质

2.2 不等式的基本性质
罗古中学八年级数学科自主学习案
班级:姓名:
课题
2.2不等式Hale Waihona Puke 基本性质授课时间主备人
成凤歌
修订人
王芳萍景爱宁
序号
学习目标
1.探索并掌握不等式的基本性质;
2.理解不等式与等式性质的联系与区别.
学习
重难点
学习重点:探索不等式的基本性质,并能灵活掌握和应用.
学习难点:能根据不等式的基本性质进行化简.:
一、【温故知新】
还记得等式的基本性质吗?忆一忆
预习作业:
完成p40页做一做并回答下列问题:
(1)不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向__________
(2)不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向____
(3)不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向____
(4)如果a<b,且c≠0,那么 > .()
2.设a>b,用“<”或“>”号填空.
(1)a+1b+1;(2)a-3b-3;(4) ;
(5)- - ;
三、【课堂检测】P41页随堂练习1. 2
四、【拓展延伸】
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;(2)6x<5x-1;
(3) x>5;(4)-4x>3.
自我评价:A○B○C○组长评价:A○B○C○教师评价:A○B○C○
二、【合作探究】
不等式的基本性质与等式的基本性质有什么异同?
例1、将下列不等式化成“x>a”或“x<a”的形式:
(1)x-5>-1;(2)-2x>3;(3)3x<-9.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二单元
第2课时不等式的性质
一、选择题
1.已知a <b ,则下列不等式一定成立的是( )
A .a+3>b+3
B .2a >2b
C .-a <-b
D .a-b <0
2.下列不等式中,一定成立的有( ).
①5>-2;②21a >;③x+3>2;④a +1≥1;⑤22
(1)(1)0a b ++>. A .4个 B .3个 C .2个 D .1个
3.若a <b ,则下列不等式:①111122
a b -+<-+;②5151a b -+<-+; ③22a b --<--.其中成立的有( ).
A .1个
B .2个
C .3个
D .0个
4.已知a 、b 、c 、d 都是正实数,且a b <c d
,给出下列四个不等式: ①a c a b c d <++;②c a c d a b <++;③d b c d a b <++;④b d a b c d
<++ 其中不等式正确的是( ).
A. ①③ B .①④ C .②④ D .②③
5.下列不等式变形正确的是( )
A .由a >b ,得a ﹣2<b ﹣2
B .由a >b ,得﹣a <﹣b
C .由a >b ,得
D .由a >b ,得ac >bc
6.下列变形中,错误的是( ).
A .若3a+5>2,则3a >2-5
B .若213x -
>,则23
x <- C .若115x -<,则x >-5 D .若1115x >,则511x > 7.已知a>b,若am>bm 成立,则 ( )
A.m>0
B.m=0
C.m<0
D.m 可为任何实数
8.如果x<y,那么下列不等式正确的是 ( )
A.2x<2y
B.-2x<-2y
C.x-1>y-1
D.x+1>y+1 9.若x<y,比较2-3x 与2-3y 的大小,则下列选项正确的是 ( )
A.2-3x>2-3y
B.2-3x<2-3y
C.2-3x=2-3y
D.无法比较大小
10.下列不等式变形中,错误的是 ( )
A.若a ≤b,则a+c ≤b+c
B.若a+c ≤b+c,则a ≤b
C.若a ≤b,则ac ²≤bc
² D.若ac ²≤bc ²,则a ≤b
二、填空题
11.已知a<b,用“>”或“<”填空:
(1)a+2_________b+2;
(2)a-3_________b-3;
(3)a+c_________b+c;
(4)a-b_________0.
12.已知2
|312|(2)0x x y m -+--=,若y <0,则m________.
13.下列判断中,正确的序号为 .
①若﹣a >b >0,则ab <0;②若ab >0,则a >0,b >0;③若a >b ,c ≠0,则ac >bc ;④若a >b ,c ≠0,则ac 2>bc 2;⑤若a >b ,c ≠0,则﹣a ﹣c <﹣b ﹣c .
14.假设a >b 且c ≠0,请用“>”或“<”填空
(1)a-1________b-1; (2)2a______2b ; (3)12a -_______12
b -; (4)a+l________b+1. (5)2a________a+b (6)2a
c _______2b c (7)c-a_______c-b (8)-a|c|_______-b|c|
三、解答题
15.根据等式和不等式的性质,我们可以得到比较两数大小的方法:
(1)若A -B >0,则A________B ;
(2)若A -B =0,则A________B ;
(3)若A -B <0,则A________B.
这种比较大小的方法称为“作差法比较大小”.
请运用这种方法尝试解决下面的问题:比较4+3a 2-2b +b 2与3a 2
-2b +1的大小.
16.阅读理解:我们把⎪⎪⎪⎪⎪⎪a b c d
称为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2.如果有⎪⎪⎪⎪⎪⎪2 3-x 1 x >0,求x 的取值范围.。

相关文档
最新文档