2021届人教版高考物理一轮总复习学案设计第十单元专题十电磁感应规律的综合应用(一)

2021届人教版高考物理一轮总复习学案设计第十单元专题十电磁感应规律的综合应用(一)
2021届人教版高考物理一轮总复习学案设计第十单元专题十电磁感应规律的综合应用(一)

专题十电磁感应规律的综合应用

(一)

考纲考情核心素养

?电磁感应中的电路问题Ⅰ?电磁感应中的动力学问题Ⅱ?电磁感应中的图象问题Ⅱ?综合应用楞次定律、法拉第

电磁感应定律、闭合电路欧

姆定律、牛顿第二定律分析、

解决电磁感应问题.

科学

思维

全国卷5年9考

高考指数★★★★★

突破1电磁感应中的电路问题1.电磁感应中电路知识的关系图

2.解决电磁感应中的电路问题三步骤

如图甲所示,一个电阻为R 、匝数为n 的圆形金属

线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1,在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示.图线的横、纵轴截距分别为t 0和B 0,导线的电阻不计.在0至t 1时间内,求:

(1)通过电阻R 1的电流大小和方向;

(2)通过电阻R 1的电荷量q 和产生的热量Q .

【解析】 (1)由图象可知,0~t 1时间内,有??????ΔB Δt =B 0t 0

由法拉第电磁感应定律有E =n ??????ΔΦΔt =n ????

??ΔB Δt ·S 其中S =πr 22

由闭合电路欧姆定律有I 1=E 3R

联立解得I 1=nB 0πr 223Rt 0

. 由楞次定律可判断,通过电阻R 1的电流方向为从b 到a .

(2)通过电阻R 1的电荷量

q =I 1t 1=nB 0πr 22t 13Rt 0

,电阻R 1上产生的热量 Q =I 21R 1t 1=2n 2B 20π2r 42t 19Rt 20

. 【答案】 (1)nB 0πr 223Rt 0

方向从b 到a (2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 20

高分技法

(1)对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体相当于电源.如:切割磁感线的导体棒、内有磁通量变化的线圈等.

(2)对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈;除电源外其余部分是外电路,外电路由电阻、电容器等电学元件组成.在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处.

1.(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R 的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场,磁感应强度大小为B .一长为L ,电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动,金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是( CD )

A .ABFE 和ABCD 回路的电流方向均为逆时针方向

B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL v

C .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为13

BL v D .当滑动变阻器接入电路中的阻值R 1=R 2

时,滑动变阻器有最大电功率且最大电功率为B 2L 2v 2

8R

解析:本题考查电磁感应与动态电路的结合.导体棒AB 向右运动,由右手定则可判断出导体棒AB 中产生从A 指向B 的感应电流,ABFE 回路中电流方向为逆时针方向,ABCD 回路中电流方向为顺时针方向,选项A 错误;由E =BL v 可知,电路中产生感应电动势大小为BL v ,选项B 错误;当滑动变阻器接入电路中的阻值R 1=R 时,外电路电阻为R 2,导体棒中电流I =E R +R 2

,导体棒两端电压U =E -IR =13

BL v ,选项C 正确;求解滑动变阻器的最大电功率时,可以将导体棒和电阻R 看成新的等效电源,等效内阻为R 2,故当R 1=R 2

时,等效电源输出功率最大,即滑动变阻器电功率最大,当滑动变阻器接入电路中

的阻值R 1=R 2时,外电路电阻为R 3,导体棒中电流I ′=E R +R 3

,滑动变阻器中电流I 1=23I ′=BL v 2R ,滑动变阻器消耗的功率P =I 2112R =B 2L 2v 28R

,选项D 正确.

2. (多选)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、电阻为R 的均匀金属棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示,整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在两环之间接阻值为R 的定值电阻和电容为C 的电容器.金属棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.导轨电阻不计.下列说法正确的是( AB )

A .金属棒中电流从

B 流向A

B .金属棒两端电压为34

Bωr 2 C .电容器的M 板带负电 D .电容器所带电荷量为32CBωr 2 解析:根据右手定则可知金属棒中电流从B 流向A ,选项A 正确;

金属棒转动产生的电动势为E =Br ωr +ω·2r 2=32

Bωr 2,切割磁感线的金属棒相当于电源,金属棒两端电压相当于电源的路端电压,因而U =

R R +R

E =34Bωr 2,选项B 正确;金属棒A 端相当于电源正极,电容器M 板带正电,选项C 错误;由C =Q U 可得电容器所带电荷量为Q =34

CBωr 2,选项D 错误.

突破2电磁感应中的图象问题

1.分析图象的关键:

2.图象问题的解题步骤:

题型1 根据电磁感应过程选择图象

(2019·全国卷Ⅱ)(多选)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ进入磁场时加速度恰好为零.从PQ进入磁场开始计时,到MN离开磁场区域为止,

流过PQ的电流随时间变化的图象可能正确的是()

【解析】根据题述,PQ进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ通过磁场区域一段时间后MN进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ的电流随时间变化的图象可能是A;由于两导体棒从同一位置释放,两导体棒进入磁场时产生的感应电动势大小相等,MN进入磁场区域切割磁感线产生感应电动势,回路中产生的感应电流不可能小于I1,B错误;若释放两导体棒的时间间隔较短,在PQ没有出磁场区域时MN就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ出磁场后,MN切割磁感线产生感应电动势和感应电流,且感应电流一定大于I1,受到安培力作用,由于安培力与速度成正比,则MN所受的安培力一定大于MN的重力沿斜面方向的分力,所以MN一定做减速运动,回路中感应电流减小,流过PQ的电流随时间变化的图象可能是D,C错误.

【答案】AD

高分技法

应用“三大”定律解决图象问题

(1)楞次定律判断电流方向.当然,也可以用右手定则.

(2)法拉第电磁感应定律计算电动势,也可以用特例E=Bl v,注意

切割导体的有效长度和导体速度的变化.

(3)闭合电路的欧姆定律计算电流,感应电流是由电动势和回路电阻共同决定的.

3.(多选)边长为a 的闭合金属正三角形轻质框架,左边竖直且与磁场右边界平行,完全处于垂直于框架平面向里的匀强磁场中,现把框架匀速水平向右拉出磁场,如图所示,则下列图象与这一拉出过程相符合的是( BC )

解析:设正三角形轻质框架开始出磁场的时刻t =0,则其切割磁感线的有效长度L =2x tan30°=233x ,则感应电动势E 电动势=BL v =233

B v x ,则

C 项正确,

D 项错误;框架匀速运动,故F 外力=F 安=B 2L 2v R =

4B 2x 2v 3R

∝x 2,A 项错误;P 外力功率=F 外力v ∝F 外力∝x 2,B 项正确. 题型2 根据图象分析电磁感应过程

(多选)在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω.规定线圈中感应电流I的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B随时间t的变化规律如图乙所示.以下说法正确的是()

A.在0~2 s时间内,I的最大值为0.01 A

B.在3~5 s时间内,I的大小越来越小

C.前2 s内,通过线圈某截面的总电荷量为0.01 C

D.第3 s内,线圈的发热功率最大

【解析】0~2 s时间内,t=0时刻磁感应强度变化率最大,感

应电流最大,I=E

R=

ΔB·S

ΔtR=0.01 A,A正确;3~5 s时间内电流大小不

变,B错误;前2 s内通过线圈的电荷量q=ΔΦ

R=

ΔB·S

R=0.01 C,C正

确;第3 s内,B没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D错误.

【答案】AC

高分技法

据图象分析判断电磁感应过程的方法

对于利用图象(速度图象、磁感应强度随时间或位移变化图象、安培力随时间或位移变化图象等)给出解题信息的电磁感应选择题,其方法是:依据题给图象,结合题述电磁感应过程,将电磁感应分成几个子过程,找出衔接点及其对应的速度、电流、力,利用相关物理规律列方程分析求解.

4.(多选)如图甲所示,在MN 、OP 之间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间变化的图线如图乙所示.已知线框的质量m =1 kg ,电阻R =2 Ω.则( AB )

A .磁场宽度为4 m

B .匀强磁场的磁感应强度为 2 T

C .线框穿过磁场过程中,通过线框的电荷量为2 C

D .线框穿过磁场过程中,线框产生的热量为1 J

解析:线框的加速度a =F 0m =2 m/s 2,磁场的宽度d =12

at 22=4 m ,A 项正确;当线框全部进入磁场的瞬间,F 1-F 安=ma ,而F 安=B 2L 2v 1R

=B 2L 2at 1R ,线框宽度L =12at 21

=1 m ,联立得B = 2 T ,B 项正确;线框穿过磁场过程中,线框的磁通量不变,所以通过线框的电荷量为零,

C 项错误;线框进入磁场过程中,线框产生的热量为Q 进=W 进-12

m v 21>1 J ,故D 项错误.

突破3电磁感应中的动力学问题

1.导体的两种运动状态

(1)导体的平衡状态——静止状态或匀速直线运动状态.

处理方法:根据平衡条件(合力等于零)列式分析.

(2)导体的非平衡状态——加速度不为零.

处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.2.力学对象和电学对象的相互关系

题型1 电磁感应中的平衡问题

如图所示,两金属杆ab和cd长均为L=0.5 m,电阻均为R=8.0 Ω,质量分别为M=0.2 kg和m=0.1 kg,用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置,整个装置处在一个与回路平面相垂直向内的匀强磁场中,磁感应强度为B=2 T.若整个装置从静止开始到金属杆ab下降高度h=5.0 m时刚好匀速向下运动.(g取10 m/s2)求:

(1)ab杆匀速运动时杆上的电流方向;

(2)ab杆匀速运动的速度v m.

【解析】(1)磁场方向垂直纸面向里,当ab匀速下滑时,ab中产生感应电动势,根据右手定则可知电流方向由a→b,cd中的感应电流方向由d→c.

(2)电路中的电动势是ab与cd中电动势的和,即E=2BL v m

回路中电流大小为I=E 2R

由安培力公式得F A=BIL

ab受到的安培力向上,cd受到的安培力向下,大小均为F A,对ab有:T+F A=Mg,对cd有:T=F A+mg

联立得:2F A=(M-m)g

解得v m=(M-m)gR

2B2L2=

(0.2-0.1)×10×8.0

2×22×0.52

m/s=4 m/s.

【答案】(1)a→b(2)4 m/s

5.如图所示,将边长为L,电阻为R,质量为m的正方形金属线圈abcd平放在粗糙的水平传送带上,线圈跟传送带保持相对静止,以速度v匀速运动.有一边界长度为2L的正方形匀强磁场垂直于传送带向上,磁感应强度为B,线圈穿过磁场区域的过程中速度不变,下列说法中正确的是(D)

A .线圈进入磁场时感应电流的方向沿abcda

B .线圈进入磁场区域时受到水平向左的静摩擦力,穿出磁场区域时受到水平向右的静摩擦力

C .线圈经过磁场区域的过程中,始终受到水平向右的静摩擦力

D .线圈经过磁场区域的过程中,电动机多消耗的电能为2B 2L 3v R

解析:根据楞次定律可知,进入磁场时感应电流方向沿adcba ,A 错误;进入磁场时,感应电流方向沿adcba ,则根据左手定则,bc 边受到的安培力方向向左,所以线圈受到传送带给它的向右的静摩擦力;穿出磁场时,根据右手定则判断,感应电流方向沿abcda ,根据左手定则,ad 边受到的安培力方向向左,所以线圈受到传送带给它的向右的静摩擦力,B 错误;线圈完全进入磁场区域时,磁通量不发生变化,线圈内没有感应电流,没有安培力,此时不受摩擦力,C 错误;根据功能关系得,进入磁场和穿出磁场时线框会发热,需要多消耗的电能

即线框产生的热量,Q =I 2Rt =? ??

??BL v R 2·R ·2L v =2B 2L 3v R ,因此电动机多消耗的电能为2B 2L 3v R ,D 正确.

题型2 电磁感应中的非平衡问题

足够长的平行金属导轨MN 和PQ 表面粗糙,与

水平面间的夹角为θ=37°(sin37°=0.6),间距为1 m .垂直于导轨平面向上的匀强磁场的磁感应强度的大小为4 T ,P 、M 间所接电阻的阻值为8 Ω.质量为2 kg 的金属杆ab 垂直导轨放置,不计杆与导轨的电阻,杆与导轨间的动摩擦因数为0.25.金属杆ab 在沿导轨向下且与杆垂直的恒力F 作用下,由静止开始运动,杆的最终速度为8 m/s ,取g =10

m/s 2,求:

(1)当金属杆的速度为4 m/s 时,金属杆的加速度大小;

(2)当金属杆沿导轨的位移为6 m 时,通过金属杆的电荷量.

【解析】 (1)对金属杆ab 应用牛顿第二定律,有

F +mg sin θ-F 安-f =ma ,f =μF N ,F N =mg cos θ

ab 杆所受安培力大小为F 安=BIL

ab 杆切割磁感线产生的感应电动势为E =BL v

由闭合电路欧姆定律可知I =E R

整理得:F +mg sin θ-B 2L 2

R v -μmg cos θ=ma

代入v m =8 m/s 时a =0,解得F =8 N

代入v =4 m/s 及F =8 N ,解得a =4 m/s 2. (2)设通过回路横截面的电荷量为q ,则q =I t 回路中的平均电流强度为I =E R 回路中产生的平均感应电动势为E =ΔΦt

回路中的磁通量变化量为ΔΦ=BLx ,联立解得q =3 C .

【答案】 (1)4 m/s 2 (2)3 C

高分技法

用动力学观点解答电磁感应问题的一般步骤

6.如图所示,竖直放置的足够长的U形金属框架中,定值电阻为R,其他电阻均可忽略,ef是一水平放置的电阻可忽略的导体棒,导体棒质量为m,棒的两端始终与ab、cd保持良好接触,且能沿框架无摩擦下滑,整个装置放在与框架平面垂直的匀强磁场中,当导体棒ef从静止下滑一段时间后闭合开关S,则S闭合后(D)

A.导体棒ef的加速度一定大于g

B.导体棒ef的加速度一定小于g

C.导体棒ef的机械能一定守恒

D.导体棒ef的机械能一定减少

解析:本题考查电磁感应中的单杆的加速度、机械能等问题.当导体棒ef从静止下滑一段时间后闭合开关S,则S闭合后由于导体棒ef切割磁感线产生感应电动势,在回路中产生感应电流,则导体棒ef

受到向上的安培力作用,而F A=B2L2v

R,此时棒的速度大小未知,则

其加速度与g的大小关系未知,选项A、B错误;由于回路中产生了感应电流,导体棒ef的机械能一部分转化成了电阻R的内能,则机械能一定减少,选项D正确,C错误.

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高考物理电磁场归纳汇总(经典)

高考物理电磁场归纳汇总(经典)

————————————————————————————————作者:————————————————————————————————日期:

电场知识点总结 电荷 库仑定律 一、库仑定律:2212112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112=F F . 电场 电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E =; ②电场强度的方向: 与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差 电势 知识点: 1.电势差B A AB AB q W U ??-== 2.电场力做功:)(B A AB AB q qU W ??-==

{(匀强电场)正功)(负功)电(qEd qEd W -= 3.电势:q W U AO AO A = =? 4. 电势能:?εq = (1)对于正电荷,电势越高,电势能越大 (2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε?-=电W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡 等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = Ed U = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行 一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E;匀强磁场垂直纸面向里,磁感应强度大小为B。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 水平射入匀强磁场,已知带负电粒子电荷量为q, 点以速度v 质量为m,(粒子重力忽略不计)。 (1)带电粒子从O点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O点的距离; (3)粒子从O点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T =……………………………………(2分) Bq 因为θ=45°,根据几何关系,带电粒子从O运动到A为3/4圆周……(1分)则带电粒子在磁场中运动时间为:

3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 OA x Bq ==…………………(1分) 带电粒子从第2次通过虚线到第31 4圆周,OA AC x x = 所以粒子距O 点的距离0 OC x Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为: qE a m = ……………………(1分) 从A 到B 的时间与从B 到A 的时间相等。00 AB v mv t a qE == ………………………(1分) 带 电粒子从A 到C : 342T m t Bq π==……………………………………………………(1分) 带电粒子从C 点再次进入电场中做类平抛运动 X=v 0t 4……………………………………………………………(1分) 2 412 Y at = …………………………………………………………(1分) 由几何关系得:Y=X ……………………………………………………………(1分) 得 42mv t qE = …………………………………………………………………………(1分)

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

高考物理电磁大题(含答案)

高考电磁大题(含答案) 1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。A 是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。带点 粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。不计重力。求粒子入射速度的所有可能值。 解析:设粒子的入射速度为v,第一次射出磁场的点为' O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有 qB mv R = …⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有 =1x θsin 2R N N O O =' …⑵ 粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O ' 相等.由图可以看出a x =2……⑶ 设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷ 由⑶⑷两式得a n n x 1 2 1++= ……⑸ 若粒子与挡板发生碰撞,有4 21a x x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得 a n n m qB v 1 2 sin 2++?= θ………⑻ 把2 2 sin h a h += θ代入⑻中得

0,2 2=+=n mh h a qBa v o …………⑼ 1,432 21=+=n mh h a qBa v …………⑾ 2,322 22=+=n mh h a qBa v …………⑿ 2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。 答案:221122212arcsin()2l d dl dl l d ++ 解析:本题考查带电粒子在有界磁场中的运动。 粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O 应在分界线上,OP 长度即为粒子运动的圆弧的半径R.由几何关系得 22 12)(d R l R -+=………① 设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得 ……………② 设P '为虚线与分界线的交点,α='∠P PO ,则粒子在磁场中的运动时间为v R t α =1……③ 式中有R l 1 sin = α………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得ma qE =…………⑤ 由运动学公式有2 2 1at d = ……⑥ 22vt l =………⑦R v m qvB 2 =

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30°,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

高考物理电磁交变电流知识点总结

2019年高考物理电磁交变电流知识点总结物理的学习不是呆板的,而是灵活的,如果一味地埋头苦学而不知道去思考总结,那么结果往往是付出与收获不成正比。以下是电磁学和交变电流方面的重要结论。 1.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。 2.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。在任意方向上电势差与距离成正比。 3.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。 4.电容器充电后和电源断开,仅改变板间的距离时,场强不变。 5.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。 6.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。 7.带电粒子在有界磁场中做圆周运动 (1)速度偏转角等于扫过的圆心角。 (2)几个出射方向 ①粒子从某一直线边界射入磁场后又从该边界飞出时,

速度与边界的夹角相等。 ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。 ③刚好穿出磁场边界的条件是带电粒子在磁场中的轨 迹与边界相切。 (3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。 8.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。 9.回旋加速器 (1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。 (2)粒子做匀速圆周运动的最大半径等于D形盒的半径。 (3)在粒子的质量、电量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。 (4)将带电粒子:在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加

相关文档
最新文档