储能技术对并网光伏电站的作用分析

储能技术对并网光伏电站的作用分析
储能技术对并网光伏电站的作用分析

储能技术对并网光伏电站的作用分析

发表时间:2018-04-19T16:22:21.923Z 来源:《电力设备》2017年第33期作者:钟东长[导读] 摘要:近年来,储能技术对并网光伏电站的作用得到了业内的广泛关注,研究其相关课题有着重要意义。

(佛山综合能源有限公司广东佛山 528000)

摘要:近年来,储能技术对并网光伏电站的作用得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了太阳能电池储能设备,并结合相关实践经验,分别从多个角度与方面就光伏发电系统中储能技术的改进策略展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。

关键词:储能技术;并网光伏电站;作用;分析

1 储能技术光伏并网发电系统对电网的影响

目前,由于光伏发电系统规模相对于电网规模较小,同时也由于储能系统成本较高,光伏系统并网发电时通常不采用储能系统,这使得光伏系统对电网带来了一些不良的影响,并且,随着光伏发电系统规模的不断扩大以及光伏电源在系统中所占比例的不断增加,这些影响变得不可忽视。通过对光伏发电的特性分析可知,光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定、经济运行的角度分析,不加储能的光伏并网发电系统对电网造成的影响主要有以下几点。

1.1对线路潮流的影响

未接入光伏并网发电系统的时候,电网支路潮流一般是单向流动的,并且对于配电网来说随着距变电站的距离增加有功潮流单调减少。然而,当光伏电源接入电网后,从根本上改变了系统潮流的模式且潮流变得无法预测。这种潮流的改变使得电压调整很难维持,甚至导致配电网的电压调整设备(如阶跃电压调整器、有载调压变压器、开关电容器组)出现异常响应,同时,也可能造成支路潮流越限、节点电压越限、变压器容量越限等从而影响系统的供电可靠性,此外,这种潮流的随机性也不利于制定发电厂发电计划。

1.2对系统保护的影响

当光照良好,光伏并网电站输出功率较大时,短路电流将会增大,可能会导致过流保护配合失误,而且过大的短路电流还会影响熔断器的正常工作。此外,对于配电网来说,未接入光伏发电系统之前支路潮流一般是单向的,其保护不具有方向性,而接入光伏发电系统以后,该配电网变成了多源网络,网络潮流的流向具有不确定性。因此,必须要求增设具有方向性的保护装置。

1.3对电网经济性运行的影响

由于光伏电源的自身输出不稳定性,当光伏发电系统并网运行后,系统必须增加相应容量的旋转备用,以保证系统的调峰、调频能力,也就是说,光伏并网发电系统向电网供电,降低了机组利用小时数,牺牲了电网的经济性运行。并且,在分析电网的节能环保效果时,应当考虑这部分旋转备用的耗能和排放。

1.4对电能质量的影响

受云层遮挡的影响,光伏电源的发出功率可能在短时间内从100%降到30%以下,或由30%以下增至100%,对于大型光伏并网系统来说,会引起电压的波动与闪变或频率波动。此外,由于光伏发电系统所发出的电能为直流电,必须经过逆变装置接入电网,这一过程必将产生谐波,对电网造成影响。

1.5对运行调度的影响

光伏电源的输出功率直接受天气变化影响而不可控制,因此,光伏电源的可调度性也受到制约,当某个系统中光伏电源所占到一定比例后,电网运行商应认真考虑如何安全可靠地进行电力调度。另外,光伏电价与常规电价也存在着差异,如何在满足各种安全约束的条件下对电网进行经济性调度也将成为一个值得关注的问题。

2储能系统在光伏发电系统中的作用

通过对光伏发电的特性分析可知,光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定、经济运行的角度分析,不加储能的光伏并网发电系统将对线路潮流、系统保护、电网经济运行、电能质量和运行调度等方面产生不利影响。光伏电站并网,尤其是大规模光伏电站并网隋思安网带来的影响是不可忽视的。目前解决光伏电站对电网影响的途径是提高电网灵活性或为并网光伏电站配置储能装置。

储能系统在光伏电站中的作用主要体现在以下几个方面:1)保证系统稳定。光伏电站系统中,光伏输出功率曲线与负荷曲线存在较大差异,而且均有不可预料的波动特性,通过储能系统的能量存储和缓冲使得系统即使在负荷迅速波动的情况下仍然能够运行在一个稳定的输出水平。2)能量备用。储能系统可以在光伏发电不能正常运行的情况下起备用和过渡作用,如在夜间或者阴雨天电池方阵不能发电时,这时储能系统就起备用和过渡作用,其储能容量的多少取决于负荷的需求。3)提高电力品质和可靠性。储能系统还可防止负载上的电压尖峰、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,采用足够多的储能系统可以保证电力输出的品质与可靠性。

3 储能在光伏系统中的应用

光伏系统发电受自然条件影响,具有间歇性、随机性、周期性等特点,采用储能技术可以保证光伏系统平滑并网,提高电能品质,使得光伏系统更友好并网。同时储能技术还可以解决目前光伏系统并网中遇到的限电等问题。

3.1平滑光伏系统输出,解决弃光问题

通过在光伏系统中配置一定容量的储能,可有效抑制光伏系统的波动问题,平滑光伏系统输出,改善并网特性,如图1所示。限电问题一直是我国西部大型电站的痛点,电网建设速度赶不上新能源发展的速度,地方消纳不足,导致大量的弃光弃风现象。据统计仅甘肃省2015年上半年的弃光率接近30%,给投资者造成了巨大的经济损失。储能系统可在限电期间将光伏多余电力储存起来,在光伏电力不足时将电力释放出来,减少弃光,有效解决光伏限发问题,保证系统投资收益,如图2。

关于光伏储能系统的四种类型

关于光伏储能系统的四 种类型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。 图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。 图2、并离网发电系统示意图 系统由太阳电池组件组成的光伏方阵、太阳能并离网一体机、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控

储能电站技术方案

储能电站总体技术方案 页脚内容1

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (15) 3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 页脚内容2

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 页脚内容3

储能系统在太阳能光伏发电中的应用分析

储能系统在太阳能光伏发电中的应用分析 发表时间:2018-05-09T17:27:14.723Z 来源:《电力设备》2017年第36期作者:刘翠娜1 韩云海2 [导读] 摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。 (1协鑫电力设计研究有限公司 210009;2南京国电南自电网自动化有限公司 211106)摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。同时,由于电网调峰能力不足阻碍光伏电力并网,电力输送通道建设与电源建设不匹配造成光伏电力送出受限,以及当地工业基础薄弱影响光伏电力就地消纳等因素,导致大量光伏电能资源被浪费。鉴于此,本文主要分析储能系统在太阳能光伏发电中的应用。 关键词:储能系统;太阳能光伏发电;应用 1、光伏发电系统的概述 光伏发电是通过半导体界面的光伏效应而将光能转化为电能的一种技术。光伏发电系统中主要有太阳能电池板、蓄电池组、充放电控制器、逆变器、汇流箱等部分组成,其内部主要部件为电子元器件构成。 光伏发电与传统的火力发电相比具有以下几个显著的优点:①来源具有无枯竭性,即太阳光取之不尽、用之不竭。②不受区域的限制,光伏发电具有一定的广泛性,即只要有太阳光的地方就可以进行光伏发电。③方便、快捷性,不需要通过燃烧煤炭等资源就可以进行发电。 光伏发电的不足之处有:①照射能源分布密度小,需要进行大面积的建设太阳能电池板。②受天气因素的影响较大,只能在晴朗的天气下才能进行发电。③光伏板的制造过程具有高污染、高能耗的特点。 2、光伏发电并网对电力系统的影响 2.1、对配网电压及其调整的影响 太阳光照强度不停发生变化,包括全年或全天中的规律改变和因天气产生的随机改变,直接造成了光伏系统出力的波动性和不可控性。光伏电源接入配网后将改变系统潮流,配网节点电压将随配网潮流的改变而变化,产生不同程度的电压偏差与波动。随着光伏电源占有比例的逐渐升高,可能出现大规模的光伏电源突增突减,难以保障系统供电质量,电压调整不能顺利进行,最终导致电压超标。此外,调压操作需要根据太阳辐射的变化而频繁进行,致使调压装置的寿命大大减少。 2.2、对配电网保护的影响 辐射型网络是我国传统的配电网络结构。光伏电源没有接入的情况下,传统配网是一个单电源的网络,系统出现故障时,故障电流的流动是单向的。光伏电源接入后,配电网由单电源网络变成了多电源网络,故障电流的分布、大小以及方向都会由此而出现改变。而传统配电网保护的配置依据仅为故障电流的大小,并不具有方向性,因此当光伏电源接入后,保护装置的动作会受到影响。 2.3、对电能质量的影响 并网逆变器作用非常重要,是光伏并网系统中不可或缺的一部分,它可以将光伏阵列发出的直流电转化为交流电后接入电网。但是由于逆变器中开关器件频繁的开断,导致在开关频率附近产生大量谐波分量,导致系统电压和电流波形发生畸变,影响严重。对于设计优良的小容量光伏逆变器,谐波污染一般能被控制而满足标准。 2.4、对调度运行的影响 由于光伏系统的出力受天气变化比较敏感,表现出不可控的随机性,限制了光伏系统输出的可调度性。因此,电网部门需要认真考虑电力调度的稳定性和可靠性,尤其在某个地区中光伏电源所占比例达到一定程度后。此外,在用电价格上光伏电源与常规电源也有所不同,因此对于含光伏电源的系统中,在保证电能质量与供电可靠性的前提下进行经济性调度也是一个颇受关注的问题。 3、储能技术在光伏并网发电系统中的应用 3.1、在电力调峰上的应用 电力调峰的目标是将在峰电时段大功率负荷的集中需求减少,进而减轻电网的负荷压力。在光伏并网发电系统中应用储能技术可以依靠实际的需求做出改变,在负荷低谷的时候把系统所发出的电能进行储存,在负荷高峰的时候将所储存的电能进行释放,这部分电能属于负荷供电,进而提升供电的可靠性,提升整体运行的稳定性。 3.2、在微电网的应用 未来输配电系统的一个重要发展趋势就是微电网并网,它对于电网系统运行的可靠性和稳定性具有很好的提升效果。在系统和微电网分离的时候,微电网的运行为孤岛模式,这时,微电网电源会对负荷的供电任务进行独立承担。由光伏电源构成的微电网,其储能系统将根据负载的情况自动调节,提升供电的稳定和安全。 3.3、在电网电能质量控制上的应用 在电网电能质量控制上,将储能技术应用在光伏并网发电系统中,可以对光伏电源的供电特性进行改善,进而提高供电的稳定性,利用合理的逆变控制措施,储能技术让光伏并网发电系统可以对调整相角、有源滤波及电压等进行控制。 储能技术在光伏并网发电系统中可以为用户提供良好的断电保护功能。当正常的电力供应无法提供给用户的时候,光伏系统可以为用户供给电能;而在电力系统自身发生故障或是用户用电存在危险隐患的时候,光伏并网系统会选择自动断电,并将断电之后所发出的电能进行自动存储。以光伏并网用户使用分时计费市电作为基础,将储能技术在此系统中进行应用,可以实现负荷转移。其本身和电力调峰上的应用技术较为相似,在低谷期,储能系统可以在满足基本需求的情况下,将多余电能进行储存,然后在高峰期释放。除此之外,针对负荷高峰时高功率负荷交替投切给正常运行所带来的不利影响,储能技术在光伏并网发电系统中的应用还可以减少负荷响应策略所带来的弊端。 总之,光伏发电与传统电源不同,输出功率不可控并且受环境条件制约,光照强度、温度等发生变化都可能对发电量产生影响。因此,光伏电源接入对电网的冲击是阻碍其大规模接入电网、替代传统发电形式的主要绊脚石。而储能技术作为电力系统中的新兴技术,通过选取适当的储能方式,采用适当的控制方法,可以有效解决光伏系统出力的随机可控等问题,减小光伏发电出力变化对电网的冲击。因此,研究光伏并网系统中储能技术的应用具有极其重要的现实意义。

太阳能电池对储能装置两种方式充电实验(实验报告)

光伏工程实验报告 实验名称:太阳能电池对储能装置两种方式充电实验学院:材料科学与工程学院 专业:应用物理 指导教师: 报告人:学号:1班级: 实验时间:2015/1/5 实验报告提交时间:2014/12/

一、实验目的 1. 了解超级电容放电的实验; 2. 了解太阳能组件直接对超级电容充电的实验; 3. 了解太阳能组件加DC-DC模块后对超级电容充电实验; 4. 熟悉恒压和恒定功率计算充电效率的方法; 5. 通过对两组实验结果进行比较,找出实现最佳充电效率的方法。 二、实验原理 1.DC-DC模块 DC-DC为直流电压变换电路,能将直流电压 转换为直流电压,相当于交流电路中的变压器,就 是相当于我们平常使用的电源充电器,最基本的 DC-DC变换电路如图1所示。 图1中,Ui为电源,T为晶体闸流管,uC为 晶闸管驱动脉冲,L为滤波电感,C为电容,D为 续流二极管,RL为负载,uo为负载电压。调节晶 闸管驱动脉冲的占空比,即驱动脉冲高电平持续时 间与脉冲周期的比值,即可调节负载端电压。 DC-DC的作用: 当电源电压与负载电压不匹配时,通过 DC-DC调节负载端电压,使负载能正常工作。本实 验的太阳能组件输出电压可以超过10V,而超级电 容器的额定电压为3V左右,因此需要用到DC-DC 模块进行电压的转换。 通过改变负载端电压,改变了折算到电源端的等效负载电阻,当等效负载电阻与电源内阻相等时,电源能最大限度输出能量。 在本实验中,DC-DC模块用于控制太阳能电池,使其始终以最大限度输出能量,保证以恒定功率输出。 2.超级电容 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形

几款太阳能发电储能系统的配置及选型

几款太阳能发电系统的配置及选型 1、太阳能500w户用发电系统SZYL-SPS-500W(E300) *太阳能板:250W/36V*2 *蓄电池:12V/100AH*4免维护铅酸电池 *控制器:24V/20A *逆变器:24V/600W正弦波 *多个输出接口:1*24VDC,1*20VDC,1*12VDC,1*9VDC,2*5VUSB,3*220VAC. *日发电量:晴天约1.5度. *日电其消耗量:最大消耗3.6度. *负载总消耗不能超过480W/h. *适配器:输入AC100-240V,输出DC28V/8A(待选). 价格¥12345.00 ¥10864.00 ¥9382.00 起批量1-4套5-499套≥500套 2、太阳能600w户用发电系统型号:SZYL-SPS-600W *太阳能板:200W/36V*3 *蓄电池:12V/100AH*4免维护铅酸电池 *控制器:24V/20A *逆变器:24V/2000W正弦波 *多个输出接口:3*220VAC. *日发电量:晴天约1.8度. *日电其消耗量:最大消耗3.6度.

*负载总消耗不能超过1600W/h. *适配器:输入AC100-240V,输出DC28V/8A(待选). 价格¥17450.00 ¥15356.00 ¥13262.00 起批量1-4套5-499套≥500套3、太阳能800w户用发电系统SZYL-SPS-800W *太阳能板:200W/36V*4 *蓄电池:12V/150AH*4免维护铅酸电池 *控制器:48V/20A *逆变器:48V/3000W正弦波 *多个输出接口:4*220VAC. *日发电量:晴天约2.4度. *日电其消耗量:最大消耗5.6度. *负载总消耗不能超过2400W/h. *适配器:无(待选). 价格¥25355.00 ¥22312.00 ¥19270.00 起批量1-4套5-499套≥500套 4、太阳能1200w户用发电系统SZYL-SPS-1200W(E800) *太阳能板:200W/36V*6 *蓄电池:12V/150AH*4免维护铅酸电池 *控制器:48V/30A *逆变器:48V/3000W正弦波 *多个输出接口:4*220VAC.

光伏发电系统中储能技术的控制方案

光伏发电系统中储能技术的控制方案 发表时间:2018-06-19T15:32:40.460Z 来源:《电力设备》2018年第4期作者:刘宪诩 [导读] 摘要:我国经济和社会的快速发展,使得能源的消耗量越来越大,随着科学技术的发展和国家对于新能源开发政策的支持,光伏发电被广泛的应用,但是目前在光伏发电系统中能源的储备技术还不够成熟,论文就光伏发电系统中储能技术进行分析,并分析探讨储能技术的可行性方案。 (国网天津市电力公司城西供电分公司天津市 300190) 摘要:我国经济和社会的快速发展,使得能源的消耗量越来越大,随着科学技术的发展和国家对于新能源开发政策的支持,光伏发电被广泛的应用,但是目前在光伏发电系统中能源的储备技术还不够成熟,论文就光伏发电系统中储能技术进行分析,并分析探讨储能技术的可行性方案。 关键词:光伏发电系统;储能技术;控制方案 引言 光伏发电系统是将太阳能转化为电能的一个过程,通过光伏发电不仅可以实现能源开发过程的清洁性,还可以实现能源的循环利用。只要有太阳光照射的地方都可以实现光伏发电,并且具有用之不竭、取之不尽的特点,因此在一些无电地区、偏远的山区可以充分利用光伏发电系统实现通电。但是对于光伏发电系统中储能技术的分析和研究还不够成熟,使得光伏发电系统的应用受到了一定的限制,因此要加强对于光伏发电系统中的储能技术的研究,为光伏发电系统的应用提供一些理论基础。 1储能技术的种类与特征 1.1电化学储能技术 电化学储能具有的能量为转换载体电池,通过化学反应将化学能与电能进行相互转化来储存能量。蓄电池模块为二次电池,其具有的化学反应是可逆的,从而实现了与电能互相转化达到可以充放电的能力。蓄电池储能是如今最为成熟与可靠的储能技术,依据其所利用的化学物质不同分为铅酸电池、钠硫电池与锉电池的几种类型。 1.2飞轮储能技术 飞轮储能技术由飞轮,磁悬浮轴支撑系统,发电机和电机,功能转换器,电子控制系统和真空泵,应急备用轴承等设备组成。其飞轮储能技术的主要原理是,飞轮系统在吸收动力的过程中,外部电网提供电力,使飞轮高速旋转,以动能储存的形式,使电力进入机械能源;然后在飞轮储能系统中释放动力,当飞轮形式的高速旋转到原动机驱动电机发电时,通过功率转换器输出电流和电压,完成机械能量到电能转换。当飞轮储能功率大于5KW/kg时,能量密度大于20WH/kg,效率可达90%以上,使用寿命可达20年或者是数以万计的能量释放。在飞轮储能系统工作环境在-40~50℃时,无污染、无噪音、维护简单,并可以达到连续工作。 1.3物理储能技术 物理储能技术主要含有抽水储能、压缩空气储能德国,最为成熟与应用最广的技术为抽水储能,主要是应用在电力系统的消峰填谷、调频与紧急事故备用等。 1.4超导磁储能技术 超导磁能系统是根据电力系统的需要对储能线圈进行充电控制。超导磁能系统具有响应速度快、转换效率高、比容量以及比功率大的特点,可以实现与电力系统的实施大容量交换和功率补偿。现阶段,世界上已经形成了1~5MW/MJ的低温超导磁储能技术,并且100MJ的超导磁储能系统也已经投入到了高压输电网中进行实际的运行。超导磁储能技术可以与再生能源发电系统相结合,但是在成本的投入、维修过程需要很大的费用。 1.5电磁储能技术 超级电容器是德国的物理学家Helmholz发现的,利用双电层原理的储能装置。超级电容具有的功率密度高、可以快速放电、循环寿命长的优势,充放电效率一般可以达到95%以上。 1.6蓄电池储能技术 蓄电池储能系统,是指通过蓄电池正负极氧化还原反应实现正极、负极活性物质的化学能和电能转化。目前在电力系统中常用的蓄电池储能技术有镍镉蓄电池、钠硫蓄电池铅酸蓄电池等。其中铅酸蓄电池具有成本低的特点,同时也具有充电速度慢、重量较重、寿命短,并且污染相对较大的特点。铅酸蓄电池主要应用在电力调峰、稳定电力系统和提高电能质量上。镍镉蓄电池与铅酸蓄电池一样都具有高污染的特点,但是镍镉蓄电池的充电效率较高,放电时候电压变化不大,内阻相对较小,对于充电环境的要求不高。锂离子电池的蓄电性能较好,但是由于大规模集成的技术限制,使得在电力系统的应用中不能广泛的使用。钠硫电池是当前比较热门的电池储能方式,其储能密度较高,经过串联并联结合后具有较大规模的储能效果。 2储能系统在光伏发电系统中的作用 2.1能源储备 当光伏发电系统运行出现异常时,储能系统当中的电能能够起到应急和过渡的作用。例如,当光伏电池方阵处在夜间或者遇到极端天气,不能进行发电时,光伏发电系统当中的储能系统就会起到应急和过渡的作用。 2.2稳定系统 在光伏发电系统当中,光伏输出的功率曲线和负荷曲线的差异较大,并且两者都存在不可预见的拨动性,但是如果把能源存储在储能系统当中或者通过储能系统对能源进行缓冲,光伏发电系统即使是在拨波动很严重的情况下,也能够实现电能的稳定输出和运行的平稳。 2.3品质可靠 当负荷电压出现高峰值、电压下跌或者受到外界干扰引起的电网波动较大时,储能系统能够有效的防止其对光伏发电系统造成影响。确保光伏发电系统电力的可靠和输出的品质。 3光伏发电系统中储能技术的改进策略 3.1ES系列储能变流器在光伏发电系统中的应用 ES系列产品是专门用于电池储能系统的大功率并网双向变流器,具有削峰填谷和平抑新能源发电出力波动等功能,有利于电力设备降

光伏储能系统的四种类型

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。

图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。

储能技术在光伏发电系统中的应用研究

储能技术在光伏发电系统中的应用研究 储能技术的发展对新能源发电的应用具有一定的促進作用。针对光伏发电稳定性问题,在总结各类储能技术研究现状和优缺点对比的基础上,分析了储能装置对光伏发电系统的积极作用,并在PSCAD中搭建典型光储模型进行仿真研究。结果表明,储能装置能够维持光伏发电系统的功率稳定,对确保电力系统运行的可靠性与稳定性具有不可或缺的作用。 标签:光伏发电;储能技术;稳定性 光伏太阳能是一种分布广泛、取之不尽、用之不竭的可再生能源。光伏发电作为太阳能利用的一种方式,在过去的几年里迅猛发展。光伏电源不同于传统电源,它的输出功率随光照强度、温度等环境因素的改变而剧烈变化。因此,光伏发电若要取代传统能源实现大规模发电,对电网产生的冲击影响不可忽视[1]。随着光伏发电系统在电网中所占比例的不断增大,它对电网带来的影响必须得到有效治理,以保证供电的安全可靠性[2] 1、光伏储能系统的组成 光伏储能系统的典型结构包含四部分:光伏阵列、最大功率点跟踪装置、储能系统和逆变器。光伏阵列是光伏发电系统的基本环节,是光伏组件根据系统电压、电流的需要,经过串并联安装在支架上构成。光伏阵列是将太阳能转化为电能的能量转换单元。光伏电池阵列具有强烈的非线性特性,输出直接受光照、温度以及负载等因素的影响,最大功率点跟踪控制可以保证在当时的自然条件下获得最大的功率输出,从而充分利用光伏能源[3]。储能系统起着调节、控制作用,在光照良好、发电充足时储存部分电能,需要时释放这部分电能,起到稳定光伏电源输出和调节供用电平衡的作用。逆变器和变压器作用是将光伏阵列发出的电压较低的直流电转化为电压等级适合的交流电,从而为光伏发电提供必备条件。 2、无储能光伏发电系统对电网的影响 目前,由于光伏发电系统规模相对于电网规模较小,也由于储能系统成本较高,光伏发电系统通常不采用储能系统,使得光伏系统对电网带来了一些不良影响。随着光伏发电系统规模的不断扩大和光伏电源在系统中所占比例的不断增加,这些影响变得不可忽视[4]。光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定以及经济运行的角度分析,不加储能的光伏发电系统对电网造成的影响主要有以下几点。 2.1 对线路潮流的影响 未接入光伏系统时,电网支路潮流一般单向流动,且对配电网来说随着距变电站的距离增加,有功潮流单调减少。然而,当光伏电源接入电网后,从根本上改变了系统潮流的模式,且潮流变得无法预测,同时也可能造成支路潮流越限、

光伏电站储能系统配置研究

光伏电站储能系统配置研究 孙 庆,何 一 (中国水电顾问集团成都勘测设计研究院,成都 610072) 摘要:随着电力工业发展,新能源大规模接入,输配电系统面临提高系统可靠性、稳定性,改善电能质量,预防停电的要求,而储能是最佳解决方案。该项目拟通过对储能系统的最新技术研究,提出适合微网系统安全稳定运行的储能系统配置及能量管理系统,实现电网安全稳定运行,并将相关研究成果在同类光伏电站中推广。 关键词:电力;微网;储能;配置 Energy Storage System Configuration of PV Power Plant SUN Qing, HE Yi (Hydrochina Chengdu Engineering Corporation, Chengdu 610072, China) Abstract: Nowadays, with the electric power industry development, new large-scale energy access, transmission and distribution system faces increase system reliability and stability, improve power quality, prevent power requirements, and energy storage is the best solution. The project to be adopted by the new technology for energy storage systems research, propose system for grid security and stability of micro-grid storage system configuration and energy management system. Keywords: electric, micro-grid, energy storage, configuration 1 光伏电站储能系统简介 随着电力工业发展,新能源大规模接入,输配电系统面临提高系统可靠性、稳定性,改善电能质量,预防停电的要求,而储能是最佳解决方案。本项目拟通过对储能系统的最新技术研究,提出适合微网系统安全稳定运行的储能系统配置及能量管理系统,实现电网安全稳定运行,并将相关研究成果在同类光伏电站中推广。 微网系统中的储能系统的作用主要有以下几个方面: (1)保证系统稳定。光伏电站系统中,光伏输出功率曲线与负荷曲线存在较大差异,而且均有不可预料的波动特性,通过储能系统的能量存储和缓冲使得系统即使在负荷迅速波动的情况下仍然能够运行在一个稳定的输出水平。 (2)能量备用。储能系统可以在光伏发电不能正常运行的情况下起备用和过渡作用,如在夜间或者阴雨天电池方阵不能发电时,这时储能系统就起备用和过渡作用,其储能容量的多少取决于负荷的需求。 (3)提高电力品质与可靠性。储能系统还可防止负载上的电压尖峰、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,采用足够多的储能系统可以保证电力输出的品质与可靠性。 作者简介:孙庆,男,大学本科,工程师,从事新能源项目设计工作; E-mail: sunqing0822@

最新光伏储能技术解析

光伏储能技术解析 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2014年8月18日,国家风光储输示范工程220千伏智能变电站成功启动。作为国家电网公司建设坚强智能电网的首批试点项目,国家风光储输示范土程是目前国内最大的并网太阳能光伏电站、国内陆上单机容量最大的风电场、世界上规模最大的化学储能电站,智能化运行水平最高、运行方式最为多样的新能源示范工程。 储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个蓄水池,可以把用电低谷期富余的水储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命。 国内从2014年开始,大规模开始发展能源互联网和储能系统,本文主要简单介绍储能系统。 图1 二.离网储能系统 离网光伏发电系统又称为独立光伏发电系统,主要由PV组件,DC/DC充电控制器、离网逆变器以及负载组成。 图2

离网系统由以下部分组成: 电池组件、光伏充放电控制器、蓄电池组、离网逆变器、交/直流负载。 光伏充放电控制器,主要作用就是控制蓄电池的充、放电,并保护蓄电池过度充、放电。离网逆变器,离网逆变器的作用是把直流电能转化成交流电能,并提供给负载使用的装置。 我们常见的离网储能系统就是太阳能路灯。光伏组件、一个香烟盒大小的控制器、一盏几十瓦LED灯、一组或者几组蓄电池。就可以提供夜间照明了。 再大一点的离网储能系统就是“户用系统”了,作者2006年刚刚入行时,国内的光伏产业正处于萌芽阶段,国家为了解决青海、西藏西北地区的牧民用电问题,实施了几次“光明工程”,就是一家一户发一套光伏“户用系统”。 (当时150Wp多晶硅还买到20块一瓦)一套户用系统大约300W,2块电池板、一台控制逆变器一体机、12V100AH的电池2-4块。可以在晚上看液晶电池、LED灯照明、也可以用一些小的电动机(藏民搅拌酥油、奶的机器) 更大一点的离网电站,作者参与过多个。其中比较经典的是北京慧能阳光“青海玉树宗达寺”100KW 离网太阳能电站。这个寺庙有200多个喇嘛,每天用电100度,这个电站的建设解决了这些喇嘛的用电问题。 图-3 三.并网储能系统

储能发展的几种商业模式

储能应用遍布生产、生活的很多领域。具有削峰填谷、调峰调频、断电后备、提升电能质量、稳定新能源、新能源能量时移等功能。 但无论是在发电侧、用户侧还是辅助服务等应用场景,储能商业模式仍存在不同程度的问题。“由于技术和成本的原因,现阶段家庭储能商业化的可能性很小”,李岩表示,“将来用户侧储能主要会应用于智慧城市、智慧乡村、工业园区、医院、车站、景区等大型工商业、服务业高耗电单位以及缺电、电能质量差的地区,发挥削峰填谷、降低高峰负荷压力等作用,实现用户侧智慧能源管理”。 储能发展的几种商业模式: 1、动态扩容。我们都知道,变压器的额定容量在出厂的那一刻起就是固定的,而当电力用户由于后期某些需求的影响,造成变压器满额运行,就要进行扩容,据了解,一般地区的扩容费用都非常高,这个时候安装储能就可以实现动态扩容,避免花费大量金钱。 2、需求响应。需求响应,说的简单点,就是用户根据电网发出的信号,改变负荷曲线的行为。我国的电力负荷曲线有个非常明显的高峰,实行需求侧响应能有效的改善这一现象。用户的储能设施参与需求响应后,电网会给一定的补偿费用,或者依靠峰谷价差获得收益。有一点需要注意,参与需求响应是要接受电网的调度。 3、需量电费管理。想要知道储能如何参与需量电费管理,首先一定要了解什么是需量电费,简单点说,就是大工业客户针对变压器收取的电费,而无论是按变压器的容量收取,还是按最大负荷收费,都无法满足用户的峰谷用电负荷特性,而储能可以进行削峰填谷,改善这一状况,减少需量电费。 4、配套工商业光伏。随着光伏补贴的退坡,光伏企业必须寻找新的模式提高收益。工商业光伏+储能,可以提高自发自用率,从而减轻用户的电费压力,同时也可以白天对储能电池充电,晚上放电,从而赚钱价差。 5、峰谷价差。相信很多人对这个盈利模式一点也不陌生,目前大部分企业的盈利来源就是峰谷价差。据很多企业透露,当电差达到7毛以上,储能就有盈利的可能性。 储能系统的主要模式有配置在电源直流侧的储能系统、配置在电源交流侧的储能系统和配置在负荷侧储能系统等。 1、配置在电源直流侧的储能系统 配置在电源直流侧的储能系统主要可安装在诸如光伏发电的直流系统中,这种设计可将蓄电池组合光伏发电阵列在逆变器直流段进行配接调控,如图1。该系统中的光伏发电系统和蓄电池储能系统共享一个逆变器,但是由于蓄电池的充放电特性和光伏发电阵列的输出特性差异较大,原系统中的光伏并网逆变器中的最大功率跟踪系统(MPPT)是专门为了配合光伏输出特性设计的,无法同时满足储能蓄电池的输出特性曲线。因此,此类系统需要对原系统逆变器进行改造或重新设计制造,不仅需要使逆变器能满足光伏阵列的逆变要求,还需要增加对蓄电池组的充放电控制器,和蓄电池能量管理等功能。一般而言,该系统是单向输出的,也就是说该系统中的蓄电池是完全依靠光伏发电充电的,电网的电力是不能给蓄电池充电的。

储能技术在光伏发电系统中的应用研究朱宏

储能技术在光伏发电系统中的应用研究朱宏 发表时间:2019-12-27T16:52:52.713Z 来源:《中国电业》2019年第17期作者:朱宏 [导读] 当前状况下我国经济发展迅速,各行各业都取得了较大程度的发展 摘要:当前状况下我国经济发展迅速,各行各业都取得了较大程度的发展,极大地促进了国家的发展以及人民生活水平的提高。但经济高速发展的同时也带来了资源消耗问题。就发电领域而言,我国仍以火力发电为主,每年都会消耗大量的煤炭资源。随着科学技术水平的提高以及国家对于新能源的重视,光伏发电储能技术的应用逐渐兴起。本文就针对光伏发电储能技术在广发发电系统中的应用进行了研究。 关键词:光伏发电系统;储能技术;应用研究 对于光伏发电储能技术而言,它是一种新型的资源节约型、清洁型发电技术,其主要原理是对太阳能进行一定程度的转换,使其成为电能。光伏发电储能技术的应用一方面保证了能源开发过程中的清洁性,另一方面还可以对能源的循环利用进行有效的实现。从理论上来说,只要是太阳光能够照射到的地方,都可以利用光伏发电将天阳能转化为电能,因此光伏发电技术能够有效减少对于不可再生资源的利用。在光伏发电储能技术环境之下,即使是在一些电力建设较为落后的山区,都可以实现通电。在光伏发电系统之中,储能单元是一个十分重要的模块,它可以对转化成的电能进行有效的存储,同时也在一定程度上对光伏发电系统的稳定性与安全性进行了提高。 1储能技术与光伏发电系统概述 1.1光伏发电系统简介 光伏发电系统是利用光伏电池的伏特效应将光能转化为直流电,通过光伏并网逆变器转换为与电网同频率、同相位的三相交流电并入电网的发电系统。光伏发电能源无限、不受区域的限制、清洁。但是光伏发电利用率较低,需要建设大面积的光伏电池组件,同时受天气影响巨大,发电时间局限性大(只能在有阳光的时段发电)。因此研究如何有效储存电能来提供无法发电时段的电能利用,及减少最大功率发电无法存储而造成的巨大的浪费越来越受到各界的关注,储能技术成为亟待突破的技术。 1.2储能技术 用于光伏并网发电的储能装置通常在恶劣的环境下运行。此外,由于光伏发电输出的不稳定性,储能系统的充电和放电条件相对较差,有时需要频繁的小周期充电和放电。根据光伏并网发电系统的特点以及储能装置的发展现状,应从以下几个方面发展和改进光伏并网发电储能技术:一是提高光伏发电系统的能量密度以及功率密度;二是对储能装置的储能容量进行提高,同时延长储能装置的使用寿命;三是提高充放电的速度;四是确保在各种环境中能够安全可靠地运行;第五,降低储能装置的使用成本。 1.3储能装置控制技术 为了能够提高储能装置的使用寿命,以及尽可能地提高储能装置的输出功率,提升储能装置的工作效率,就需要对储能装置的充放电情况进行详细的分析,并以此来指定有针对性的储能装置充放电策略。例如,铅蓄电池在充电是往往需要更长的充电时间,所以在对铅蓄电池在充电的时候尽可能选用较小的电流充电,防止其储电能力的下降,缩短蓄电池寿命。光伏发电的直流电作为主要的储能装置的充电电源,其具有不稳定性和波动性,使得其充电不够稳定。所以,为了解决储能装置的充放电问题,需要先进的储能装置管理控制系统和来保证在不破坏储能装置的使用寿命的充放电策略,除此之外,不能使用工业上的高频交流电来对常见的储能装置例如飞轮储能以及电池等储能装置进行充电,所以在对这些储能装置进行充电的时候需要功率转换器来进行。 2储能技术在光伏发电系统中的应用 储能技术主要是借助外来的介质实现多余能量储存,进而在需要的时候释放能量。常见的电储能技术有压缩空气储能、化学电池储能、蓄水储能、超级电容储能和飞轮储能、超导磁场储能等。压缩空气储能、蓄水储能是常规的储能方式,目前多有应用实例,地域的局限性也较大。电池储能可以满足短时应急电能的利用,且成本过高、体积过大。超级电容储能和飞轮储能、超导磁场储能是目前解决成本和地域限制的新型储能方式,本文主要讲述这三类储能技术在光伏发电系统中的应用。 2.1超导磁场储能在光伏发电系统中的应用 超导磁场储能是将超导体放在一定的磁场当中,对超导体进行降温,一直到超导体的临界的温度以下,然后把磁场撤掉,超导体内部将在临界温度下因磁场磁力影响下出现感应电流。目前为了利用超导体在临界温度下产生持续性的电能,进而获取长时间储存电能的效果,是现在技术和实际应用上亟待解决的问题。 光伏发电系统和超导储能系统通过交流母线相连为本地负荷供电。有学者就利用光伏出力与本地负荷需求的差值作为SMES控制器的功率控制信号策略,建立了超导储能系统模型,并对其在光伏发电系统的中的运行控制方式进行研究,很好地解决光伏发电功率易受环境影响、不可调节、难于满足负荷需求的问题,对由负荷变化引起的母线电压波动和故障引起的母线电压跌落具有良好的补偿作用。 2.2超级电容储能在光伏发电系统中的应用 超级电容储能利用双电层充放电原理来工作,其电解液中的阴、阳离子在电场的作用下分别向正、负电极移动,最终在电极表面形成双电层,通过高度可逆的化学吸附、脱附和氧化还原反应来存储能量。作为新兴的储能材料,超级电容具有功率密度高、充放电效率高、无污染等优点。 近年来,对超级电容储能技术进行大量研究开发,并取得显著的成果。有人利用超級电容容量大、可无限次循环充放电的特点,将超级电容器与功率器件组合成的功率变换电路接入光伏发电阵列与负载之间,通过补偿光伏电池输出电压来改变光伏阵列输出特性,从而控制光伏发电系统完成最大功率点跟踪,实验验证该技术可以实现MPPT快速、稳定跟踪,取得一定的成果。设计了超级电容器的充电控制器和放电控制器,对系统的总体结构和控制系统进行设计,搭建超级电容器储能的独立光伏发电系统的小功率实验平台,并通过仿真和实验结果验证了方案的可行性以及良好的可靠性和稳定性。 2.3飞轮储能在光伏发电系统中的应用 飞轮储能系统是一种新型的储能元件,是机械能和电能的交换装置,具有充电、放电和能量保持三种工作模式。可以采取多种充电模式,放电时通过飞轮的带动发电机发电,并通过电力电子装置的转换成可利用的电能,保持阶段保持飞轮的额定转速转动,既不充电也不放电。其经济性较强,满足绿色和高效的需求,安全性和可靠性显著、功率容量十分巨大,具有发展前景良好,拥有巨大的市场潜力。因

屋顶光伏与储能一体化发电系统的设计分析

屋顶光伏与储能一体化发电系统的设计分析 随着社会持续发展,能源消耗量日益增加。随之,环境污染日益加重,必须开发利用各种清洁能源,减少能耗量,降低对周围环境的污染程度。作为一种重要的可持续再生能源,太阳能的应用在世界范围内不断扩大,光伏系统在我国的应用也逐渐增多,发挥着不可替代的作用,在缓解日益加重能源危机的基础上,也满足了用户的用电需求。因此,本文作者对屋顶光伏与储能一体化发电系统设计这一课题予以了探讨。 标签:屋顶;光伏;储能;一体化;发电系统;设计;分析 0 引言 随着社会经济持续发展,人们的生活水平日渐提高,传统能源已经无法满足他们的客观需求,其供应日渐紧张,加上传统能源不具备可再生性,大大加重了人类社会在经济可持续发展方面的担忧。面对这种情况,迫切需要开发、利用各种新能源,尤其是可再生能源,取代那些资源有限、严重污染周围环境的常规能源,缓解日益加重的能源危机。太阳能属于重要的定性清洁能源,具有独特的优势,已成为社会大众关注的焦点,具有非常广阔的应用前景。为此,需要全方位分析各种主客观影响因素,优化设计屋顶光伏与储能一体化的发电系统,使其更好地发挥自身作用。 1 屋顶光伏发电系统概述 就屋顶光伏发电系统而言,由多种元素组合而成,比如,计量装置、光伏组件、并网逆变器,各自发挥着不同的作用。当下,晶体硅太阳能电池组件、非晶硅薄膜电池组件是光伏组件的核心组成要素。前者具有多样化的优势,比如,较长的使用寿命,较强的抗风和抗冰雹能力,光电的转换率可以到14%—17%;而后者是由半导体材料组成,只有几微米厚,其光电转换率为6%—6.5%,能够附在各类廉价的基片上,比如,玻璃。如果发电量、功率相同,非晶硅太阳能薄膜电池成本远远低于晶体硅太阳能电池,已成为新时期最有可能实现发电成本和上网电价的一种新技术。 就屋顶光伏发电系统而言,把太阳能电池组件准确安装在屋顶合理的位置,这样在有太阳照射的时候,逆变器就会把光伏组件发出的直流电顺利转换为正弦交流电,可以直接用于电源驱动负荷,还可以把它切换到外面的公用电网中,实现小型光伏系统并网运行。在夜晚或者阴雨天的时候,太阳能电池组件没有产生电能或者所产生的电能无法满足负载需求的时候,可以发挥电网的作用进行供电,确保电力系统处于安全、稳定运行中。 2 光储一体化发电系统设计 2.1 太阳能资源分析

储能电站技术及方案

储能电站总体技术方案

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (7) 3.1系统架构 (7) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (14)

3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配

合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求 GJB 4477-2002 锂离子蓄电池组通用规范 QC/T 743-2006 电动汽车用锂离子蓄电池 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡

相关文档
最新文档