空间直角坐标系与空间大地坐标系的相互转换及其C++源程序
大地坐标转空间直角坐标方法
大地坐标转空间直角坐标方法1.准备工作:在进行大地坐标转换之前,首先要明确所采用的基准椭球参数,并且将大地坐标系转换为所采用的基准椭球上的坐标。
通常采用的基准椭球有WGS84、北京54和CGCS2000等。
这些基准椭球都有自己的参数,如长半轴a、偏心率e等。
根据所采用的基准椭球的参数,可以计算出该基准椭球的第一偏心率的平方(e^2)和扁率(f)等重要参数。
2.大地坐标转换为大地球面坐标:大地坐标的表示方法通常为经纬度(经度、纬度和高程)。
将经度和纬度转换为弧度形式,通过正弦定理和余弦定理等基本几何关系,可以计算出大地坐标在基准椭球上的投影参数。
利用这些参数,可以将大地坐标转换为大地球面坐标。
3.大地球面坐标转换为空间直角坐标:大地球面坐标是指基于基准椭球的坐标系,它只考虑地球的曲率而不考虑地球的引力场。
为了将其转换为直角坐标系,需要引入地球的引力场因素。
一种常见的方法是采用摄动参数法。
摄动参数法是通过导引纬度和经度等参数,计算出地球的重力梯度和坐标变换矩阵,并利用这些参数将大地球面坐标转换为空间直角坐标。
4.空间直角坐标的后处理:在将大地坐标转换为空间直角坐标之后,还需要进行一些后处理工作,以满足具体应用的要求。
例如,需要确定一个局部坐标系的原点和方向,进行坐标轴旋转和缩放等操作。
这些后处理工作可以在计算中进行,也可以在实际应用中进行。
总结起来,大地坐标到空间直角坐标的转换过程包括准备工作、大地坐标转大地球面坐标和大地球面坐标转空间直角坐标三个步骤。
在每个步骤中,需要根据具体问题选择合适的算法和参数。
同时,还需要注意坐标系之间的转换精度和误差控制,以确保转换结果的准确性。
大地坐标及直角空间坐标转换计算公式
大地坐标与直角空间坐标转换计算公式一、参心大地坐标与参心空间直角坐标转换1名词解释:A :参心空间直角坐标系:a) 以参心0为坐标原点;b) Z 轴与参考椭球的短轴(旋转轴)相重合;c) X 轴与起始子午面和赤道的交线重合;d) Y 轴在赤道面上与X 轴垂直.构成右手直角坐标系0-XYZ ;e) 地面点P 的点位用(X.Y.Z )表示;B :参心大地坐标系:a) 以参考椭球的中心为坐标原点.椭球的短轴与参考椭球旋转轴重合;b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ;c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ;d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ;e) 地面点的点位用(B.L.H )表示。
2 参心大地坐标转换为参心空间直角坐标:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2公式中.N 为椭球面卯酉圈的曲率半径.e 为椭球的第一偏心率.a 、b 椭球的长短半径.f 椭球扁率.W 为第一辅助系数ab a e 22-= 或 ff e 1*2-= Wa N B W e =-=22sin *1( XX80椭球参数:长半轴a=6378140±5(m )短半轴b=6356755.2882m扁 率α=1/298.2573 参心空间直角坐标转换参心大地坐标 []N BY X H H e N Y X H N Z B XY L -+=+-++==cos ))1(**)()(*arctan()arctan(22222 二 高斯投影及高斯直角坐标系1、高斯投影概述高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关.与方向无关;3. 离中央子午线越远变形越大为控制投影后的长度变形.采用分带投影的方法。
坐标转换中的大地坐标系与空间直角坐标系转换公式
坐标转换中的大地坐标系与空间直角坐标系转换公式在测量与地理信息领域,坐标转换是一个非常重要的概念。
它涉及将不同坐标系下的位置互相转换,使得地理空间信息能够得到准确而一致地表达。
而在坐标转换的过程中,大地坐标系与空间直角坐标系的相互转换公式则是至关重要的工具。
大地坐标系是一种常用的坐标系,在地理测量和导航等领域广泛应用。
它采用了经纬度和大地高作为坐标参数,可以精确地描述地球上任意一点的位置。
经度表示东西方向上的位置,纬度表示南北方向上的位置,而大地高则表示相对于海平面的高度。
在大地坐标系下,地球被近似看作一个椭球体,因此大地坐标系也被称为椭球坐标系。
然而,由于大地坐标系的曲线性质,它并不适合直接参与复杂三维计算,尤其是在工程测量中需要使用的情况。
因此,我们需要将大地坐标系转换为空间直角坐标系,以便进行进一步的计算和分析。
空间直角坐标系采用了直角坐标的表示方式,其坐标参数分别为X、Y、Z,可以方便地进行几何运算。
在进行坐标转换时,我们需要采用适当的公式来实现大地坐标系到空间直角坐标系的转换。
下面将介绍两种常用的转换公式。
1. 大地坐标系到空间直角坐标系的转换公式大地坐标系到空间直角坐标系的转换公式可以通过三个连续的旋转和平移变换来实现。
具体而言,我们首先将大地坐标系的原点O与空间直角坐标系原点重合,然后进行三次坐标轴的旋转,使得大地坐标系的纬度线与空间直角坐标系的Z轴重合。
接着,我们对大地坐标系进行一个小角度的旋转,使得大地纬线与空间直角坐标系的Y轴重合。
最后,再进行一个小角度的旋转,将大地经线与空间直角坐标系的X轴重合。
通过以上步骤,即可完成大地坐标系到空间直角坐标系的转换。
2. 空间直角坐标系到大地坐标系的转换公式与大地坐标系到空间直角坐标系的转换相反,空间直角坐标系到大地坐标系的转换需要进行三次逆变换。
即首先将空间直角坐标系的原点与大地坐标系原点重合,然后进行三次逆变换,回到大地坐标系。
为了实现空间直角坐标系到大地坐标系的转换,我们需要利用解析几何的知识。
坐标转换源代码--GPS定位程序(C--)
坐标转换源代码--GPS定位程序(C++)GPS数据处理中为了满足不同的需要,处理的数据要进行坐标转换,得到在不同坐标系统下的结果,下面是笛卡尔坐标系,大地坐标系,站心地平坐标系(线型和极坐标形式)之间的转换源代码:头文件:#ifndef _COORDCOVERT_H#define _COORDCOVERT_H#include "stdlib.h"//WGS-84椭球体参数const double a=6378137.0;//长半轴const double flattening=1/298.257223563;//扁率const double delta=0.0000001;typedef struct tagCRDCARTESIAN{double x;double y;double z;}CRDCARTESIAN;typedef CRDCARTESIAN *PCRDCARTESIAN;//笛卡尔坐标系typedef struct tagCRDGEODETIC{double longitude;double latitude;double height;}CRDGEODETIC;typedef CRDGEODETIC *PCRDGEODETIC;//大地坐标系typedef struct tagCRDTOPOCENTRIC{double northing;double easting;double upping;}CRDTOPOCENTRIC;typedef CRDTOPOCENTRIC *PCRDTOPOCENTRIC; //站心地平坐标系(线坐标形式)typedef struct tagCRDTOPOCENTRICPOLAR{ double range;double azimuth;double elevation;}CRDTOPOCENTRICPOLAR;typedef CRDTOPOCENTRICPOLAR *PCRDTOPOCENTRICPOLAR;//站心地平坐标系(极坐标形式)//由笛卡尔坐标转换为大地坐标void CartesianToGeodetic (PCRDGEODETIC pcg, PCRDCARTESIAN pcc, double dSemiMajorAxis, double dFlattening);//pcg:指向所转换出的大地坐标的指针;//pcc:指向待转换的笛卡尔坐标的指针;//dSemiMajorAxis:参考椭球的长半轴;//dFlattening:参考椭球的扁率。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
空间直角坐标系与大地坐标系转换程序doc
空间直角坐标系与大地坐标系转换程序.doc本文将介绍一种实现空间直角坐标系与大地坐标系转换的程序实现方法。
在编写程序时,需要使用一些数学库和函数,比如C++标准库中的cmath和iostream 等。
首先,我们需要了解空间直角坐标系和大明坐标系之间的转换公式。
假设空间直角坐标系为(x, y, z),大地坐标系为(L, B, H),则它们之间的转换公式为:x = cosLcosBsinHy = cosLsinBsinHz = sinLsinH其中,L为经度,B为纬度,H为高程。
根据上述公式,我们可以编写一个C++程序来实现空间直角坐标系与大地坐标系之间的转换。
程序实现如下:#include <iostream>#include <cmath>using namespace std;void transform() {double x, y, z;double L, B, H;cout << "Enter x, y, and z coordinates: ";cin >> x >> y >> z;cout << "Enter L and B coordinates: ";cin >> L >> B;H = acos(z / sqrt(x * x + y * y + z * z));cout << "The converted coordinates are: " << x << " " << y << " " << H << endl;}int main() {transform();return 0;}在上述程序中,我们首先定义了变量x、y、z、L、B和H,分别代表空间直角坐标系和大明坐标系的坐标值。
大地坐标与空间直角坐标转换_C程序
scanf("%lf",&y);
printf("请输入Z:\n");
scanf("%lf",&z);
l=atan2(y,x);
do{m=(z+a1*e*e*g/sqrt(1+g*g-e*e*g*g))/sqrt(x*x+y*y);
m1=atan(m);
b=HD(a,b1,c);
printf("请输入H:\n");
scanf("%lf",&h);
w=sqrt((1-e*e*sin(b)*sin(b)));
n=a1/w;
x=(n+h)*cos(b)*cos(l);
y=(n+h)*cos(b)*sin(l);
z=(n*(1-e*e)+h)*sin(b);
void lbhxyz(double a1,double e)
{double l,b,h,x,y,z,a,b1,c,n,w;
printf("请输入L:\n");
scanf("%lf%lf%lf",&a,&b1,&c);
l=HD(a,b1,c);
printf("请输入B:\n");
scanf("%lf%lf%lf",&a,&b1,&c);
e=sqrt(e2);
if (b==1)lbhxyz(a1,e);
else if(b==2)xyzlbh(a1,e);}
大地坐标与空间直角坐标的转换程序代码
#include "stdio、h"#include "math、h"#include "stdlib、h"#include "iostream"#define PI 3、14323double a,b,c,e2,ep2;int main(){int m,n,t;double RAD(double d,double f,double m);void RBD(double hd);void BLH_XYZ();void XYZ_BLH();void B_ZS();void B_FS();void GUS_ZS();void GUS_FS();printf(" 大地测量学\n");sp1:printf("请选择功能:\n");printf("1、大地坐标系到大地空间直角坐标的转换\n");printf("2、大地空间直角坐标到大地坐标系的转换\n");printf("3、贝塞尔大地问题正算\n");printf("4、贝塞尔大地问题反算\n");printf("5、高斯投影正算\n");printf("6、高斯投影反算\n");printf("0、退出程序\n");scanf("%d",&m);if(m==0)exit(0);sp2:printf("请选择椭球参数(输入椭球序号):\n");printf("1、克拉索夫斯基椭球参数\n");printf("2、IUGG_1975椭球参数\n");printf("3、CGCS_2000椭球参数\n");printf("0、其她椭球参数(自行输入)\n");scanf("%d",&n);switch(n){case 1:a=6378245、0;b=6356863、0188;c=6399698、9018;e2=0、297;ep2=0、468;break;case 2:a=6378140、0;b=6356755、2882;c=6399596、6520;e2=0、959;ep2=0、947;break;case 3:a=6378137、0;b=6356752、3141;c=6399593、6259;e2=0、290;ep2=0、547;break;case 0:{printf("请输入椭球参数:\n");printf("长半径a=");scanf("%lf",&a);printf("短半径b=");scanf("%lf",&b);c=a*a/b;ep2=(a*a-b*b)/(b*b);e2=(a*a-b*b)/(a*a);break;}default:printf("\n\n输入错误!\n请重新输入!\n\n");goto sp2 ;}while(1){switch(m){case 1:BLH_XYZ();break;case 2:XYZ_BLH();break;case 3:B_ZS();break;case 4:B_FS();break;case 5:GUS_ZS();break;case 6:GUS_FS();break;default:printf("\n\n输入错误!\n请重新输入!\n\n");goto sp1 ;}printf("就是否继续进行此功能计算? \n\n");printf("( 若继续进行此功能计算,则输入1;\n 若选择其她功能进行计算,则输入2;\n 若退出, 则输入0、)\n");scanf("%d",&t);switch(t){case 1:break;case 2:goto sp1;case 0:exit(0);}}}double RAD(double d,double f,double m) {double e;double sign=(d<0、0)?-1、0:1、0;if(d==0){sign=(f<0、0)?-1、0:1、0;if(f==0){sign=(m<0、0)?-1、0:1、0;}}if(d<0)d=d*(-1、0);if(f<0)f=f*(-1、0);if(m<0)m=m*(-1、0);e=sign*(d*3600+f*60+m)*PI/(3600*180);return e;}void RBD(double hd){int t;int d,f;double m;double sign=(hd<0、0)?-1、0:1、0;if(hd<0)hd=fabs(hd);hd=hd*3600*180/PI;t=int(hd/3600);d=sign*t;hd=hd-t*3600;f=int(hd/60);m=hd-f*60;printf("%d'%d'%lf'\n",d,f,m);}void BLH_XYZ(){double B,L,H,N,W;double d,f,m;double X,Y,Z;printf(" 请输入大地坐标(输入格式为角度(例如:30'40'50')):\n");printf(" 大地经度L=");scanf("%lf'%lf'%lf'",&d,&f,&m);L=RAD(d,f,m);printf(" 大地纬度B=");scanf("%lf'%lf'%lf'",&d,&f,&m);B=RAD(d,f,m);printf(" 大地高H=");scanf("%lf",&H);W=sqrt(1-e2*sin(B)*sin(B));N=a/W;X=(N+H)*cos(B)*cos(L);Y=(N+H)*cos(B)*sin(L);Z=(N*(1-e2)+H)*sin(B);printf("\n\n 转换后得到大地空间直角坐标为:\n\n");printf("X=%lf\nY=%lf\nZ=%lf\n\n",X,Y,Z);}void XYZ_BLH(){double B,L,H,N,W;double X,Y,Z;double tgB0,tgB1;printf(" 请输入大地空间直角坐标:\n");printf(" X=");scanf("%lf",&X);printf(" Y=");scanf("%lf",&Y);printf(" Z=");scanf("%lf",&Z);printf("\n\n 转换后得到大地坐标为:\n\n");L=atan(Y/X);printf(" 大地经度为: L=");RBD(L);printf("\n");tgB0=Z/sqrt(X*X+Y*Y);tgB1=(1/sqrt(X*X+Y*Y))*(Z+a*e2*tgB0/sqrt(1+tgB0*tgB0-e2*tgB0*tgB0));while(fabs(tgB0-tgB1)>5*pow(10,-10)){tgB0=tgB1;tgB1=(1/sqrt(X*X+Y*Y))*(Z+a*e2*tgB0/sqrt(1+tgB0*tgB0-e2*tgB0*tgB0));}B=atan(tgB1);printf(" 大地纬度为:B=");RBD(B);printf("\n");W=sqrt(1-e2*sin(B)*sin(B));N=a/W;H=sqrt(X*X+Y*Y)/cos(B)-N;printf(" 大地高为:H=%lf\n\n",H);}void B_ZS(){double L1,B1,A1,s,d,f,mi;double u1,u2,m,M,k2,alfa,bt,r,kp2,alfap,btp,rp;double sgm0,sgm1,lmd,lmd1,lmd2,A2,B2,l,L2;printf("请输入已知点的大地坐标(输入格式为角度(例如:30'40'50'),下同):\nL1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);L1=RAD(d,f,mi);printf("\nB1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);B1=RAD(d,f,mi);printf("请输入大地方位角:\nA1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);A1=RAD(d,f,mi);printf("请输入该点至另一点的大地线长:\ns=");scanf("%lf",&s);u1=atan(sqrt(1-e2)*tan(B1));m=asin(cos(u1)*sin(A1));M=atan(tan(u1)/cos(A1));m=(m>0)?m:m+2*PI;M=(M>0)?M:M+PI;k2=ep2*cos(m)*cos(m);alfa=(1-k2/4+7*k2*k2/64-15*k2*k2*k2/256)/b;bt=k2/4-k2*k2/8+37*k2*k2*k2/512;r=k2*k2/128-k2*k2*k2/128;sgm0=alfa*s;sgm1=alfa*s+bt*sin(sgm0)*cos(2*M+sgm0)+r*sin(2*sgm0)*cos(4*M+2*sgm0); while(fabs(sgm0-sgm1)>2、8*PI/180*pow(10,-7)){sgm0=sgm1;sgm1=alfa*s+bt*sin(sgm0)*cos(2*M+sgm0)+r*sin(2*sgm0)*cos(4*M+2*sgm0); }sgm0=sgm1;A2=atan(tan(m)/cos(M+sgm0));A2=(A2>0)?A2:A2+PI;A2=(A1>PI)?A2:A2+PI;u2=atan(-cos(A2)*tan(M+sgm0));lmd1=atan(sin(u1)*tan(A1));lmd1=(lmd1>0)?lmd1:lmd1+PI;lmd1=(m<PI)?lmd1:lmd1+PI;lmd2=atan(sin(u2)*tan(A2));lmd2=(lmd2>0)?lmd2:lmd2+PI;lmd2=(m<PI)?(((M+sgm0)<PI)?lmd2:lmd2+PI):(((M+sgm0)>PI)?lmd2:lmd2+PI);lmd=lmd2-lmd1;B2=atan(sqrt(1+ep2)*tan(u2));kp2=e2*cos(m)*cos(m);alfap=(e2/2+e2*e2/8+e2*e2*e2/16)-e2/16*(1+e2)*kp2+3*e2*kp2*kp2/128;btp=e2*(1+e2)*kp2/16-e2*kp2*kp2/32;rp=e2*kp2*kp2/256;l=lmd-sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos(2*M+sgm0)+rp*sin(2*sgm0)*cos(4*M+2*sg m0));L2=L1+l;printf("\n\n得到另一点的大地坐标与大地线在该点的大地方位角为:\n\n");printf("L2=");RBD(L2);printf("\n");printf("B2=");RBD(B2);printf("\n");printf("A2=");RBD(A2);printf("\n");}void B_FS(){double L1,B1,L2,B2,s,A1,A2,du,f,mi,m0,m,M;double l,u1,u2,alfa,bt,r,lmd0,dit_lmd,lmd,sgm,dit_sgm,sgm0,sgm1,alfap,btp,rp,k2,kp2;printf("请输入第一个点大地坐标(输入格式为角度(例如:30'40'50'),下同):\n大地经度L1=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L1=RAD(du,f,mi);printf("大地纬度B1=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B1=RAD(du,f,mi);printf("\n请输入第二个点大地坐标:\n大地经度:L2=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L2=RAD(du,f,mi);printf("大地纬度:B2=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B2=RAD(du,f,mi);l=L2-L1;u1=atan(sqrt(1-e2)*tan(B1));u2=atan(sqrt(1-e2)*tan(B2));sgm0=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l));m0=asin(cos(u1)*cos(u2)*sin(l)/sin(sgm0));dit_lmd=0、003351831*sgm0*sin(m0);lmd0=l+dit_lmd;dit_sgm=sin(m0)*dit_lmd;sgm1=sgm0+dit_sgm;m=asin(cos(u1)*cos(u2)*sin(lmd0)/sin(sgm1));A1=atan(sin(lmd0)/(cos(u1)*tan(u2)-sin(u1)*cos(lmd0)));A1=(A1>0)?A1:A1+PI;A1=(m>0)?A1:A1+PI;M=atan(sin(u1)*tan(A1)/sin(m));M=(M>0)?M:M+PI;k2=ep2*cos(m)*cos(m);alfa=(1-k2/4+7*k2*k2/64-15*k2*k2*k2/256)/b;bt=k2/4-k2*k2/8+37*k2*k2*k2/512;r=k2*k2/128-k2*k2*k2/128;kp2=e2*cos(m)*cos(m);alfap=(e2/2+e2*e2/8+e2*e2*e2/16)-e2/16*(1+e2)*kp2+3*e2*kp2*kp2/128;btp=e2*(1+e2)*kp2/16-e2*kp2*kp2/32;rp=e2*kp2*kp2/256;sgm0=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l));sgm1=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l+sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos( 2*M+sgm0))));while(fabs(sgm0-sgm1)>1*PI/180*pow(10,-8)){sgm0=sgm1;sgm1=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l+sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos( 2*M+sgm0))));}sgm=sgm1;lmd=l+sin(m)*(alfap*sgm+btp*sin(sgm)*cos(2*M+sgm));s=(sgm-bt*sin(sgm)*cos(2*M+sgm)-r*sin(2*sgm)*cos(4*M+2*sgm))/alfa;A1=atan(sin(lmd)/(cos(u1)*tan(u2)-sin(u1)*cos(lmd)));A1=(A1>0)?A1:A1+PI;A1=(m>0)?A1:A1+PI;A2=atan(sin(lmd)/(sin(u2)*cos(lmd)-tan(u1)*cos(u2)));A2=(A2>0)?A2:A2+PI;A2=(m<0)?A2:A2+PI;printf("\n\n得到两点间大地线长S与大地正反方位角A1、A2如下:\n\n");printf("s=%lf\n",s);printf("A1=");RBD(A1);printf("\n");printf("A2=");RBD(A2);printf("\n");}void GUS_ZS(){double B,L,x3,x6,y3,y6,Y3,Y6,du,f,mi,X,N,n,t;double At,Bt,Ct,Dt,m3,m6,l3,l6,W,L03,L06;int DH3,DH6;printf("请输入大地坐标(输入格式为角度(例如:30'40'50')):\n大地经度L=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L=RAD(du,f,mi);printf("\n大地纬度B=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B=RAD(du,f,mi);At=1+3*e2/4+45*e2*e2/64+175*e2*e2*e2/256;Bt=3*e2/4+15*e2*e2/16+525*e2*e2*e2/512;Ct=15*e2*e2/64+105*e2*e2*e2/256;Dt=35*e2*e2*e2/512;X=a*(1-e2)*(At*B-Bt*sin(2*B)/2+Ct*sin(4*B)/4-Dt*sin(6*B)/6);W=sqrt(1-e2*sin(B)*sin(B));N=a/W;n=sqrt(ep2)*cos(B);t=tan(B);DH3=(L-(1、5*PI/180))/(3*PI/180)+1;DH6=L/(6*PI/180)+1;L03=DH3*(3*PI/180);L06=DH6*(6*PI/180)-(3*PI/180);l3=L-L03;l6=L-L06;m3=cos(B)*l3;m6=cos(B)*l6;x3=X+N*t*(m3*m3/2+(5-t*t+9*n*n+4*n*n*n*n)*m3*m3*m3*m3/24+(61-58*t*t+t*t*t*t)* m3*m3*m3*m3*m3*m3/720);x6=X+N*t*(m6*m6/2+(5-t*t+9*n*n+4*n*n*n*n)*m6*m6*m6*m6/24+(61-58*t*t+t*t*t*t)* m6*m6*m6*m6*m6*m6/720);y3=N*(m3+(1-t*t+n*n)*m3*m3*m3/6+(5-18*t*t+t*t*t*t+14*n*n-58*n*n*t*t)*m3*m3*m3 *m3*m3/120);y6=N*(m6+(1-t*t+n*n)*m6*m6*m6/6+(5-18*t*t+t*t*t*t+14*n*n-58*n*n*t*t)*m6*m6*m6 *m6*m6/120);Y3=DH3*1000000+500000+y3;Y6=DH6*1000000+500000+y6;printf("\n\n 得到的高斯平面坐标为:\n\n");printf(" 对于3度带:\n 纵坐标x=%、3lf\n 横坐标y=%、3lf(通用坐标Y=%、3lf)\n\n",x3,y3,Y3);printf(" 对于6度带:\n 纵坐标x=%、3lf\n 横坐标y=%、3lf(通用坐标Y=%、3lf)\n\n",x6,y6,Y6);}void GUS_FS(){double x,y,Y,B,B0,B1,Bf,Vf,tf,Nf,nf,L,At,Bt,Ct,Dt,L3,L6;long DH;printf(" 请输入高斯平面坐标:\n\n");printf(" 纵坐标X=");scanf("%lf",&x);printf("\n");printf(" 自然坐标y=");scanf("%lf",&y);printf("\n");printf(" 通用坐标Y=");scanf("%lf",&Y);printf("\n");At=1+3*e2/4+45*e2*e2/64+175*e2*e2*e2/256;Bt=3*e2/4+15*e2*e2/16+525*e2*e2*e2/512;Ct=15*e2*e2/64+105*e2*e2*e2/256;Dt=35*e2*e2*e2/512;B0=x/(a*(1-e2)*At);B1=(x-a*(1-e2)*(-Bt*sin(2*B0)/2+Ct*sin(4*B0)/4-Dt*sin(6*B0)/6))/(a*(1-e2)*At);while(fabs(B1-B0)>1*pow(10,-8)){B0=B1;B1=(x-a*(1-e2)*(-Bt*sin(2*B0)/2+Ct*sin(4*B0)/4-Dt*sin(6*B0)/6))/(a*(1-e2)*At);}Bf=B1;nf=sqrt(ep2)*cos(Bf);tf=tan(Bf);Vf=sqrt(1+ep2*cos(Bf)*cos(Bf));Nf=c/Vf;B=Bf-Vf*Vf*tf/2*((y/Nf)*(y/Nf)-(5+3*tf*tf+nf*nf-9*nf*nf*tf*tf)*pow((y/Nf),4)/12+(61+90*tf *tf+45*tf*tf)*pow((y/Nf),6)/360);L=((y/Nf)-(1+2*tf*tf+nf*nf)*(y/Nf)*(y/Nf)*(y/Nf)/6+(5+28*tf*tf+24*pow(tf,4)+6*nf*nf+8*nf *nf*tf*tf)*pow((y/Nf),5)/120)/cos(Bf);DH=Y/1000000;L3=3*PI/180*double(DH)+L;L6=6*PI/180*double(DH)-3*PI/180+L;printf("\n\n 得到的大地坐标为:\n\n");printf(" 大地纬度B=");RBD(B);printf("\n");printf(" 若为6度带,大地经度L=");RBD(L6);printf("\n");printf(" 若为3度带,大地经度L=");RBD(L3);printf("\n"); }。
由大地坐标向空间直角坐标的转换的原理
由大地坐标向空间直角坐标的转换的原理
大地坐标与空间直角坐标之间的转换原理是通过地理测量学中的大地坐标系统和空间直角坐标系统之间的数学关系来实现的。
在大地测量中,我们使用经度、纬度和大地高来描述地球表面上的点。
大地测量学中使用的经度是指一个点相对于地球自转轴的角度。
经度的起始点被定义为本初子午线,通常选择通过伦敦的经线作为本初子午线。
经度可取值范围为-180度到+180度。
纬度是指一个点相对于地球赤道面的角度。
纬度的起始点被定义为赤道,赤道的纬度为0度,北纬为正,南纬为负。
大地高是指一个点相对于地球平均海平面的高度。
空间直角坐标系统是使用直角坐标系来描述地球上的点。
在空间直角坐标系中,我们使用三个正交坐标轴来确定一个点的位置,分别是X轴、Y轴和Z轴。
通常,以经度0度、纬度0度、大地高0米的点作为原点。
要将大地坐标转换为空间直角坐标,我们需要进行以下计算:
1. 根据给定的经度和纬度,计算该点的地球半径R。
地球半径通常可以通过现有的地球模型来进行计算或查询相关资料获取。
2. 然后,通过以下公式计算该点相对于X轴、Y轴和Z轴的直角坐标值:
X = (R + H) * cos(纬度) * cos(经度)
H为大地高,e为地球的离心率。
地球的离心率是指地球形状的椭圆度,其数值在0-1之间,可以根据现有的地球模型进行计算。
计算得到的X、Y、Z值即为该点在空间直角坐标系中的坐标值。
通过以上的计算过程,我们可以将大地坐标转换为空间直角坐标。
这种转换过程在地理测量、导航定位等领域有着广泛的应用。
大地坐标系与空间直角坐标系的相互转换python
大地坐标系与空间直角坐标系的相互转换Python在地理信息系统(GIS)中,常常需要将大地坐标系(地理坐标系)与空间直角坐标系(笛卡尔坐标系)进行相互转换。
大地坐标系使用经纬度来表示地球表面上的任意点,而空间直角坐标系使用直角坐标来表示点在三维空间中的位置。
Python提供了一些库和工具,可以方便地进行这种转换。
大地坐标系与空间直角坐标系的基本概念大地坐标系(地理坐标系)大地坐标系是一种用经纬度来表示地球表面上任意点的坐标系。
经度表示点相对于本初子午线的位置(东经为正、西经为负),纬度表示点相对于赤道的位置(北纬为正、南纬为负)。
空间直角坐标系(笛卡尔坐标系)空间直角坐标系是一种使用直角坐标来表示点在三维空间中的位置的坐标系。
在空间直角坐标系中,每个点的位置由其相对于三个互相垂直的坐标轴的坐标值确定。
大地坐标系与空间直角坐标系的转换大地坐标系与空间直角坐标系之间的转换涉及到各种地球椭球参数和数学公式。
幸运的是,Python的一些库和工具已经实现了这些转换,使得我们可以很方便地进行转换操作。
Geopy库Geopy是一个Python库,提供了许多地理坐标系之间相互转换的功能。
使用Geopy,我们可以方便地进行大地坐标系到空间直角坐标系的转换。
首先,我们需要安装Geopy库。
可以使用pip命令来进行安装:pip install geopy接着,我们可以使用以下代码将大地坐标系的经纬度转换为空间直角坐标系的三维坐标:```python from geopy import Point from geopy.distance import distance定义大地坐标系的经纬度latitude = 40.7128 longitude = -74.0060将经纬度转换为空间直角坐标系的三维坐标point = Point(latitude, longitude) x, y, z = point.to_cartesian() print(f。
大地坐标与空间直角坐标转换
大地坐标与空间直角坐标转换在地理空间相关的领域中,大地坐标和空间直角坐标是两种常用的坐标系统。
大地坐标通常用经度和纬度表示,是为了描述地球表面上的点的位置而设计的坐标系统;而空间直角坐标则是一种常用的三维笛卡尔坐标系,用来描述平面内的点的位置。
在实际应用中,有时候我们需要将一个点从大地坐标系转换到空间直角坐标系,或者反过来进行转换,这就需要进行一定的坐标转换计算。
大地坐标的表示大地坐标通常是以经度(Longitude)和纬度(Latitude)表示的。
经度表示东西方向,是一个0到360度的值,通常以东经为正值,西经为负值。
纬度表示南北方向,是一个-90到90度的值,赤道为0度,南纬为负值,北纬为正值。
空间直角坐标的表示空间直角坐标是以直角坐标系表示的,通常是三维笛卡尔坐标系,包括X、Y和Z三个坐标轴。
X轴和Y轴在平面内垂直,Z轴垂直于平面,组成一个右手坐标系。
一个点在空间直角坐标系中的位置可以由其X、Y和Z坐标值表示。
大地坐标与空间直角坐标的转换大地坐标和空间直角坐标之间的转换涉及到地球的椭球面和大地水准面的关系,通常需要考虑椭球体参数、大地水准面的高度等因素。
实际转换过程中可能涉及到大圆距离、球面三角计算等复杂的数学运算。
结论大地坐标与空间直角坐标之间的转换是地理信息处理中一个重要的问题,通常需要借助专业的地理信息系统软件或者编程语言进行计算。
在进行坐标转换时,需要考虑到地球的椭球体特征以及大地水准面的高度影响,以确保转换的准确性。
对于从事地理测绘、地图制作、地理信息系统等领域的人员,熟练掌握大地坐标与空间直角坐标之间的转换方法是非常重要的。
以上就是关于大地坐标与空间直角坐标转换的一些内容,希望对您有所帮助。
常用坐标系之间的关系与转换
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
MATLAB实验大地坐标与空间直角坐标的换算程序设计(经典)
min=fix((du-degree)*60); second=(((du-degree)*60-min)*60); B=degree+min/100+second/10000; end
3、实例计算验证 首先将文件 data1.txt 中大地坐标转换为空间直角坐标, 并将转换后的数据按照格 式存贮在文件 data2.txt 中, data1.txt 格式为: data2.txt 格式为: x test 程序如下:
function [x, y, z] = geo2xyz (L, B, h) a=6378137; %椭球长半轴 f=1/298.257223563; %椭球扁率 b=a*(1-f); %求椭球短半轴 e=sqrt(a^2-b^2)/a; %椭球第一偏心率 N=a./sqrt(1-(e^2)*(sin(B)).^2); % 卯酉圈曲率半径 %大地坐标换算为空间直角坐标 x、 y、z x=(N+h).*cos(B).*cos(L); y=(N+h).*cos(B).*sin(L); z=[N.*(1-e^2)+h].*sin(B); end 度分秒转化为弧度函数如下: function azimuth=dms2rad(dms)%度分秒转弧度函数
测绘高级工程师答辩题库
测绘高级工程师答辩题库答辩题目第一章:地形测量、数字化测图、地籍测量1、需要测区1:2000的地形图,请说明可采用那些方法得到?答:野外数字采集、原图数据采集、数字摄影测量2、不同比例尺地形图的转换需要考虑哪些因素?答:考虑比例尺大小、地域范围、内容详略程度等因素。
3、如何将纸质地形图转换成数字化图?有哪些环节?答:有两种方法可以转化:手扶跟踪数字化法和扫描屏幕数字化法。
扫描屏幕数字化法主要有图上的位置点信息转化成数字化的平面坐标点信息,并输入给计算机。
手扶跟踪数字化法就是对地形、地物的每一特征点的点位坐标进行采集,然后输入其属性信息和点的连接信息。
4、什么是地形图比例尺?有什么作用?答:地形图比例尺:地图上其中一线段的长度与实际相应线段水平长度之比。
地形比例尺的作用:根据地图上的比例尺,可以量算图上两地之间的实地距离;根据两地的实际距离和比例尺,可计算两地的图上距离。
5、什么是地物、地貌和地形?地形图和平面图的区别是什么?答:地物:地面上固定性物体的总称,包括建筑物、构筑物、道路、江河等;地貌:地面上各种起伏形态的总称;地形:地面上地物、地貌的总称;地形图和平面图的区别是:平面图是用符号表示的,而地形图则是立体的表现形式。
6。
请说明数字测图的外业作业模式?答:数字测图的作业模式是指数字化测图内外业作业方法、接口方式和流程的总称。
一般来说,数字测图的作业模式大致分为编码法、草图法、电子平板、原图数字化等。
7。
简述数字测图系统由野外数据采集到内业自动成图的方法和步骤?答:1、野外电子手薄简码→数据通讯至便携机→简码转化成全编码8。
简述小平板仪和经纬仪联合测图法及经纬仪测绘法的原理?答:平板仪和经纬仪联合测图法原理:用平板仪安置在测站上,对中整平定向,照准碎部点,得出测站点至碎部点的方向线;水平距离则由安置在测站胖的经纬仪测定;经纬仪测绘法原理:采用经纬仪测角和视距或测距仪测距,在图板上展点以测绘地形图。
大地坐标系与空间直角坐标系的相互转换方法
大地坐标系与空间直角坐标系的相互转换方法1. 引言在测量和定位中,我们经常会用到坐标系来描述物体的位置。
大地坐标系和空间直角坐标系是常见的两种坐标系统,它们分别适用于地理测量和空间定位。
本文将介绍大地坐标系和空间直角坐标系之间的相互转换方法。
2. 大地坐标系大地坐标系是一种用来描述地球表面点位的坐标系统。
它采用经度、纬度和高度三个参数来确定点的位置。
2.1 经度和纬度经度是指地球表面上某点所在的东西方向线上的投影长度。
纬度是指地球表面上某点所在的南北方向线上的投影长度。
经度的取值范围是-180度到180度,纬度的取值范围是-90度到90度。
2.2 高度高度是指地球表面某点与平均海平面的距离。
它可以是正值,表示点位位于平均海平面之上,也可以是负值,表示点位位于平均海平面之下。
3. 空间直角坐标系空间直角坐标系是一种用来描述物体在空间中位置的坐标系统。
它采用直角坐标表示物体的位置,即用X、Y、Z三个参数表示点在空间中的位置。
3.1 X、Y、Z坐标X坐标表示点在东西方向上的位置,Y坐标表示点在南北方向上的位置,Z坐标表示点在垂直方向上的位置。
4. 大地坐标系转换为空间直角坐标系将大地坐标系中的经度、纬度和高度转换为空间直角坐标系中的X、Y、Z坐标,可以采用以下公式:X = (N + h) * cos(φ) * cos(λ)Y = (N + h) * cos(φ) * sin(λ)Z = (N * (1 - e^2) + h ) * sin(φ)其中,N为椭球面半径,h为高度,φ为纬度,λ为经度,e为第一偏心率。
5. 空间直角坐标系转换为大地坐标系将空间直角坐标系中的X、Y、Z坐标转换为大地坐标系中的经度、纬度和高度,可以采用以下公式:φ = atan(Z / sqrt(X^2 + Y^2))λ = atan(Y / X)h = sqrt(X^2 + Y^2 + Z^2) - N其中,N为椭球面半径,φ为纬度,λ为经度,h为高度。
大地坐标系与空间直角坐标系的相互转换公式
大地坐标系与空间直角坐标系的相互转换公式概述大地坐标系和空间直角坐标系是地理信息系统中两种常用的坐标系。
大地坐标系主要用于描述地球上点的位置,而空间直角坐标系则是使用笛卡尔坐标系的三维空间中的坐标来表示点的位置。
在地理信息系统中,需要经常进行大地坐标系和空间直角坐标系之间的转换,以便在不同的坐标系统之间进行数据交互和分析。
大地坐标系大地坐标系是一种基于地球椭球体的坐标系统,常用来描述地球上点的位置。
一般采用经度(longitude)、纬度(latitude)和高程(elevation)来表示点在地球表面的位置。
经度表示点在东经或西经的位置,纬度表示点在北纬或南纬的位置,高程表示点相对于海平面的高度。
大地坐标系中经度的表示方式有多种,常见的有度分秒制和十进制制。
而纬度则一般用度制表示。
对于高程的表示方式,通常使用米作为单位。
空间直角坐标系空间直角坐标系是使用笛卡尔坐标系的三维空间中的坐标来表示点的位置。
在空间直角坐标系中,每个点的位置由三个数值组成,分别表示点在X轴、Y轴和Z轴方向上的位置。
这三个数值通常以米为单位。
空间直角坐标系中的原点可以选择任意位置,常见的有地心、地心地固、地心地独立三种坐标系。
地心坐标系以地球质心为原点,地心地固坐标系以地球上某一固定点为原点,地心地独立坐标系则是相对于地轴的一个旋转坐标系。
大地坐标系到空间直角坐标系的转换将大地坐标系中的点转换为空间直角坐标系中的点需要使用转换公式。
常用的转换方法有大地测量学和地心测量学两种。
### 大地测量学方法大地测量学方法中,将地球近似为椭球体,利用椭球体的形状参数和点的大地坐标来进行转换。
该方法的核心思想是通过计算点在曲线面上的法线方向,将大地坐标系的点转换为空间直角坐标系的点。
### 地心测量学方法地心测量学方法中,将地球近似为球体,并以地球质心或地球上某一固定点为原点。
该方法利用球面三角学的原理,根据点的经纬度和高程来进行转换。
空间直角坐标系与空间大地坐标系的相互转换及其C++源程序
空间直角坐标系与空间大地坐标系的相互转换1.空间直角坐标系/笛卡尔坐标系坐标轴相互正交的坐标系被称作笛卡尔坐标系。
三维笛卡尔坐标系也被称为空间直角坐标系。
在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。
以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。
在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。
空间直角坐标系2.空间大地坐标系由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。
大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:2.1椭球的大小和形状2.2椭球的短半轴的指向:通常与地球的平自转轴平息。
2.3椭球中心的位置:根据需要确定。
若为地心椭球,则其中心位于地球质心。
2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。
以大地基准为基础建立的坐标系被称为大地坐标系。
由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。
大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。
过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。
由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。
过P点的椭球法线与赤道面的夹角叫P点的大地纬度。
由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。
空间直角坐标系与大地坐标系转换程序
空间直角坐标系与大地坐标系转换程序#include<iostream>#include<cmath>#include<iomanip>using namespace std;#define PI (2.0*asin(1.0))void main(){ double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e;//cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<<endl;//cin>>a>>b;a=6378137; //以WGS84为例b=6356752.3142;e=sqrt(a*a-b*b)/a;c=a*a/b;int x;cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<<endl;cin>>x;switch(x){case 0:{cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<<endl;cin>>d1>>f1>>m1>>d2>>f2>>m2>>H;B=PI*(d1+f1/60+m1/3600)/180;L=PI*(d2+f2/60+m2/3600)/180;W=sqrt(1-e*e*sin(B)*sin(B));N=a/W;X=(N+H)*cos(B)*cos(L);Y=(N+H)*cos(B)*sin(L);Z=(N*(1-e*e)+H)*sin(B);cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<<fixed<<setprecision(6)<<X<<" "<<fixed<<setprecision(6)<<Y<<" "<<fixed<<setprecision(6)<<Z<<endl;break;}case 1:{cout<<"请分别输入空间直角坐标系中X,Y,Z的值(国际单位)"<<endl;cin>>X>>Y>>Z;double t,m,n, P,k,B0;m=Z/sqrt(X*X+Y*Y); //t0B0=atan(m); //初值n=Z/sqrt(X*X+Y*Y);P=c*e*e/sqrt(X*X+Y*Y);k=1+(a*a-b*b)/(b*b);t=m+P*n/sqrt(k+n*n); //现在为t1,之后代替t2,t3...B=atan(t);W=sqrt(1-e*e*sin(B)*sin(B));N=a/W;H=Z/sin(B) - N*(1-e*e);int i;for(i=1;fabs(B-B0)>10E-10;i++)//每一次新的B与上一次计算的B比较,误差小于10E-10 rad {B0=B;n=t;t=m+P*n/sqrt(k+n*n);//迭代B=atan(t);}W=sqrt(1-e*e*sin(B)*sin(B));N=a/W;//if((X<0)&(Y>0))//L=atan(Y/X)+PI;//if((X<0)&(Y<0))// L=atan(Y/X)+PI;// if((X>0)&(Y<0))//L=2*PI-atan(Y/X);L=atan2(Y,X);H=sqrt(X*X+Y*Y)/cos(B)-N;int Bd,Bf,Ld,Lf;double Bm,Lm;B=180*B/PI;//B转化为度做单位Bd=B;Bf=(B-Bd)*60;Bm=((B-Bd)*60-Bf)*60;L=180*L/PI;//L转化为度做单位Ld=L;Lf=(L-Ld)*60;Lm=((L-Ld)*60-Lf)*60;cout<<"大地坐标系中纬度,经度,大地高(国际单位)分别为"<<Bd<<" "<<Bf<<" "<<fixed<<setprecision(6)<<Bm<<endl<<Ld<<" "<<Lf<<" "<<fixed<<setprecision(6)<<Lm<<endl<<fixed<<setprecision(6)<<H<<endl;break;}}}运行结果。
直角坐标系转为地理坐标系原理
直角坐标系转为地理坐标系原理一、概述在地理信息系统(GIS)领域,我们经常需要将直角坐标系转换为地理坐标系。
这涉及到地图的制作、地理空间数据的处理等诸多应用。
本文将介绍直角坐标系转为地理坐标系的原理,希望能够帮助读者更好地理解和应用这一技术。
二、直角坐标系与地理坐标系的概念1. 直角坐标系直角坐标系是二维或三维空间中的一种坐标系统,通常用来描述平面上或空间中的点的位置。
在二维平面上,通常使用x轴和y轴来表示点的位置,而在三维空间中,则需要使用x、y、z轴。
2. 地理坐标系地理坐标系是用来表示地球表面上点的位置的坐标系统。
地理坐标通常由经度和纬度来表示,经度表示点在东西方向上的位置,纬度表示点在南北方向上的位置。
三、直角坐标系转为地理坐标系的原理直角坐标系与地理坐标系之间的转换涉及到椭球体的数学模型、坐标变换的数学计算等复杂的内容。
下面将介绍直角坐标系转为地理坐标系的原理。
1. 椭球体模型地球并非完全的球状,而是稍微扁平的椭球体。
为了更准确地描述地球的形状,地理学家提出了各种椭球体模型,其中最常用的是WGS84椭球体模型。
这一模型以地心为坐标原点,通过椭球的长短轴以及扁平度参数等来描述地球的形状。
2. 坐标变换直角坐标系转为地理坐标系的关键在于坐标的变换。
以二维平面上的点(x, y)为例,我们首先需要根据椭球体模型的参数计算出该点对应的地心距离ρ。
我们可以根据点在地球上的位置所对应的经度和纬度的计算公式,将ρ转换为对应的地理坐标系下的经度和纬度。
3. 大地测量学直角坐标系转为地理坐标系的原理涉及到大地测量学的知识。
在这一领域中,有许多复杂的数学模型和计算方法,用来描述地球表面上点的位置、地图的投影、测量误差的补偿等内容。
通过大地测量学的知识,我们可以更准确地进行坐标变换,从而将点的位置从直角坐标系转为地理坐标系。
四、直角坐标系转为地理坐标系的应用直角坐标系转为地理坐标系的原理在GIS领域中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系与空间大地坐标系的相互转换1.空间直角坐标系/笛卡尔坐标系坐标轴相互正交的坐标系被称作笛卡尔坐标系。
三维笛卡尔坐标系也被称为空间直角坐标系。
在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。
以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。
在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。
空间直角坐标系2.空间大地坐标系由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。
大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:2.1椭球的大小和形状2.2椭球的短半轴的指向:通常与地球的平自转轴平息。
2.3椭球中心的位置:根据需要确定。
若为地心椭球,则其中心位于地球质心。
2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。
以大地基准为基础建立的坐标系被称为大地坐标系。
由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。
大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。
过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。
由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。
过P点的椭球法线与赤道面的夹角叫P点的大地纬度。
由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。
从地面点P沿椭球法线到椭球面的距离叫大地高。
大地坐标坐标系中,P点的位置用L,B表示。
如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。
空间大地坐标系3.空间直角坐标与大地坐标间的转换3.1大地坐标转换为空间直角坐标将同一坐标系下的大地坐标(B、L、H)转换成空间直角坐标(X、Y、Z)的转换公式为:式中N为卯酉圈的半径,a为参考椭球的长半轴;b为参考椭球的短半轴;e为参考椭球的第一偏心率;并且有若点在椭球面上,则大地高H=0,上式可简化为:3.2空间直角坐标转换为空间大地坐标将同一坐标系下的空间直角坐标(X、Y、Z)转换为空间大地坐标(B、L、H)的公式为:在使用上式进行空间直角坐标到大地坐标的转换过程中,由于计算大地纬度口时用到大地高Ⅳ,而计算大地高时又需要用到大地纬度口.因此不能直接由空间直角坐标计算出大地坐标,而需要采用迭代计算的方法。
具体计算时,可先根据下式求出大地纬度口的初值:然后利用该初值来求出H、N的初值,再利用所求出的H和N初值再次求出B 值.如此反复,直至求出的及日、Ⅳ收敛为止。
4.算例本文根据以上公式在Microsoft VC++6.0环境下编写了一段程序(见附录)。
算例中的坐标采用的是武汉大学信息学部友谊广场上的某点的大地坐标作为已知值,然后经过转换函数CRDGEODETICtoCRDCARTESEAN(pcg, pcc, dSemiMajorAxis,dFlatning)把大地坐标转换为空间直角坐标得到坐标X、Y、Z。
由得到的空间直角坐标X、Y、Z,经过转换函数CRDCARTESIANtoCRDGEODETIC(pcc,pcg,dSemiMajorAxis,dFlatning)把空间直角坐标还原成空间大地坐标,计算结果如下图所示:计算结果从上图可以看出结果比较满意,高程和精度基本能完全还原,而纬度还原后有较大的误差,在测量中这种误差不允许的,需要修改算法,完善结果。
可能引起的原因有可能是由于纬度计算公式并不完善,还有可能是由于计算机的截断误差引起的,还要找时间继续修改、完善。
5.心得体会这次编程自认为很简单,但真动手自己亲自编写,还是或多或少遇到了一些问题,并分析问题,最终解决问题。
虽然这次作业很简单,但经过自己这样一步一步的编写出来,还是有很多收获,加强了运用VC++编写程序的能力,也充分认识到了学习VC++的重要性,更找到了自己的一些缺点与不足。
6.附录(程序源代码)#include<iostream>#include<cmath>using namespace std;#define M_PI 3.1415926typedef struct tagCRDCARTESIAN{double x;double y;double z;}CRDCARTESIAN;typedef CRDCARTESIAN *PCRDCARTESIAN; typedef struct tagCRDGEODETIC{double longitude;double latitude;double height;}CRDGEODETIC;typedef CRDGEODETIC *PCRDGEODETIC;void DMS_RAD(double DMS,double *Rad){int Deg,Min;double Sec;Deg=(int)DMS;Min=(int)((DMS-Deg)*100);Sec=((DMS-Deg)*100-Min)*100;*Rad=(Deg+Min/60.0+Sec/3600.0)/180.0*M_PI;return;}void RAD_DMS(double Rad,double *DMS){int Deg,Min;double Sec;double AR,AM;AR=Rad;if (Rad<0)AR=-Rad;AR=AR+1.0e-10;AR=AR*180.0/M_PI;Deg=(int)AR;AM=(AR-Deg)*60.0;Min=(int)AM;Sec=(AM-Min)*60;*DMS=Deg+Min/100.0+Sec/10000.0;if(Rad<0)*DMS=-*DMS;return;}bool CRDCARTESIANtoCRDGEODETIC(PCRDCARTESIAN pcc,PCRDGEODETIC pcg,double dSemiMajorAxis,double dFlattening) {double B0,R,N;double B_,L_;double X=pcc->x;double Y=pcc->y;double Z=pcc->z;R=sqrt(X*X+Y*Y);B0=atan2(Z,R);while (1){N=dSemiMajorAxis/sqrt(1.0-dFlattening*(2-dFlattening)*sin(B0)*sin(B0));B_=atan2(Z+N*dFlattening*(2-dFlattening)*sin(B0),R);if(fabs(B_-B0)<1.0e-10)break;B0=B_;}L_=atan2(Y,X);pcg->height=R/cos(B_)-N;RAD_DMS(B_,&pcg->latitude);RAD_DMS(L_,&pcg->longitude);return true;}bool CRDGEODETICtoCRDCARTESEAN(PCRDGEODETIC pcg,PCRDCARTESIAN pcc,double dSemiMajorAxis,double dFlattening) {double N;double B_,L_;double B=pcg->latitude;double L=pcg->longitude;double H=pcg->height;DMS_RAD(B,&B_);DMS_RAD(L,&L_);N=dSemiMajorAxis/sqrt(1.0-dFlattening*(2-dFlattening)*sin(B_)*sin(B_));pcc->x=(N+H)*cos(B_)*cos(L_);pcc->y=(N+H)*cos(B_)*sin(L_);pcc->z=(N*(1.0-dFlattening*(2-dFlattening))+H)*sin(B_);return true;}void main(){PCRDCARTESIAN pcc=new CRDCARTESIAN;PCRDGEODETIC pcg=new CRDGEODETIC;//B=30.31.40.23 L=114.21.20.51 h=41double rad;rad=(30*3600+31*60+40.23)/3600;pcg->latitude=rad;rad=(114*3600+21*60+20.51)/3600;pcg->height=41;pcg->longitude=rad;double dSemiMajorAxis=6378137;double dFlatning=1/298.257223563;cout<<std::fixed;cout<<"转换前已知的大地坐标:"<<endl;cout<<"H(高度)="<<pcg->height<<" "<<"L(经度)="<<pcg->longitude<<" "<<"B(纬度)="<<pcg->latitude<<endl;CRDGEODETICtoCRDCARTESEAN(pcg, pcc, dSemiMajorAxis,dFlatning);cout<<endl;cout<<"转换后的空间直角坐标:";cout<<"x="<<pcc->x<<" "<<"y="<<pcc->y<<" "<<"z="<<pcc->z<<" "<<endl;CRDCARTESIANtoCRDGEODETIC(pcc,pcg,dSemiMajorAxis,dFlatning);cout<<endl;cout<<"由转换后的空间直角坐标x,y,z还原成大地坐标:"<<endl;cout<<"H(高度)="<<pcg->height<<" "<<"L(经度)="<<pcg->longitude<<" "<<"B(纬度)="<<pcg->latitude<<endl;cout<<endl;}。