优化建模与LindoLingo优化软件

合集下载

优化模型与LINDOLINGO优化软件

优化模型与LINDOLINGO优化软件

前面是两个循环语句的用法,函数以 “@”开头,里面是循环变量以及界定循环 变量的变化范围,后面是循环体。还有另 外的两个循环函数:@min和@max,其用 法相类似。
从一维数组派生二维数组在数学上是常 用的,比如运输问题,由顶点集可以派生 边,大家可以使用本方法产生标准的运输 问题的Lingo程序。可以参考例子。
• Preprocess:预处理(生成割平面); • Preferred Branch:优先的分枝方式:
“Default”(缺省方式)、 “Up”(向上取整优先)、 “Down”(向下取整优先);
• IP Optimality Tol:IP最优值允许的误 差上限(一个百分数,如5%即0.05); • IP Objective Hurdle:IP目标函数的篱 笆值,即只寻找比这个值更优最优解
2,Lingo程序的结构和语法
一个规划问题,包括下面的一些内容:变量、常量、目标、约束。还是以 前面的例子,说明最基本的程序构成。 model: linear programming sets:
cargo/1..n/:c,x; rhs/1..m/:b; mat(rhs,cargo):a; endsets data c=2,3; b=2,1/2; A=1,1,1,-2; enddata max=@sum(cargo(i):c(i)*x(i)); @for(rhs(j):@sum(cargo(i):a(j,i)*x(i))<b(j));
1 )现 有 2料 场 , 位 于 A (5 ,1 ),B (2 ,7 ), 记 (x j,y j),j= 1 ,2 , 日 储 量 e j各 有 2 0吨 。
目标:制定每天的供应计划,即从 A, B 两料场分别向
各工地运送多少吨水泥,使总的吨公里数最小。

优化建模与lingo优化软件

优化建模与lingo优化软件

Teaching Plan on Optimization in Lingo
• 2007年: (A)中国人口增长预测问题 (B)“乘公交,看奥运”问题 (C)“手机套餐”优惠几何问题 (D)体能测试时间的安排问题
Teaching Plan on Optimization in Lingo
• 2008年: (A) 数码相机定位
Teaching Plan on Optimization in Lingo
• 1998年: (A)投资的收益和风险问题 (B)灾情的巡视路线问题(社会问题 即时性)
• 1999年: (A)自动化机床控制管理问题 (B)地质堪探钻井布局问题 (C)煤矸石堆积问题 (D)钻井布局
Teaching Plan on Optimization in Lingo
2003年A题再次体现关注社会热点 问题
Teaching Plan on Optimization in Lingo
• 2004年: (A)奥运会临时超市网点设计问题 (B)电力市场的输电阻塞管理问题 (C)酒后开车问题 (D)公务员的招聘问题 • 2004年5月在上海召开的命题工 作会议
Teaching Plan on Optimization in Lingo
• 2005年: (A)长江水质的评价与预测问题 (B)DVD在线租赁问题 (C) 雨量预报方法的评价问题 (D) DVD在线租赁
Teaching Plan on Optimization in Lingo
• 2006年: (A)出版社的资源管理问题 (B)艾滋病疗法的评价及预测问题 (C)易拉罐形状和尺寸的设计问题 (D)煤矿瓦斯和煤尘的监测与控制 问题
• 重要新闻、重大事件与赛题设计: 2000年6月26日各国新闻机构发布人类 基因组草图绘就的重要消息。顺应这 一世纪科学大事,当年7月组委会构造 与此相关赛题,引导学生关注世界科 技热点,投身科学重大问题的研究, 培养应用能力。

优化模型与LINGO优化软件

优化模型与LINGO优化软件
资 源 单位产品资源消耗量 甲 A B C 单位产品利润 2 4 0 2 乙 2 0 5 3 12 16 15 资源拥有量
m ax z 2 x1 3 x 2 s .t . 2 x1 2 x 2 1 2 4x 16 1 5 x2 15 x1 , x 2 0
状态窗口说明(例1)
•Constraints(约束数量) •Nonzeros(非零系数数量) •内存使用量 •求解花费的时间
全局最优解 求解步骤数
3、报告 窗口说明 (例1)
最优解 变量的检验数 松弛或剩余变量的值 对偶价格的值
单纯形法计算步骤框图(目标函数求max)
至少存在一个元素ais>0
LINGO的窗口介绍
LINGO的主窗口 LINGO模型窗口 LINGO状态窗口 LINGO报告窗口

例1的运算 结果: 主 窗 口 模型窗口 报告窗口 状态窗口
1、主窗口与 模型窗口说明
定 位 某 行
模 型 求 解
模 型 图 示
查 找
匹 配 括 号
显 示 解 答
选 项 设 置
2、状态窗口说明(例1)
③ LINGO中的语句顺序是不重要的,因为LINGO总 是根据“Max=”或“Min=”语句寻找目标函数,其它 语句都是约束条件. ④ LINGO 程序中不区分大小写字母 .( 实际上任何 小写字符将被转换为大写字符) ⑤ LINGO中的变量必须以字母开头,且最多不能超 过32个字符. ⑥ 在LINGO中,以@开头的都是函数的调用. ⑦ LINGO已假定所有变量非负, 可用限定变量取值 范围的函数 @BIN 、 @GIN 、 @FREE 、 @BND 改 变变量的非负假定.
•求解器状态框 •模型的类型 •解的状态 •Objective(解的目标函数值) •Infeasibility(约束不满足总量) •到目前为止的迭代次数 •扩展的求解器状态框

2024年度LINGO软件

2024年度LINGO软件

结果分析
对求解结果进行分析,验证模型的有 效性和可行性。
模型调整
根据结果分析,对模型进行调整和优 化,提高模型的实用性和准确性。
24
05 LINGO软件在各 个领域的应用案 例
2024/3/23
25
生产计划与调度问题
2024/3/23
生产线平衡
LINGO可以用于解决生产线平衡问题,通过优化生产线上 各个工位的任务分配,提高生产效率和资源利用率。
一些学术机构和研究团队也会分享他们的 LINGO使用经验和案例,为学习者提供更多 的学习资源和合作机会。
37
THANKS
感谢观看
2024/3/23
38
LINGO可用于金融市场预测和决策分析,通过建立预测模型和分析工具
,揭示金融市场的运行规律和趋势,为投资决策提供支持。
29
06 LINGO软件与其 他工具的集成与 应用
2024/3/23
30
与Excel的集成与应用
2024/3/23
数据交换
LINGO可以直接从Excel中导入数据,也可以将结果导出到Excel ,实现数据的无缝对接。
2024/3/23
28
金融工程与投资组合优化问题
01
投资组合优化
LINGO可以用于解决投资组合优化问题,通过优化投资组合中各个资产
的配置比例,实现风险和收益的平衡。
02
期权定价与风险管理
利用LINGO建立期权定价模型,可以准确计算期权的价值,为风险管理
提供决策依据。
2024/3/23
03
金融市场预测与决策分析
2024/3/23
整数规划算法
分支定界法、割平面法等适用于整数规划问 题的求解。

优化软件LINDO在运筹学中的应用

优化软件LINDO在运筹学中的应用

案例分析
案例分析
以下是一个应用案例,通过使用软件,学生对某物流公司的运输网络进行了 优化。
1、问题描述:该物流公司拥有多个仓库和配送中心,货物的运输和配送由多 个车辆完成。由于公司业务量的增长,原有的运输网络已经不能满足需求,因此 需要优化车辆路径以提高运输效率。
案例分析
2、软件应用:学生使用MATLAB和Simulation Builder来建立并求解该优化 问题。首先,使用MATLAB建立一个车辆路径优化模型;然后,使用Simulation Builder对该模型进行模拟和测试;最后,通过MATLAB进行结果分析和可视化。
软件应用
软件应用
1、建模:在物流运筹学教学中,软件可以帮助学生轻松建立各种数学模型, 如线性规划模型、整数规划模型等。这些模型可以准确地描述物流系统的实际情 况,为进一步的分析和优化奠定基础。
软件应用
2、分析:软件集成了大量的数据分析工具和算法,可以帮助学生深入分析物 流系统中的各种数据,如成本数据、时间数据等。通过这些分析,学生可以更好 地理解物流系统的性能瓶颈和优化潜力。
应用实践
1、需求分析
1、需求分析
在物流工程运筹学中,需求分析是解决问题的第一步。教师可引导学生使用 LINGO软件进行问题定义和场景模拟,以便更好地理解问题背景和需求。例如, 在解决车辆路径问题(VRP)时,可以通过LINGO软件对客户需求、车辆容量等进 行分析,为后续建模优化做好准备。
案例分析
3、结果分析:经过优化,车辆路径长度减少了20%,运输时间减少了15%,从 而大幅提高了运输效率。但是,由于仓库和配送中心的布局以及货物的特性限制, 部分优化目标的改善幅度较小。
案例分析
4、不足与挑战:在这个案例中,虽然软件的应用取得了显著的效果,但仍存 在一些不足之处。例如,模型假设较为简化,忽略了一些现实中的影响因素,如 交通状况、天气等。此外,优化过程中只考虑了运输成本和时间,而未考虑到其 他潜在的成本和利益相关者需求。未来,学生需要对模型进行进一步的改进和完 善,以更好地应对现实中的复杂问题。

LINDO与LINGO软件介绍

LINDO与LINGO软件介绍
15
查看模型的统计信息, 用Reports/statistics查看模型的统计信息, 查看模型的统计信息
第一行:模型有 行 约束4行),2个变量 个变量, 个整数变量 个整数变量( 个 变量 变量), 第一行:模型有5行(约束 行), 个变量,0个整数变量(0个0-1变量), 不是二次规划. 不是二次规划 第二行:非零系数10个 约束中非零系数6个 其中 个为1或 , 其中5个为 第二行:非零系数 个,约束中非零系数 个(其中 个为 或-1),模型密度 密度=非零系数 行数* 变量数+ 为0.667(密度 非零系数 行数*(变量数+1)]) . 密度 非零系数/[行数 变量数 第三行的意思:按绝对值看,系数最小、最大分别为1和 第三行的意思:按绝对值看,系数最小、最大分别为 和8. 第四行的意思:模型目标为极大化;小于等于、等于、 第四行的意思:模型目标为极大化;小于等于、等于、大于等于约束分别有 广义上界约束(GUBS)不超过 个;变量上界约束 不超过2个 变量上界约束(VUBS)不 2、0、2个;广义上界约束 不超过 不 少于0 所谓GUBS,是指一组不含有相同变量的约束;所谓 少于0个。所谓 ,是指一组不含有相同变量的约束;所谓VUBS,是 , 指一个蕴涵变量上界的约束,如从约束X1+X2-X3=0可以看出,若X3=0,则 可以看出, 指一个蕴涵变量上界的约束,如从约束 可以看出 , X1=0,X2=0(因为有非负限制),因此 ),因此 是一个VUBS约束。 约束。 , (因为有非负限制),因此X1+X2-X3=0是一个 是一个 约束 第五行的意思:只含1个变量的约束个数=0 冗余的列数=0 第五行的意思:只含1个变量的约束个数 0个;冗余的列数 0个

版本信息,可以通过 查询.我们还 版本信息,可以通过help/about查询 我们还 查询 可以查到允许的变量个数、约束个数、 可以查到允许的变量个数、约束个数、整数 变量个数、非零系数个数等. 变量个数、非零系数个数等

优化建模入门与LINGOLINDO简介

优化建模入门与LINGOLINDO简介

优化建模
整数规划问题对应的松弛问题
取消整数规划中决策变量为整数的限制(松弛),对 应的连续优化问题称为原问题的松弛问题 整数规划问题 最优解
最优解 凸多边形的某个顶点
求解LP的基本思想
凸多面体的某个顶点
思路:从可行域的某一顶点开始,只需在有限多个 顶点中一个一个找下去,一定能得到最优解。
LP的通常解法是单纯形法(G. B. Dantzig, 1947)
优化建模
LP其他算法
内点算法(Interior point method)
• 20世纪80年代人们提出的一类新的算法——内点算法 • 也是迭代法,但不再从可行域的一个顶点转换到另一个 顶点,而是直接从可行域的内部逼近最优解。
f ( x)
优化建模
s.t.
hi ( x) 0, i 1,...,m g j ( x) 0, j 1,...,l
整数规划问题的分类
• 整数线性规划(ILP) 目标和约束均为线性函数 • 整数非线性规划(NLP) 目标或约束中存在非线性函数 • 纯(全)整数规划(PIP) 决策变量均为整数 • 混合整数规划(MIP) 决策变量有整数,也有实数 • 0-1规划 决策变量只取0或1
决策变量:周一至周日每天(新)聘用人数 x1, x2,x7 目标函数:7天(新)聘用人数之和 约束条件:周一至周日每天需要人数
设系统已进入稳态(不是开始的几周) 连续工作5天 周一工作的应是(上)周四至周一聘用的 x4 x5 x6 x7 x1 50
min s.t. z x1 x2 x3 x4 x5 x6 x7 x1 x4 x5 x6 x7 50
优化建模
优化问题的一般形式
优化问题三要素:决策变量;目标函数;约束条件 目标函数 约 束 条 件

优化建模与LINGO第05章

优化建模与LINGO第05章

优化建模
§5.1.3 求解模型
3种解法
的采购量x分解为三个量 第1种解法 将原油 的采购量 分解为三个量,即用 1, 种解法 将原油A的采购量 分解为三个量,即用x x2,x3分别表示以价格 、8、6千元 吨采购的原油 的吨 分别表示以价格10、 、 千元 吨采购的原油A的吨 千元/吨采购的原油 总支出为c(x) = 10x1+8x2+6x3,且 数,总支出为 x = x1 + x2 + x3 (9) 这时目标函数(2)变为线性函数: 这时目标函数( )变为线性函数:
500 y 2 ≤ x1 ≤ 500 y1
500 y 3 ≤ x 2 ≤ 500 y 2 x3 ≤ 500 y 3
(14) (15) (16) (17)
y1,y2,y3 =0或1 或
优化建模
(3)~(10),(13)~(17)构成混合整数线性 10),(13) ),(13 17) 规划模型,将它输入LINDO软件: LINDO软件 规划模型,将它输入LINDO软件:
优化建模
优化建模与LINDO/LINGO软件 优化建模与LINDO/LINGO软件 LINDO/LINGO
第5 章 生产与服务运作管理中的优化问题
优化建模
内容提要
§5.1 生产与销售计划问题 §5.2 有瓶颈设备的多级生产计划问题 §5.3 下料问题 §5.4 面试顺序与消防车调度问题 §5.5 飞机定位和飞行计划问题
优化建模
第2种解法: 种解法: 引入0 变量将(11) 12) 引入0-1变量将(11)和(12)转化为线性约束 分别表示以10千元 令y1=1,y2=1,y3=1分别表示以 千元 吨、8千元 , , 分别表示以 千元/吨 千元 /吨、6千元 吨的价格采购原油 ,则约束(11) 千元/吨的价格采购原油 吨 千元 吨的价格采购原油A,则约束( ) 和(12)可以替换为 )

数学建模优化模型与Lingo Lindo软件

数学建模优化模型与Lingo Lindo软件


表二 :5名队员4中泳姿百米平均成绩
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?

优化模型

决策变量:记周一到周日每天聘用的人数分别为X1,

X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。

可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.

Lindo、Lingo首选的最佳化建模软件

Lindo、Lingo首选的最佳化建模软件

Lindo/Lingo首选的最佳化建模软件速度快和容易使用让LINDO Systems, Inc. 公司成为求解最佳化模型软件的领导供货商。

LINDO Systems线性、非线性和整数规划的求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。

应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等领域。

1.lindo软件LINDO是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

因此在数学、科研和工业界得到广泛应用。

LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

LINDO 6.1是求解线性、整数和二个规划问题的多功能工具。

LINDO 6.1互动的环境可以让你容易得建立和求解最佳化问题,或者你可以将LINDO 的最佳化引擎挂在您己开发的程序内。

而另一方面,LINDO也可以用来解决一些复杂的二次线性整数规划方面的实际问题。

如在大型的机器上,LINDO 被用来解决一些拥有超过50,000各约束条件和200,000万个变量的大规模复杂问题。

■友善的使用者界面LINDO 6.1提供直觉化的建立模型环境,即使是初学者很很容易上手。

想要求解的问题可以用简单的等式来表示。

LINDO 6.1对所有指令提供清楚有用的在线说明,当然书面的使用者手册对LIDO 6.1 的功能和指令也有详尽的说明。

■专家的强大工具如果你已经是一个最佳化领域的专家,你会对 LINDO 6.1 功能的强大感到不可思议。

LINDO 6.1 求解引擎的求解速度和求解容量可以帮您求解大型的线性和整数模型。

LINDO 6.1 在建立模型、求解模型、结果显示、数据查询’档案处理和敏感度分析都有进阶的指令和功能。

数学建模软件LinDoLinGo的简介(修改)

数学建模软件LinDoLinGo的简介(修改)

X——表示变量X可取任意实数值。 GIN X——表示变量X只取非负整数值。 INT X——表示变量X只能取0或1。 SLB X value——表示变量X以value为下界。 SUB X value——表示变量X以value为上界。 FREE m——表示问题的前m个变量为自由变量 GIN m——表示问题前m个变量为非负整数值 INT m——表示问题前m个变量为0-1变量。
LINGO 示例
查看简单例子
LINHGO程序
Lindo模型到Lingo模型的转换
“ST”在Lingo模型中不再需要,所以删除了; 在每个系数与变量之间增加了运算符“*”;
将目标函数的表示方式从“MAX”变成“MAX=”;
每行(目标、约束和说明语句)后面均增加了一
个分号“;”; 约束的名字被放ngo中模型以“Model:”开始,以“END”结束。 对简单模型,这两个语句也可以省略。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP); LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。 最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
Lindo求解整数规划
Lindo求解整数规划程序
LP OPTIMUM FOUND AT STEP 2 OBJECTIVE VALUE = 998.811951

数学建模优秀软件介绍之lingo课件

数学建模优秀软件介绍之lingo课件
INV (0) 10
加上变量的非负约束
➢集合及属性
记四个季度组成的集合QUARTERS={1,2,3,4}, 它们就是上面数组的下标集合,而数组DEM、RP、OP、 INV对集合QUARTERS中的每个元素1,2,3,4分别对 应于一个值。
LINGO正是充分利用了这种数组及其下标的关系, 引入了“集合”及其“属性”的概念
Mon,Tue,Wed,Thu,Fri
MonthM..MonthN
Oct..Jan
Oct,Nov,Dec,Jan
MonthYearM..Mont Oct2001..Jan200 Oct2001,Nov2001,Dec
hYearN
2
2001,Jan2002
➢函数
Lingo函数
➢最全面的格式:
@function(setname(index)|conditional:expression)
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE(标题)语句外的其他语句都是 约束条件,因此语句的顺序并不重要 。
•限定变量取整数值的语句为“@GIN(X1)”和 “@GIN(X2)”。不可以写成“@GIN(2)”,否则LINGO 将把这个模型看成没有整数变量。
结构设计 资源分配 生产计划 运输方案
➢解决优化问题的手段:
• 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略
➢数学模型一般形式:
优化问题三要素:决策变量;目标函数;约束条件
min f (x)
s.t. hi (x) 0, i 1,...,m g j (x) 0, j 1,...,l
Generator Memory Used (K) (内存使用 量)

lingo-lindo简介

lingo-lindo简介

Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。

LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。

LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。

模型更加容易构建,更容易理解,因此也更容易维护。

2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。

同样地,LINGO 可以将求解结果直接输出到数据库或工作表。

使得您能够在您选择的应用程序中生成报告。

3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。

优化建模与LINDO,LINGO优化软件

优化建模与LINDO,LINGO优化软件

ROW SLACK OR SURPLUS DUAL PRICES

原料无剩余
2)
0.000000

时间无剩余
3)
0.000000
资 源
加工能力剩余40
4)
40.000000
48.000000 2.000000 0.000000
“资源” 剩余为零的约束为紧约束(有效约束)
结果解释
OBJECTIVE FUNCTION VALUE
1. 优化模型与优化软件简介
优化模型和优化软件的重要意义
(最)优化:在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、 社会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型(优化模型),求最优策略(决策) CUMCM赛题:约一半以上与优化有关,需用软件求解
2)
0.000000
48.000000
3)
0.000000
2.000000
4) 40.000000
0.000000
NO. ITERATIONS= 2
reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)
也可理解为:
为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量
2
50.000000 10.000000
6.666667 90,在允许范
3 480.000000 53.333332
80.000000 围内
4 100.000000 INFINITY 40.000000

LINDO、LINGO软件的使用方法汇总

LINDO、LINGO软件的使用方法汇总
LINDO/LINGOl软件简介
第1节 LINDO 第2节 LINGO
第1节 LINDO软件
一、LINDO软件的使用格式 二、LINDO输出结果分析
一、LINDO软件的使用格式
LINDO软件是一种专门用于求解线性 规划问题的软件包,由于LINDO执行速度很 快且输入方便,易于求解和分析规划问题, 因此在科研和工业界得到广泛应用。
设备
每吨产品的加工台时 可供台


时数
A
3
4
36
B
5
4
40
C
9
利润(元/吨)
32
8
76
30
设备
A B C 利润(元/吨)
每吨产品的加工台时


3
4
5
4
9
8
32
30
可供台 时数
36 40 76
试问如何安排生产,可使该厂所获的利润达到最大?
解:设在计划期内安排生产甲、乙两种产品分别为
x1, x2吨.
则目标函数为: max Z 32 x1 30 x2
Decrease 4.000000 1.333333 4.000000
资源的 允许增 允许减 当前值 加的值 少的值
在影子价格有意义的情况下,约束条件右端
资源的允许变化范围。 例1的LINGO程序
一、LINGO软件的一些规定
1、目标函数以“max=”或“min=”开头,其后面 是目标函数的表达式。
可供台 时数
36 40 76
则该问题的 数学模型为:
max Z 32 x1 30 x2
3x1 4x2 36 5x1 4x2 40 9x1 8x2 76 x1, x2 0

lindo和lingo简介

lindo和lingo简介

LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件包。

LINDO 用于求解线性规划和二次规划,LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等。

LINDO和LINGO软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其它数据文件(如文本文件、EXCEL电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

由于这些特点,LINDO和LINGO软件在教学、科研和工业、商业、服务等领域得到广泛应用。

1)目标函数及各约束条件之间一定要有“Subject to (ST) ”分开。

2)变量名不能超过8个字符。

3)变量与其系数间可以有空格,单不能有任何运算符号(如乘号“*”等)。

4)要输入<=或>=约束,相应以<或>代替即可。

5)一般LINDO中不能接受括号“()“和逗号“,“,例:400(X1+X2) 需写成400X1+400X2;10,000需写成10000。

6)表达式应当已经过简化。

不能出现 2 X1+3 X2-4 X1,而应写成-2X1+3 X2。

用LINDO求解施工中的线性规划(LP)问题1 引言线性规划是现代化管理的常用工具与方法,在施工过程中,很多实际问题,如配(下)料,运输(土石方调配),施工机具车辆调度,施工场地的合理设点,成品、半成品、原材料的合适库存量规划问题等等,都需要运用线性规划方法求得最优方案。

线性规划一般需要先确定要求的未知变量和目标函数,然后找出所有的约束条件,表示为线性方程或不等式,建立问题的数学模型,对于变量数目和约束条件较少的情况可用手工计算,较多的情况则需运用计算机来求解。

2 LINDO介绍LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包。

优化建模与LINGOa

优化建模与LINGOa

• filename为存放数据的文件名(可以包含完整的 路径名,或表示在当前目录下寻找这个文件)
• 数据文件中记录之间必须用“~”分开
优化建模
例:
数据文件myfile.ldt的内容: Seattle,Detroit,Chicago,Denver~
COST,NEED,SUPPLY,ORDERED~
Lingo程序exam0402.LG4 : MODEL: SETS: MYSET / @FILE(myfile.ldt) / : @FILE(myfile.ldt); ENDSETS MIN = @SUM( MYSET( I): ORDERED( I) * COST( I)); @FOR( MYSET( I): ORDERED( I) > NEED( I); ORDERED( I) < SUPPLY( I)); DATA: COST = @FILE( myfile.ldt); NEED = @FILE( myfile.ldt); SUPPLY = @FILE( myfile.ldt); ENDDATA END
• LINGO中可以使用函数@ODBC,格式为 :
@ODBC(['data_source'[, 'table_name'[, 'col_1'[, 'col_2' ...]]]]) 其中data_source是数据库名, table_name是数据表名, col_1, col_2,...是数据列名(数据域名)。
优化建模
优化建模与LINDO/LINGO软件
第 4 章 LINGO软件与外部文件的接口
优化建模
通过文件输入输出数据
• 通过文件输入输出数据可以将LINGO程序和程 序处理的数据分离开来。 • “程序和数据的分离”是结构化程序设计、面 向对象编程的基本要求。 • 实际问题通常需要处理大规模的实际数据,而 这些数据通常都是在其它应用系统中生成的, 或者已经存放在其它应用系统中的某个文件或 数据库中。 • LINGO计算的结果需要以文件方式提供给其它 应用系统使用。

Lingo、Lindo软件

Lingo、Lindo软件
③ 变量可以放在约束条件右端,同时数字也可以放在 约束条件左边;
④ Lingo模型语句由一系列语句组成,每一个语句都必 须以“;”结尾;
⑤ Lingo中以“!”开始的是说明语句,说明语句也以 “ ;” 结束。
Lingo/Lindo软件介绍 ---Lingo
➢在Lingo中建立的优化模型可以引用大量的内部函数这些函 数都以@符号打头,其用法比较简单,我们一一列出:
整数模型
线性规划
二次规划
Lindo
非线性规划 Lingo
Lingo/Lindo软件介绍
➢Lindo是英文Linear Interactive and Discrete
Optimizer字首的缩写,即“交互式的线性和离散优化 求解器”,可以用来求解线性规划(LP)和二次规划 (QP);
➢Lingo是英文Linear Interactive and General
⑦ Lindo中以“!”开始的是说明语句,说明语句也以“ ;” 结束。
Lingo/Lindo软件介绍 ---Lindo
➢下面我们用一个例子来说明Lindo中三个变量范围限制命令(FREE、SBU、 SLB)的作用和使用方法:
例-2 max 2x 3y 4z S.T. 4x 3y 2z 10
➢该软件包功能强大,版本也很多,而我们 使用的只
是演示版(试用版),演示版与正式版功能基本上是
类似的,只是能够求解问题的规模受到限制,总变量数 不超过30个,这在我们目前的使用过程中,基本上是 足够。
Lingo/Lindo软件介绍 Lingo/Lindo软件求解的优化模型类型见下图:
优化模型
连续模型
Interrupt 中断求解程序 Solver
Close 关闭该窗口
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化(Optimization), 规划(Programming)
无线 约性 束规 优划 化
非 线 性 规 划
整 数 Байду номын сангаас 划
组 合 优 化
不 确 定 规 划
多 目 标 规 划
目 标 规 划
网 络 优 化
动 态 规 划
优化问题的一般形式
优化问题三要素:决策变量;目标函数;约束条件
min f ( x)
LINDO/LINGO预处理程序 LP QP NLP IP 全局优化(选)
分枝定界管理程序
ILP IQP INLP
线性优化求解程序 非线性优化求解程序
1. 单纯形算法 2. 内点算法(选)
1、顺序线性规划法(SLP) 2、广义既约梯度法(GRG) (选) 3、多点搜索(Multistart) (选)
(V8.0)
演示(试用)版、学生版、高级版、超级版、工业版、 扩展版… (求解问题规模和选件不同)
LINDO和LINGO软件能求解的优化模

优化模型
连续优化
整数规划(IP)
线性规划 二次规划
(LP)
(QP)
LINDO
非线性规划 (NLP)
LINGO
LINDO/LINGO软件的求解过程
1. 确定常数 2. 识别类型
2. LINDO公司的主要软件产品及功能简介
LINDO 公司软件产品简要介绍
美国芝加哥(Chicago)大学的Linus Schrage教授于1980 年前后开发, 后来成立 LINDO系统公司(LINDO Systems Inc.), 网址:
LINDO: Linear INteractive and Discrete Optimizer
简要提纲
1. 优化模型与优化软件简介 2. LINDO公司的主要软件产品及功能简介 3. LINDO / LINGO软件的使用简介 4. 建模与求解实例(结合软件使用)
1. 优化模型与优化软件简介
优化模型和优化软件的重要意义
(最)优化:在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、 社会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段
(V6.1)
LINGO: Linear INteractive General Optimizer
(V9.0)
LINDO API: LINDO Application Programming Interface (V3.0)
What’s Best!: (SpreadSheet e.g. EXCEL)
Minf (x) x
其中
x(x1,x2, ,xn)T n
局部最优解
f(x)
xl *
xg
全局最优解
ox
必要条件 充分条件
f(x*)(fx1, ,fxn)T02 f
2 f
f(x*)0, 2f(x*)0
xixj nn
Hessian阵
最优解在可行域边界上取得时不能用无约束优化方法求解
约束优化的
min f ( x)
s.t. hi ( x) 0, i 1,..., m g j ( x) 0, j 1,..., l
决策变量
x D n
目标函数
约 束 条 件
• 可行解(满足约束)与可行域(可行解的集合) • 最优解(取到最小/大值的可行解)
无约束优化:最优解的分类和条件
给定一个函数 f(x),寻找 x* 使得 f(x*)最小,即
• 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型(优化模型),求最优策略(决策) CUMCM赛题:约一半以上与优化有关,需用软件求解
(最)优化理论是运筹学的基本内容
运筹学(OR: Operations/Operational Research) OR/ MS/ 管理科学(MS: Management Science) DS 决策科学 (DS: Decision Science)
离 散
✓ 整数线性规划(ILP),整数非线性规划(INLP)
优 ✓ 纯整数规划(PIP), 混合整数规划(MIP)
化 ✓ 一般整数规划,0-1(整数)规划
常用优化软件
1. LINDO/LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数
如:尽量少使用绝对值、符号函数、多个变量求 最大/最小值、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变 量的个数 (如x/y <5 改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当 (如小于103)
全局 优化
fzero lsqnonlin fsolve lsqcurvefit 暂缺
非线性规划 fmincon fminimax fgoalattain fseminf
约束线性 最小二乘
lsqnonneg lsqlin
上下界约束 fminbnd fmincon lsqnonlin lsqcurvefit
简单分类
s.t. hi ( x) 0, i 1,..., m
数学规划
g j ( x) 0, j 1,..., l x D n
连 • 线性规划(LP) 目标和约束均为线性函数
续 优
• 非线性规划(NLP) 目标或约束中存在非线性函数
化 ✓ 二次规划(QP) 目标为二次函数、约束为线性
• 整数规划(IP) 决策变量(全部或部分)为整数
MATLAB优化工具箱能求解的优化模型
优化工具箱3.0 (MATLAB 7.0 R14)
连续优化
离散优化
纯0-1规划 bintprog 一般IP(暂缺)
无约束优化
约束优化
非线性 极小 fminunc
非光滑(不可 微)优化
fminsearch
线性规划 linprog
二次规划 quadprog
非线性 非线性 方程(组) 最小二乘
3. LINDO / LINGO软件的使用简介
需要掌握的几个重要方面
1、LINDO: 正确阅读求解报告(尤其要掌握敏感性分析)
2、LINGO: 掌握集合(SETS)的应用; 正确阅读求解报告; 正确理解求解状态窗口; 学会设置基本的求解选项(OPTIONS) ; 掌握与外部文件的基本接口方法
例1 加工奶制品的生产计划
相关文档
最新文档