初一数学第一章有理数教案
第一章 有理数(教案)人教版(2024)数学七年级上册
第一章有理数1.1正数和负数(2课时)第1课时正数和负数的概念1.了解正数和负数的产生,知道什么是正数和负数;2.理解正负数表示的量的意义,知道0既不是正数,也不是负数;3.会用正数、负数表示具有相反意义的量.重点正、负数的意义.难点1.负数的意义;2.具有相反意义的量.一、导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,通过设置如下问题引出课题.问题1:天气预报:北京市冬季某天的温度为-5~5℃,它的确切含义是什么?这一天北京市的温差是多少?问题2:有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球与排名顺序?问题3:某机器零件的长度设计为100 mm,加工图纸标注的合格尺寸为100±0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?活动1:游戏“说反话”;活动2:写出至少两组生活中具有相反意义的量,并与同学交流,找到更多的具有相反意义的量.二、探究新知(一)正数和负数的概念活动3:自学课本第二页内容归纳:像3,1.8%,3.5这样大于0的数叫作正数.像-3,-2.7,-4.5这样在正数前面加上负号“-”的数叫作负数.0既不是正数,也不是负数.【方法总结】:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.(二)用正数和负数表示具有相反意义的量例1一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.(1)如果向东运动4 m记作4 m,那么向西运动5 m记作__-5_m__;(2)如果-7 m表示物体向西运动7 m,那么6 m表明物体向__东__运动.例2一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.答:小明体重增长2 kg,小华体重增长-1 kg,小强体重增长0 kg.三、课堂练习1.数学中采用符号来区分具有相反意义的量.①高于海平面8848米,记作+8848米;低于海平面155米,记作__-155__米;②如果水位升高4 m时水位变化记作+4 m,那么水位下降2 m时水位变化记作__-2__ m,水位不升不降时水位变化记作__0__ m.2.升降机运行时,如果下降13米记作“-13米”,那么当它上升25米时,记作__+25米__.3.孔子出生于公元前551年,如果用-551年表示,那么司马迁出生于公元前145年可表示为__-145__年,欧阳修出生于公元1007年,可表示为__+1007__年.4.某种零件,标明要求是φ:20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件__不合格__(填“合格”或“不合格”).【方法总结】解决此类问题的关键是理解“20±0.02 mm”的含义,20是标准,“+”表示比标准多,“-”表示比标准少.四、课堂小结小结:这堂课我们学习了哪些知识?你能说一说吗?五、课后作业教材P5习题1.1第4,5,6,8题.本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示具有相反意义的量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.第2课时正数、负数的应用以及0的意义进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量.重点进一步理解正、负数及0表示的量的意义.难点理解负数及0表示的量的意义.一、导入新课师:我国新疆吐鲁番盆地的艾丁湖,其海拔为-154.31 m,你能用语言表述它与海平面的高度关系吗?思考:“0”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.二、探究新知活动1:尝试解释正负数的含义.教师出示问题:1.学生举例说明正、负数在实际中的应用.2.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0).通常用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔.珠穆朗玛峰的海拔为8848.86米,它表示什么含义?某地的海拔为-750米,它表示什么含义?3.记录账目时,通常用正数表示收入款额,负数表示支出款额.活动2:感受数0的含义(同学之间相互交流).师:0是正数与负数的分界.0℃是一个确定的温度,海拔0 m表示海平面的平均高度.0的意义已不仅是表示“没有”.4.教师讲解教材P4例2.三、课堂练习1.下列语句正确的是( C )A.0℃表示没有温度B.0表示什么也没有C.0是非正数D.0既可以看作是正数又可以看作是负数2.你能举出实际生活中0表示的实际意义吗?请举两例.【答案】答案不唯一,如海平面平均高度为0米;0摄氏度表示冰水混合物的温度四、课堂小结小结:谈谈你对正数、负数和0的认识.1.0既不是正数也不是负数,它是正负数的分界.2.具有相反意义的量应满足的条件:①必须是同类量,而且是成对出现的;②只要求意义相反,不要求数量一定相等.五、课后作业1.帮助家长记录一个月的生活收支帐目(收入计为正数,支出计为负数).2.教材P5习题1.1第1,2,3,7题.“数0既不是正数,也不是负数.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.1.2有理数及其大小比较1.2.1有理数的概念1.理解有理数的意义;2.能把给出的有理数按要求分类;3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、导入新课(1)上节课我们都学了什么知识?(2)某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温为-3℃~7℃.问题1:这里面出现的数是什么数? 师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论. 二、探究新知师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13 ,25 ,-356 ,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.师:目前我们所学的小数有哪几类?你能尝试把它们化为分数吗? 概念归纳:可以写成分数形式的数统称为有理数. 师:思考:有理数可以怎么分类? 按定义分⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数按性质符号分有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数0负有理数⎩⎨⎧负整数负分数三、课堂练习1.把下列各数填入相应的集合内:3.1415926,0,2008,-12 ,-7.88,10%,10.1,0.67,-89.3.1415926,2008,10%,10.10.67,正有理数集合) -12,-7.88, -89 ,负有理数集合) 2.把下列各数填在相应的大括号里:-4,0.001,0,-1.7,15,+1.5.正数集合{0.001,15,+1.5…}负数集合{-4,-1.7…}正整数集合{15…}分数集合{0.001,-1.7,+1.5…}四、课堂小结小结:谈一谈今天你的收获.1.有理数的概念;2.有理数的分类;3.数学方法:分类思想.五、作业教材P16习题1.2第1题.本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.本节课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,让学生了解分类的思想,避免了直接进行分类所带来的枯燥性.1.2.2数轴1.了解数轴的概念,知道数轴的三要素,会画数轴;2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.重点数轴的概念.难点从直观认识到理性认识,建立数轴的概念,正确地画出数轴.一、导入新课1.画情境图,体会方向与距离.在一条东西向的马路上,有一个汽车站,汽车站东5 m 和25 m处分别有一棵柳树和一棵杨树,汽车站西10 m和15 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.思考:怎样简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?提示:我们把正数、0和负数用一条直线上的点表示出来.2.温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出温度计所表示的三个温度.出示温度计,并让同学读出任意的三个数.(小组讨论,交流合作,动手操作)二、探究新知教师:由上述两个问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出可以表示有理数的直线必须满足的条件.从而得出数轴的三要素:原点、正方向、单位长度.(小组讨论,交流归纳)类比归纳数轴的画法:画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第3个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第4个同学为原点,游戏还能进行吗?问题:1.你能举出一些在现实生活中用直线表示数的实际例子吗?2.如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3.哪些数表示的点在原点的左边,哪些数表示的点在原点的右边,由此你会发现什么规律?4.每个数表示的点到原点的距离是多少?由此你会发现什么规律?结论:所有的有理数都可以用数轴上的点表示.三、课堂练习1.在数轴上画出表示下列各数的点.1,-5,-2.5,4.5,0.练习:布置学生阅读教材,重新梳理知识,然后完成教材练习.四、课堂小结小结:谈一谈你对数轴的认识.1.数轴的意义,数轴的三要素.定义:规定了原点、正方向和单位长度的直线叫作数轴.三要素:原点、正方向、单位长度.2.数轴的画法.3.所有的有理数都可以用数轴上的点来表示,原点右边的数是正数,原点左边的数是负数,0是正负数的分界限点.五、课后作业1.下列说法中正确的是( C )A.在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C.一个有理数总可以在数轴上找到一个表示它的点D.所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点2.数轴上表示正数的点在原点的__右__边,表示负数的点在原点的__左__边,表示0的点在__原点__.3.数轴上,在原点左边且离原点3个单位长度的点表示的数是__-3__;距离原点4个单位长度的点表示的数是__4和-4__;点A表示的数是-1,则距离点A12个单位长度的点表示的数是__11和-13__.4.教材P17习题1.2第2题.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律.1.2.3相反数1.了解相反数的意义;2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系;3.给出一个数,能说出它的相反数.重点相反数的概念.难点相反数的识别及理解.一、导入新课1.什么是数轴?2.数轴三要素.相反数的概念的引出.演示活动:要一个学生向前走5步,向后走5步.提出问题:如果向前为正、向后为负,向前走5步,向后走5步各记作什么?学生回答.师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.二、探究新知活动:观察下列一组数+1和-1,+2.5和-2.5,+4和-4,并把它们在数轴上表示出来.思考:(1)上述各对数之间有什么特点?(2)请写出一组具有上述特点的数;(3)你能得出相反数的概念吗?(4)表示各对数的点在数轴上有什么位置关系?画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数.(一个学生板演,其他学生自练)师:这样的两个数即互为相反数,你能叙述具备什么特点的两个数互为相反数吗?学生讨论后回答.师指出:0的相反数是0.提出问题:a前面加“-”表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、回答.三、课堂练习判断题:(1)-5是5的相反数;( √ )(2)-5是相反数;( × )(3)相反数等于它本身的数只有0;( √ )(4)-5和5互为相反数.( √ )填空题1.-(+4)是__4__的相反数,-(+4)=__-4__. 2.-(+15 )是__15 __的相反数,-(+15 )=__-15__.3.-(-7.1)是__-7.1__的相反数,-(-7.1)=__7.1__.4.-(-100)是__-100__的相反数,-(-100)=__100__. 学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”表示求这个数的相反数,如果在这些数前面加上“+”呢?学生讨论后回答.1.化简符号时,同号得正,异号得负.2.出现多重符号时,看“-”的个数,当“-”的个数为奇数时,结果为负;当“-”的个数为偶数时,结果为正.四、课堂小结小结:谈谈你对相反数的认识.(1)相反数的概念:只有符号不同的两个数,我们说其中一个是另一个的相反数; (2)数轴上表示相反数的两个对应点,分别位于原点两侧,它们到原点距离相等; (3)-a 表示a 的相反数. 五、课后作业1.-1.6是__1.6__的相反数,__-0.3__的相反数是0.3. 2. 5的相反数是__-5__;a 的相反数是__-a __.3.若a =-13,则-a =__13__;若-a =-6,则a =__6__. 教材P12练习第1,2,3,4题.相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.1.2.4 绝对值1.理解绝对值的意义; 2.会求一个数的绝对值.重点绝对值的意义和求一个数的绝对值的方法. 难点绝对值概念的理解.一、导入新课1.什么叫互为相反数?2.在数轴上表示互为相反数的两点和原点的位置关系怎样? 二、探究新知以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?绝对值的概念师:我们把一个数在数轴上对应的点到原点的距离叫作这个数的绝对值,用“||”表示. 结合图片指出,数轴上表示数-10的点与原点的距离叫作数-10的绝对值,记作|-10|.然后结合图片让学生回答|10|=__10__,|-10|__10__.归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.这里的数a 可以是正数,负数或0.练习:根据绝对值的定义说出下列各数的绝对值:-5,3.2,0,100,-2,-23 ,12.学生尝试解决.师:进一步提出:以上各数中,①正数有哪几个,它们的绝对值和这个数有什么关系? ②负数有哪几个,它们的绝对值和这个数有什么关系? ③0的绝对值是多少? 引导学生讨论并归纳出:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.师:要求学生根据归纳的结果,结合教材13页内容,完成如下填空.|a |=⎩⎨⎧ a ;(a >0)0 ;(a =0)-a W.(a <0)思考:相反数、绝对值的联系是什么? 1.互为相反数的两个数的绝对值相等.2.绝对值相等,符号相反的两个数互为相反数.三、课堂练习判断下列说法是否正确.(1)一个数的绝对值是4,则这个数是-4.( × )(2)|3|>0;( √ )(3)|-1.3|>0;( √ )(4)有理数的绝对值一定是正数;( × )(5)若a=-b,则|a|=|b|;( √ )(6)若|a|=|b|,则a=b;( × )(7)若|a|=-a,则a必为负数;( × )(8)互为相反数的两个数的绝对值相等.( √ )四、课堂小结这节课的收获是什么?1.数轴上表示数a的点与原点的距离叫作数a的绝对值.2.|a|≥0.3.(1)如果a>0,那么|a|=a;(2)如果a<0,那么|a|=-a;(3)如果a=0,那么|a|=0.五、课后作业教材P14练习第1,2,3,4题.让学生在熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将“数”转化为“形”来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,学生理解较困难,不易接受.1.2.5 有理数的大小比较1.通过探究得出有理数大小的比较方法.重点利用数轴及绝对值,比较两个有理数的大小.难点掌握两个负分数比较大小的方法.一、导入新课小学时学过比较数的大小吗?怎样比较的?二、探究新知 星期温度 一0~8℃ 二1~7℃ 三 -1~6℃ 四-2~5℃ 五-4~3℃ 六-3~4℃ 日 2~9℃①这7天的最低气温中最高的是________,最低的是________.②你能将这七天中每天的最低气温按从低到高排列吗?③你能在数轴上表示出这七天中的最低气温吗?④观察,你所排列的顺序和它们在数轴上的位置有什么联系?生:独立解决①~③小题,然后同学间交流探讨第④小题并归纳出:从低到高的顺序对应于数轴上从左到右的顺序.师:数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即在数轴上,左边的数小于右边的数.出示问题:根据以上规定用“大于”“小于”填空:正数__大于__0,0__大于__负数,正数__大于__负数.生:独立完成然后同学间交流.师:利用数轴用“>”“<”填空:-6__<__-5,-3__<__-2,-12 __>__-23. 观察结果并讨论,两个负数比较大小时,你发现了什么规律?生:讨论并归纳结果,两个负数比较大小,绝对值大的反而小.师:出示教材例题,然后师生共同完成.说明:两个负数比较大小,尤其是两个负分数比较大小时,学生易出错,讲解例题时教师应当关注这一点.观察例题,师生共同归纳:异号两数比较大小时,只需要考虑它们的__符号__,同号两数比较大小时,要考虑它们的__绝对值的大小__. 三、课堂练习 1.比较大小.(1)-(-1)和-(+2);(2)-821 和-37; (3)-(-0.3)和|-13|. 【答案】(1)-(-1)>-(+2) (2)-821 >-37 (3)-(-0.3)<|-13| 2.(1)若a <0,则-a __>__0;若a >0,则-a __<__0;若a =0,则-a __=__0;(2)绝对值最小的有理数是__0__;绝对值最小的自然数是__0__;绝对值最小的负整数是__-1__.四、课堂小结1.说一说你对绝对值的概念的认识;2.谈一谈有理数大小的比较方法.五、课后作业教材P16练习第2,3题,P17习题第5题.比较有理数大小的方法有两种:(1)利用数轴比较大小;(2)利用绝对值比较大小.本节课的教学目标就是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据生活常识,学生可以由低到高排列这些温度,再让学生把这些数表示在数轴上.由此可以引出利用数轴比较大小的规定,在讲解利用绝对值比较两个负数大小时,采用把两个负数在数轴上表示,利用在数轴上的数“左边的数小于右边的数”,得出“绝对值大的反而小”的结论.从而得出利用绝对值比较两个负数大小的方法.通过以上的教学,促使本节课的重、难点迎刃而解.。
七级数学教案有理数
七级数学教案有理数第一章:有理数的概念与分类1.1 学习目标了解有理数的定义与特点掌握有理数的分类及相互关系1.2 教学内容有理数的定义与特点有理数的分类:整数(正整数、负整数、零)、分数(正分数、负分数)有理数的大小比较1.3 教学步骤1. 引入话题:讨论日常生活中的数量,引导学生思考如何表示正负数和零。
2. 讲解有理数的定义与特点,通过实例加深理解。
3. 讲解有理数的分类,引导学生通过图形表示理解不同类型的有理数。
4. 练习有理数的大小比较,让学生通过实际操作来掌握规则。
1.4 作业布置完成课后练习题,巩固有理数的概念与分类。
第二章:有理数的运算2.1 学习目标掌握有理数的加法、减法、乘法、除法的运算规则能够正确进行有理数的混合运算2.2 教学内容有理数的加法与减法:同号相加、异号相加、零的加减法有理数的乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数有理数的除法:整数除以整数、分数除以整数、整数除以分数2.3 教学步骤1. 复习有理数的分类,引导学生回顾有理数的概念。
2. 讲解有理数的加法与减法运算规则,通过示例进行演示。
3. 讲解有理数的乘法运算规则,引导学生通过实际操作来理解。
4. 讲解有理数的除法运算规则,通过示例进行演示。
5. 练习有理数的混合运算,让学生通过实际操作来掌握规则。
2.4 作业布置完成课后练习题,巩固有理数的运算规则。
第三章:有理数的应用3.1 学习目标能够运用有理数解决实际问题掌握有理数在生活中的应用3.2 教学内容有理数在生活中的应用:购物、计算距离、温度转换等有理数的估算:整数与分数的估算方法3.3 教学步骤1. 引入话题:讨论日常生活中遇到的有理数问题,引导学生思考如何运用有理数解决实际问题。
2. 讲解有理数在生活中的应用,通过实例加深理解。
3. 讲解有理数的估算方法,引导学生通过实际操作来掌握。
3.4 作业布置完成课后练习题,巩固有理数在生活中的应用。
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
初一上册数学《有理数》教案(精选5篇)
初一上册数学《有理数》教案(精选5篇)初一上册数学《有理数》篇1教学目的:1.了解计算器的性能,并会操作和使用;2.会用计算器求数的平方根;重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;难点:乘方和开方运算;教学过程:1.计算器的使用介绍(科学计算器)初一上册数学一单元教案.png2.用计算器进行加、减、乘、除、乘方、开方运算例1用计算器求下列各式的值.(1)(-3.75)+(-22.5) (2)51.7(-7.2)解(1)初一上册数学一单元教案.png(-3.75)+(-22.5)=-26.25(2)初一上册数学一单元教案.png51.7(-7.2)=-372.24说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.随堂练习用计算器求值1.9.23+10.22.(-2.35)×(-0.46)答案1.37.8 2.1.081初一上册数学《有理数》教案篇2教学目标:知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法教学难点:会把所给的各数填入它所属于的集合里教学方法:问题引导法学习方法:自主探究法一、情境诱导在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?把整数和分数起个名字叫有理数。
(点题并板书课题)二、自学指导学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
人教版七年级数学上册《 第一章 有理数 》教学设计
人教版七年级数学上册《第一章有理数》教学设计一. 教材分析人教版七年级数学上册《第一章有理数》是学生在小学数学基础上,进一步深入学习数学的重要章节。
本章主要介绍有理数的概念、分类、运算及其性质。
内容主要包括:有理数的定义,有理数的分类,有理数的运算,有理数的性质,以及实数的概念。
这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念和运算有一定的认识。
但是,对于有理数的概念和性质,学生可能还比较陌生,需要通过实例和练习来加深理解。
此外,学生的学习习惯和思维方式也有所不同,需要教师进行针对性的引导和指导。
三. 教学目标1.理解有理数的定义,掌握有理数的分类,了解有理数的性质。
2.熟练掌握有理数的运算方法,能够进行简单的有理数计算。
3.培养学生的逻辑思维能力和数学素养,提高学生的数学学习兴趣。
四. 教学重难点1.有理数的定义和分类,有理数的性质。
2.有理数的运算方法,特别是乘除法和混合运算。
五. 教学方法1.采用问题导入法,通过实例引发学生的思考,引导学生自主探索和发现有理数的性质。
2.采用讲授法,教师讲解有理数的概念、分类和性质,引导学生理解和掌握。
3.采用练习法,通过大量的练习题,让学生熟悉和掌握有理数的运算方法。
4.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作意识和团队精神。
六. 教学准备1.教材和人教版七年级数学上册《第一章有理数》的教学PPT。
2.与本章内容相关的练习题和测试题。
3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过问题导入法,引导学生思考:“什么是数?我们学过的数有哪些?”然后给出有理数的定义,引导学生自主探索和发现有理数的性质。
2.呈现(10分钟)教师讲解有理数的概念、分类和性质,通过PPT展示相关的内容,让学生直观地理解和掌握。
3.操练(10分钟)让学生进行有理数的运算练习,包括加减乘除法和混合运算。
2024年人教版七年级上册教学设计第一章 有理数第一章 有理数
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.②借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览有理数课时划分内容本质与研究方法1.1正数和负数通过提出问题,根据问题归纳正数和负数的概念;培养学生观察、发现问题的能力,培养学生积极思考、合作交流的意识和能力续表有理数课时划分内容本质与研究方法1.2有理数及其大小比较1.2.1有理数的概念提出问题,根据问题归纳有理数的概念,并对有理数进行分类;培养学生观察、发现问题的能力,培养学生分类讨论的数学思想1.2.2数轴提出问题,根据问题归纳数轴的概念,让学生积极参与探究数轴的活动,并学会与他人交流合作;让学生感受在特定的条件下数与形是可有理数课时划分内容本质与研究方法以互相转化的,让学生体验生活中的数学1.2.3相反数通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;渗透数形结合思想,感受事物之间的对应统一的辩证思想1.2.4绝对值提出问题,通过探索求一个数绝对值的方法让学生通过观察,发现规律,总结方法;培养学生积极参与数学活动,在数学活动中体验成功的乐趣1.2.5有理数的大小比较经历用数轴比较有理数大小的方法和形成过程,体会负数的大小比较与自己原有认知体系的不同;经历形式多样的数学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版七年级数学上册第一章《有理数》(大单元教学设计)
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
2024年数学初一教案人教版初一数学教学教案
2024年数学初一教案人教版初一数学教学教案教案主题:第一章《有理数》第一节《有理数的概念》教学目标:1.让学生理解有理数的定义和分类。
2.培养学生运用有理数进行简单运算的能力。
3.培养学生的数感和逻辑思维能力。
教学重点:1.有理数的定义和分类。
2.有理数的运算规则。
教学难点:1.正负数的理解。
2.有理数的运算。
教学准备:1.教学课件。
2.练习题。
教学过程:一、导入1.利用课件展示生活中的实例,如温度计、水位、身高、体重等,让学生观察这些实例中出现的数。
2.引导学生思考:这些数有什么共同特点?它们与自然数、整数有什么不同?二、新课讲解1.有理数的定义:整数和分数统称为有理数。
2.有理数的分类:正有理数、0、负有理数。
3.正负数的理解:以温度为例,零上温度为正数,零下温度为负数;以水位为例,水位高于标准水位为正数,低于标准水位为负数。
4.有理数的运算规则:a)同号相加,异号相减。
b)正负号相乘,同号为正,异号为负。
c)0乘任何数都等于0。
三、案例分析1.出示几个实例,让学生判断这些数是有理数还是无理数,并说明原因。
a)3.14b)√2c)5/2d)-√32.让学生举例说明有理数的分类。
四、课堂练习b)将下列有理数按照正负分类:5,-2,0,1/2,-3/4。
c)计算:3+(-2),-5+1,-12,0×(-3)。
2.老师针对学生的答案进行讲解和指导。
五、课堂小结1.回顾本节课学习的有理数的概念、分类和运算规则。
2.强调有理数在生活中的应用,培养学生的数感和实际应用能力。
六、课后作业(课后自主完成)b)将下列有理数按照正负分类:4,-1/2,0,3/4,-5。
c)计算:-3+2,2(-1),-1×(-2),0×5。
2.家长签字确认。
教学反思:1.在讲解有理数的分类时,可能过于简化,未能充分挖掘学生的思维能力。
2.课堂练习环节,部分学生可能因为紧张或理解不深,未能完成练习题。
七年级上册有理数教案
第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
人教版七年级数学上册第一章《有理数》教学设计
人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。
本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。
教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。
学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。
此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。
三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。
2.能够运用有理数的概念和运算方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算方法,特别是负数和分数的运算。
3.有理数在实际问题中的应用。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。
2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。
3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。
六. 教学准备1.教材和教辅资料。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。
3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。
4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。
5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。
7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。
数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03
第一章有理数1.2.1 有理数的概念备课时间:上课时间:回想一下,目前为止我们学过哪些数?你所知道的数可以分成哪些种类,你是按照什么划分的?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。
这就是全部的分数分类吗?小数呢?事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
进一步地,我们还发现整数又可以写成分数的形式。
二、思考探究,获取新知【教学说明】我们把可以写成分数形式的数称为有理数。
知识点1 有理数的分类根据整数和分数来分类。
【教学说明】可加以引导,有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?我们把所有正数组成的集合,叫做正数集合;所有负整数组成的集合,叫做负数集合。
三、典例精析,掌握新知例1 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:跟踪训练:所有正有理数组成正有理数集合,所有负有理数组成负有理数集合,把下面的有理数填入它们属于的集合内。
15,-1/9,-5,7,0。
5,-80,12,-4。
2,2。
3。
正有理数集合:{ ⋯}。
负有理数集合:{ ⋯}。
知识点2 小数与有理数的联系按照定义,能够写成分数形式的数是有理数,那不能写成分数的数就不是有理数。
思考“不能写成分数的数”是哪些数呢?如2/3,−1/2,⋯这些分数是可以化成有限小数或无限循环小数。
同样地,有限小数和无限循环小数都能化为分数,也是有理数。
无限不循环小数(如π)不能化成分数,因此就不是有理数。
例2 :在-1.2,10%,0,+0.33 ̇,7.01001001…(每两个1之间0的个数逐次增加1)中,有理数共有()A.2个B.3个C.4个D.5个四、运用新知,深化理解1.在数0,2,-3,-1.2 中,属于负整数的是()A.0 B.2 C.-3 D.-1.22.-0.5不属于()A.负数B.分数C.负分数D.整数3.下列说法不正确的是()A.-0.5不是分数B.0是整数C. −1/5不是整数D.-2既是负数又是整数4.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数5.把下列各数分别填入相应的集合里.-2,0,0.314,25% ,11,0.3 ̇,+12/3.整数集合:{⋯}.分数集合:{⋯}.自然数集合:{⋯}.非正数集合:{⋯}.四、课堂小结填数集的两种方法(1)由数到集合:逐一分析每一个数,看这个数属于哪个集合,然后填入它所属的集合内.(2)由集合到数:逐一分析每个集合,然后从给出的数中找出属于这个集合的数填入.注意:同一个数可能分属于不同的集合.1.2.1 有理数1.整数和分数统称为有理数;2.有理数的分类:(1)按符号分(2)按照整数和分数来分。
人教版七年级数学上册第一章《有理数》全章教学设计
第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。
(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。
若有疑部问,能够小声讨教同桌或举手问老师。
6分钟后,比谁能正确做出检测题。
四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。
(二)检测1、过渡语:同学们,看完的请举手。
懂了的请举手。
好下边就比一比,看谁能正确做出检测题。
2、检测题 P3:1、2、3、43、学生练习,教师巡视。
(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。
(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。
(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。
七年级上册第一章数学教案
七年级上册第一章数学教案
标题:七年级上册第一章——有理数
一、教学目标
1. 理解并掌握有理数的概念,能识别正数、负数和零。
2. 掌握有理数的加法、减法、乘法和除法运算规则。
3. 能够运用所学知识解决实际问题。
二、教学内容
1. 有理数的基本概念
2. 有理数的加法、减法、乘法和除法运算法则
3. 有理数的实际应用
三、教学方法
采用引导式教学法,通过实例引出新知识,让学生在实践中理解和掌握。
四、教学过程
1. 导入新课:通过生活中的实例引入有理数的概念,如温度计上的读数,账单上的数字等。
2. 新知讲解:
(1) 介绍有理数的概念,包括正数、负数和零。
(2) 讲解有理数的加法、减法、乘法和除法运算法则,强调符号法则的重要性。
3. 实践操作:设计一些有理数的运算题目,让学生进行练习,教师进行指导。
4. 课堂小结:回顾本节课的主要知识点,强调有理数在生活中的应用。
五、作业布置
设计一些有理数的计算题和实际应用题,让学生在家完成。
六、教学反思
根据学生的学习情况和反馈,对教学方法和教学内容进行调整和改进。
初一数学第一章教案
初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。
过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。
教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。
讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。
人教版七年级数学上册第一章有理数的概念(教案)
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。
初一数学有理数教案模板6篇
初一数学有理数教案模板6篇初一数学有理数教案模板6篇提高课堂教学质量是每个教师的共同目标。
然而,在实际教学中,我们常常会遇到一些问题,下面是小编为大家整理的初一数学有理数教案,如果大家喜欢可以分享给身边的朋友。
初一数学有理数教案【篇1】学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗想过别的方法吗2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题初一数学有理数教案【篇2】教学目标1,在现实背景中理解有理数加法的意义。
七年级数学上册第一章《有理数》教案
第一课时正数和负数(一)教学目标1.熟练区分正数和负数。
2.能利用正负数正确表示相反意义的量。
教学重难点:熟练区分正数和负数教学方法:探究学习教学设计一、课前铺垫:我们小学已经学过哪些数,请举例说明。
二、探究新知知识点一:会判断一个数是正数还是负数1.自学课本1—2页,并回答以下问题:(1)在引言中表示温度、净胜球数和产品增长率时用到了哪些数?它们的具体含义是什么?(2)像2, 0.2, 17等数叫做数;像-4,1234-, -6.25这样在正数前面加号的数叫做,既不是正数也不是负数。
你认为:叫做非负数。
针对性练习1.已知下列各数:13-,5,0,-4,47,其中正数的个数是( )A.0个B.1个C.2个D.3个2. 有下列六个数:-5,0,132,-0.3,+13,14-,其中负数的个数是( )A.1B.2C.3D.43.下列说法正确的个数是( )①零是正数;②零是负数;③零是偶数;④零是奇数;A.0个B.1个C.2个4. 已知下列各数:-8,50.9,35-, 0.3,其中非负数的个数是( )A.0个B.1个C.2个D.3个知识点二:认识正数和负数具体表示的是相反意义的量1.自学课本第3页,并结合以上问题回答以下问题:(1)通过以上内容的学习,其实正数和负数是表示生活中具有意义的量。
(2)列举自己见到的生活中用正、负数表示的量2.尝试表示在日常生活中常会遇到下面的一些量。
(1)温度是零上10℃表示为,零下5℃表示为。
(2)收入500元表示为,支出237元表示为。
(3)水位升高1.2米表示为,下降0.7米表示为。
针对性练习1.规定正常水位为0m,高于正常水位0.2m时记做+0.2m,则下列说法错误的是( )A.高于正常水位1.5m记做+1.5mB.低于正常水位0.5m记做-0.5mC.-1m表示比正常水位低1mD.+2m表示水深2m2.规定电梯上升为“+”,那么电梯上升-10m表示( )A.电梯下降10mB.电梯上升10mC.电梯上升0mD.电梯没有动3.温度计液面在0℃以上第五个刻度处,表示的温度是零上5℃,记做+5℃; 温度计液面在0℃以下第五个刻度处,表示的温度是零下5℃,记做 ,它是数。
人教版数学七年级上册《 第一章 有理数 》教学设计
人教版数学七年级上册《第一章有理数》教学设计一. 教材分析人教版数学七年级上册《第一章有理数》是学生在初中阶段接触数学的基础知识,主要介绍有理数的概念、分类、运算及应用。
本章内容为学生后续学习实数、代数式、方程等知识打下基础。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习,帮助学生掌握有理数的相关知识。
二. 学情分析七年级的学生已经具备一定的数学基础,但对有理数的概念和运算可能还存在一定的困惑。
因此,在教学过程中,要注重引导学生理解有理数的概念,突破运算难点,提高学生的数学思维能力。
三. 教学目标1.了解有理数的概念,掌握有理数的分类。
2.熟练掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题,提高解决问题的能力。
4.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
3.有理数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的概念和运算方法。
2.运用实例分析法,让学生通过实际问题理解有理数的应用。
3.采用合作学习法,培养学生的团队协作能力和沟通能力。
4.运用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关课件、教案、例题及练习题。
2.准备教学素材,如黑板、粉笔、投影仪等。
3.提前让学生预习教材,了解基本概念。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。
2.呈现(10分钟)讲解有理数的概念、分类,并通过PPT展示相关知识点,让学生初步了解有理数。
3.操练(10分钟)讲解有理数的加、减、乘、除运算方法,并通过例题让学生现场练习,巩固所学知识。
4.巩固(10分钟)布置一些练习题,让学生独立完成,检验学习效果。
教师及时解答学生遇到的问题。
5.拓展(10分钟)利用多媒体展示一些实际问题,让学生运用有理数解决,提高学生的应用能力。
6.小结(5分钟)总结本节课所学知识点,强调重点和难点。
七年级上数学第一章1.2.1 有理数的概念优质课教案
1.2 有理数及其大小比较 1.2.1 有理数的概念教学目标课题 1.2.1 有理数的概念 授课人素养目标 1.理解有理数的意义和概念,能够把给出的有理数分类,了解0在有理数分类中的作用.2.通过对有理数分类的教学活动,让学生了解分类的思想方法的作用. 教学重点 掌握有理数的概念及分类. 教学难点 能将所给数进行正确的分类.教学活动教学步骤 师生活动活动一:问题导入,引出新课 【问题引入】问题 请观察下列一组数: 1,5.7,457 ,-76 ,-10,0,13 ,-312,-15.2. 你能模仿小学学过的数的分类方法对上面的数进行分类吗?请简单说明你分类的理由.学习完今天这节课后,你就能轻松解决上面的问题了!【教学建议】教师应给学生充足的时间思考,然后与同伴交流答案,并鼓励学生踊跃发言,表达自我. 设计意图 通过唤醒旧知识,为进一步学习新知识做准备.活动二:实践探究,获取新知 探究点 有理数的概念及分类问题1 想一想,我们已经学过的数有哪些?问题2 0.1,5.32,0.3,-0.5,-150.5等数为什么被列为分数?因为这里的小数可以化为分数,所以我们也把它们看成分数.0.1=110 ,5.32=13325 ,0.3=310 ,-0.5=-12 ,-150.5=-3012.问题3 比较13 和0.3·的大小,你有什么发现?13和0. 3·相等.发现无限循环小数也可以化为分数,因此无限循环小数也可以看成分数.问题4 整数也能写成分数的形式吗?请举例说明.【教学建议】教师需让全体学生都参与到活动中来,并通过引导让学生归纳,并将新旧知识融合.【教学建议】教学时,教师可引导学生回顾无限循环小数的相关知识,借助简单实例让学生认识到无限循环小数可转化为分数,具体方法会在设计意图 通过简单的问题引入,促使学生回忆所学知识,启发学生获取新知识,同时在解答问题的过程中让学生体会、感悟有理数的相关概念.正整数可以写成正分数的形式,例如2=21 ;负整数可以写成负分数的形式,例如-3=-31;0也可以写成分数的形式01.这样,整数可以写成分数的形式.概念引入:即有理数⎩⎪⎨⎪⎧`正有理数负有理数这样,引入负数后,我们对数的认识就扩大到了有理数范围.问题5 有没有一些数不是有理数呢?有限小数和无限循环小数都是分数,所以也是有理数.无限不循环小数(如π)不是分数,就不是有理数. 例 (教材P7例1) 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,-38 ,8.5%,-30,-12%,19,-7.5,20,-60,1.2·. 解:正有理数:13,4.3,8.5%,19,20,1.2· ;其中正整数有13,20.负有理数:-38 ,-30,-12%,-7.5,-60;其中负整数有-30,-60. 【对应训练】教材P8练习.后面的课时中学到,学生了解即可,本课时不做要求.【教学建议】学习了有理数的概念后,教师可适当总结,说明从小学开始,在我们不断认识新数的过程中,数的范围也不断扩大,让学生体会数系扩充的原则.活动三:随堂训练,课堂总结【随堂训练】 见《创优作业》“随堂小练”册子相应课时随堂训练. 【课堂总结】 师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是有理数?2.如何对有理数进行分类?【知识结构】【作业布置】1.教材P16习题1.2第1题.2.《创优作业》主体本部分相应课时训练.板书设计1.2 有理数及其大小比较1.2.1 有理数的概念1.有理数的概念2.有理数的分类教学反思本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,避免教师直接分类带来学习的枯燥性,要有意识地突出“分类”这一数学思想的渗透.解题大招 有理数的相关概念和分类(1)有理数:可以写成分数形式的数.(2)进行有理数分类时注意0的归属. 拓展:(1)小数的分类(2)例1(1)在-2,+3.5,0,-23,-0.7·中,负有理数有( C )A.1个B.2个C.3个D.4个 (2)下列各数中,是正整数的是( A )A.3B.2.1C.0D. -2 (3)下列有理数中,既是正数又是分数的是( D )A. -5.2B.0C.2D. 13(4)下列各数:-8,2.89,6,-12 ,-0.25,123,-314,0.其中非负数有( D )A.1个B.2 个C.3个D.4个例2 把下面的有理数填人它们属于的集合内:-10,8,-712,334,-10%,3101,+2,0,3.14,-2 025,73,0.61·8·,-1.正有理数集合:{ …}. 整数集合:{ …}.负有理数集合:{ …}. 正整数集合:{ …}.负整数集合:{ …}.分析:要将各数填入它们属于的集合内,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意有的有理数可能“身兼不同的身份”,解答时不要有遗漏.解:正有理数集合:{8,334, 3101,+2,3.14, 73,0.61·8·,…}.整数集合:{-10,8,+2,0,-2 025,-1,…}. 负有理数集合:{-10,-712,-10%,-2 025,-1,…}.正整数集合:{8,+2,…}.负整数集合:{-10,-2 025,-1,…}.方法总结:在填数时可参考以下两种方法:(1)逐个观察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.培优点有理数概念的开放性题例在如图所示的方格中,填入相应的数字,使它符合下列语句的要求:(1)5的正上方是一个负整数;(2)5的左上方是一个正分数;(3)一个既不是正数又不是负数的数在5的正下方;(4)5的左边是一个负分数;(5)剩下的四格请分别填上正数和负数使方格中正数与负数的个数相同.分析:此时,正数有两个,负数有两个,还剩四个空格,所以要填两个正数和两个负数,即可满足方格中正数与负数的个数相同.解:答案不唯一,示例如图②所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化教学辅导教案学科:数学年级:初一任课教师:李春雨总课时:共16 讲第一讲有理数一、教学目标1、掌握正数和负数的概念及其意义2、掌握有理数的概念,会对有理数按照一定的标准进行分类3、掌握数轴的概念,理解数轴上的点和有理数的对应关系,正确地画出数轴,会用数轴上的点表示给定的有理数4、掌握相反数的概念,进一步理解数轴上的点与数的对应关系5、掌握绝对值的概念,有理数大小比较法则,学会绝对值的计算,会比较两个或多个有理数的大小6、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想二、教学重难点重点:1、正确区分两种不同意义的量2、数轴的概念和用数轴上的点表示有理数3、相反数、绝对值的概念难点:1、正确理解有理数的概念及分类2、归纳相反数在数轴上表示的点的特征3、两个负数大小的比较三、 教学过程导入:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数),在生活中,仅有整数和分数够用了吗?(简单讲解天气预报中的气温为零下的情况,引入负数)1、 正数和负数正数:像+,+12,1.3,258这样大于0的数(“+”通常省略不写)叫正数。
负数:像-5,-3,-0.1这样在正数前加上“-”的数叫做负数,负数小于0。
例题:把下列各数填在相应的集合内:15,-6,-0.9,21,0,0.32,-411,51,8,-2,27,71,-43,3.4 正数集:{ };负数集:{ };正分数集:{ };负分数集:{ };整数集:{ };自然数集:{ }.(1) 为了用数表示具有相反意义的量,我们把某种量的一种意义规定为正的,而把与它相反的一种意义规定为负的。
负数是根据实际需要而产生的。
如:收入1000元与支出500元、向东走2km 与向西走3km ,上升1.5m与下降0.8m ,规定收入为正则收入记做+1000,支出记做-500,规定向东走为正则向东走2km 记做+2km ,向西走记做-3km ,上升与下降让学生解答。
(2)0既不是正数也不是负数,它是一个非负、非正的数,正、负数以0为界,规定:0是最小的自然数。
例题:1、如果规定向南走10米记为+10米,那么-50米表示什么意义?2、天气预报说某地12月某天的最高温度是零上5°C,最低温度是零下3°C,若规定零上温度为正,则零上5°C可记作°C,零下3°C可记作°C2、有理数及其分类按有理数的定义进行分类:按有理数的性质符号进行分类:例题:1、下列关于0的叙述中,不正确的是()A.0是自然数B.0既不是正数,也不是负数C.0是偶数D.0既不是非正数,也不是非负数2、下列语句:①所有的整数都是正数;②所有的正数都是整数;③分数都是有理数;M N m n 10④奇数都是正数;⑤在有理数中不是负数就是正数,其中哪些语句是正确的?3、 数轴及其三要素(重点)定义:规定了原点、正方向和单位长度的直线叫做数轴。
4、 数轴的画法数轴的画法可分为四个步骤:(1)画一条水平的直线;(2)在直线上适当选取一点为原点;(3)确定向右为正方向,用箭头表示出来(箭头标在画出部分的最右边);(4)根据需要,选取适当的长度作为单位长度,从原点向右、向左每隔一个单位长度取一点。
例题:1、把数-3,-1,1.2,- ,3.5, 在数轴上表示出来,再用“<”号把它们连接起来.2、如图所示,数轴上的点M 和N 分别表示有理数m 和n ,那么以下结论正确的是( )A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<05、 相反数(重点) 像2与-2,与,4与-4这样,只有符号不同的两个数叫做互为相反数,把其中一个数叫做另外一个数的相反数。
0的相反数仍是0。
相反数的性质:若a ,b 互为相反数,则a+b=0;反之,若a+b=0,则a ,b互为相反数。
例题:1、914的相反数是_________,—16与____互为相反数,—(+3)表示______的相反数.2、下列各对数中,互为相反数的是()A.+(—8)和(—8)B.—(—8)和+8C.—(—8)和+(+8)D.+8和+(—8)3、化简—[—(+3.6)]=________.6、绝对值(重点)引入:星期天刘老师从学校出发,开车去游玩,她先向东行20千米,到三影塔,下午她又向西行30千米,回到家中(学校、三影塔、家在同一直线上),如果规定向东为正1、用有理数表示刘老师两次所行的路程2、刘老师从从家到学校的距离是多少?观察并思考:画一条数轴,原点表示学校,在数轴上画出表示三影塔和刘老师家的点,观察图形,说出刘老师家与学校的距离.学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离,数a的绝对值记做|a|,读作a的绝对值。
如:|-2|读作-2的绝对值。
绝对值的代数定义:正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0,绝对值必须≥0。
a a>0对于任何有理数a,都有|a|= 0 a=010-1a -a a<0例如:|20|=20,|-10|=10,|0|=0例题:1、求下列各数的绝对值.211- -0.3 0 )213(-- 2、若数a 在数轴上对应的点如下图所示,则化简|a+1|的结果是( )A.a+1B. -a+1C.a -1D. -a -13、已知|a -1|+|b+2|=0,求a 和b 的值.7、 相反数、绝对值的几何意义相反数的几何意义:在数轴上,互为相反数的两个数对应的点在原点的两侧,并且到原点的距离相等。
如图(数轴)所示,-2.5与2.5互为相反数,-1与1互为相反数。
绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
如图所示,在数轴上表示-4的点与原点的距离是4,即-4的绝对值是4,记作|-4|=4,在数轴上表示3的点与原点的距离为3,即3的绝对值是3,记作|3|=3,表示0的点与原点的距离是0,|0|=0.例题:1、若2x+1是-9的相反数,求x的值.2、如果x与2互为相反数,那么|x—1|等于3、若|x-2|+|y+3|=0,则x=_____,y=_____.当x=_____时,1+|x+1|的最小值是________.四、教学目标1、能较为熟练地进行有理数的加法运算,并能解决简单的实际间题2、能较为熟练地进行两个有理数减法的运算3、理解加减法混合运算统一为加法运算的意义,学会把加减法统一成加法4、熟练有理数的乘法、除法运算并能用乘法运算律简化运算5、掌握除法法则,会进行有理数的除法运算五、教学重难点重点:1、和的符号的确定2、有理数的减法法则,减法转化为加法的条件,把减数变为它的相反数3、多个有理数相乘时积的符号的确定4、正确运用乘法运算律,使运算简化5、有理数的除法法则难点:1、异号两数相加2、加法交换律和结合律,及其合理、灵活的运用3、把加、减混合运算统一成加法运算4、正确进行多个有理数的乘法运算5、理解商的符号及其绝对值与被除数和除数的关系六、教学过程1、 有理数的加法把两个有理数合成一个有理数的运算叫做有理数的加法。
有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得03、一个数同0相加,仍得这个数例题 计算:(1)(-3)+(-9); (2)(-5)+13;(3)0十(-7); (4)(-4.7)+3.9.2、 有理数的加法运算律(1) 加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a(2) 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b )+c=a+(b+c )例题1、计算:)7(8)13(12)1(-++-+ )6.0()81()523(125.1)2(-+-+-+ )21()74(6571)3(-+-++)852()75.1(833)5.6(431)4(++-++-+ 2、有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的有( )① b+c>0 ②a+b>a+c ③a+c<0 ④a+b>0A.1个B.2个a b c0C.3个 D.4个3、 有理数的减法已知两个有理数的和与其中的一个加数, 求另一个加数的运算,叫做有理数的减法。
减法是加法的逆运算。
有理数的减法法则 减去一个数,等于加这个数的相反数,把有理数的减法利用相反数变成加法进行运算,可表示为:a-b=a+(-b )例题:1、计算 )())((431+-- )30()19)(2(+-+)217(75.2)413()5.0)(3(+-+--- )314(4331|)214(312|)313(2151)4(---+------2、设数轴上的点A 、B 、C 分别表示数-3、 、4,利用数轴求A 与B ,B 与C ,A 与C 之间的距离,你能从中发现什么规律吗?4、 有理数的乘法1、 乘法法则(1) 两数相乘,同号得正,异号得负,并把绝对值相乘(2) 任何数与0相乘,都得0变减为加变为相反数2、乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正(2)几个数相乘,如果其中有因数为0,那么积等于0(3)几个不等于0的数相乘,首先确定积的符号,然后把绝对值相乘例题:1)6×(—9)= . 2)(—4)×6= .3)(—6)×(—1)= 4)(—6)×0= .5)29×(-)34=6)11()34-⨯= .5、倒数(重点)乘积为1的两个数互为倒数。
根据定义,要求a(a≠0)的倒数,只要求即可。
一个正数的倒数仍是正数,一个负数的倒数仍是负数,0没有倒数。
倒数的特性:若a,b互为倒数(a≠0,b≠0),则ab=1;反之,若ab=1,则ab互为倒数例题:(3)下列说法中,错误的是()A、一个非零数与其倒数之积为1B、一个数与其相反数的商为-1C、若两个数的积为1,则这两个数互为倒数D、若两个数的商为-1,则这两个数互为相反数6、有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即ab=ba(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,即(ab)c=a(bc)(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加,即a(b+c)=ab+ac例题:1、(-5)×(-9)×(-)2、30×(-+0.4)3、(-3.59)×-2.41×+6×4、[12×(-73)]×(-4)与12×[(-73)×(-4)]7、有理数的除法已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法有理数的除法法则(一):除以一个不等于0的数,等于乘这个数的倒数有理数的除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0过关练习;欢迎下载,谢谢观看!资料仅供参考学习。