【小学五年级奥数讲义】分解质因数(二)

合集下载

一起学奥数--分解质因数31451ppt课件

一起学奥数--分解质因数31451ppt课件
包括2的连续8个质数为:2、3、5、7、11、13、17、19,所以abc = 3×17×19=969
完整版课件
8
例5、幼儿园里给小朋友分苹果,420个苹果正好均分,但今天刚好又新 入园一位小朋友,这样每个小朋友就要少分两个苹果,原来有多少个小 朋友?
【分析】苹果正好均分,说明苹果的个数是两个自然数的乘积,分解420,可以得到以下情况
420=2×210=3×140=4×105=5×84=6×70=7×60=10×42=12×35=14×30=15×28=20×21
小朋友增加了一个,每个小朋友的苹果数少了2个。说明当其中一个数增加1,另一个数就会减小2。 从上面的分解中,可以看出,14×30符合这个要求。所以原来有14个小朋友。
请思考?是否可以利用题目条件,不用把全部数分解出来
对5040进行分解,如下: 5040=4×1260 =2×2×4×315 =2×2×2×2×9×35 =2×2×2×2×3×3×5×7
对分解后的数字进行组合,使成为4个连续的自然数相乘。因为8个质数中,有4个2,2个3,所以必 定有一个数不变,应该为7。(如果7还需要组合,会如何)
尝试对8个质数进行重新组合,可以得到他们的年龄为7、8、9、10岁。
完整版课件
10
知识件
12
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
7
例4、小明家的电话号码是七位数,它恰好是八个连续质数的乘积,这 个积的后四位数是前三位数的10倍,请问小明家的电话号码是多少?
【分析】这个七位数的后四位数是前三位数的10倍,则可以把这个七位数用 abcabc0表示。 因为:abcabc0 =abc ×1001×10= abc ×2×5×7×11×13

(精品文档)五年级奥数2.1分解质因数

(精品文档)五年级奥数2.1分解质因数

分解质因数一、基本概念和知识:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、典例剖析:例1、用短除法分解质因数。

360 220例2、四个学生,年龄恰好是四个连续的自然数,他们年龄的积使3024,你知道他们的年龄吗?练习、三个连续自然数的乘积是210,求这三个数.例3、四个自然数的乘积是80,并且其中三个数的和与第四个数相等,这四个自然数分别是但是?练习、把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

例4、72一共有多少个因数?72=2×2×2×3×3=23×32(3+1)×(2+1)=12个练习、100一共有多少个因数?例5、求72的所有因数的和。

72=2×2×2×3×3=8×98的因数有1、2、4、8,9的因数有1、3、9,所以72的所有因数的和=(1+2+4+8)×(1+3+9)=195练习、求100的所有因数的和。

例6、1×2×3×4×5×···×50,积的末尾一共有多少个0?练习1、1×2×3×4×5×···×100,积的末尾一共有多少个0?练习2、325×472×765×895×A的积的最后六位都是“0”,那么A最小是多少?练习3、975×935×972×A的积的最后四位都是“0”,那么A最小是多少?练习4、135×115×35×A的积的最后三位都是“0”,那么A最小是多少?例1、边长为自然数,面积为60平方厘米的形状不同的长方形共有多少种?例2、底和高都是自然数,面积为60平方厘米的平行四边形有多少种?例3、边长为自然数,面积为144的正方形共有多少种?边长是多少?方法一:列举。

五年级数学《分解质因数》ppt课件

五年级数学《分解质因数》ppt课件

分数的分子和分母都除 以相同的数,分数的大小 不变。 你还能举出这样的例子吗?
小组相互说一说。
分数的分子和分母都乘以或都除 以相同数,分数的大小不变。
右边的式子对 吗?为什么?
2 5
22
5
4 5
3 33 9
4 444 16
分数的分子和分母都乘以或都除以 相同的数(0,分除数外的)大, 分小数不的变大。小不变。
折一折:
拿出三张同样大的正方形分
别折出 1 、 2 、 4 , 再
2
4
8
涂上颜色。
1
2
4
想一想2 : 4
8
这三个分数有什么不同的地方?有什么
相同的地方?
12 2 、4
4 、8
这三个分数的分子、分母虽然不
同,但分数的大小相等。
仔细观察:从左往右看,三个分数 得分子和分母是按什么规律变化的?
1 2
2 2
) )=
10 20
9 18

9 18
÷( ÷(
9 9
) )=
1 2
2.在下面的括号里填上适当的数。
1 5
=(135 )
15 20
=(
3 4

9 18
=(
3 6

1 4
=(132)
8 16
=(
4 8
)=(
1 2

2 9
=(148)=(267)=
(10 45

4 18
4 18
45
18 5
2
12
分子乘以5 分母除以4
(3)一个分数的分母缩小3倍;分子缩小3倍
(4)一个分数的分子扩大2倍。分母扩大2倍

《分解质因数》课件

《分解质因数》课件

分解质因数的定义
分解质因数定义
将一个合数表示为若干个质数的乘积 的过程称为分解质因数。
举例说明
如将24分解质因数得到24=2x2x2x3 ,表示24可以写成2和3的乘积。
分解质因数的重要性
01
简化数的表示
通过分解质因数,可以将一个复杂的合数表示为简单易 懂的质数乘积,方便理解和记忆。
02
数学问题解决
练习题的答案与解析
总结词:解析详尽
详细描述:对于每一道练习题,本部分都提供了详细的答案 和解析,帮助学生理解解题思路和方法,加深对分解质因数 概念的理解。
巩固练习的建议
总结词:指导性强
详细描述:根据学生的学习情况和反馈,本部分提供了针 对性的巩固练习建议,引导学生进行有针对性的练习,提 高学习效果。
谢谢聆听
生物学
在生物学中,质因数分解的应用主要体现在遗传学和生物信息学中。通过将基因序列和蛋 白质序列进行质因数分解,可以揭示生物分子的结构和功能关系。
练习与巩固
04
分解质因数的练习题
总结词:题目丰富
详细描述:本部分提供了大量关于分解质因数的练习题,题型多样,包括选择题、填空题和计算题等 ,旨在帮助学生通过实践掌握分解质因数的方法。
《分解质因数》ppt数的方法 • 分解质因数的应用 • 练习与巩固 • 总结与回顾
01 分解质因数简介
什么是质因数
质因数定义
一个合数的因数,并且这个因数 是质数,则称这个因数为该合数 的质因数。
举例说明
如15的质因数有3和5,因为3和5 都是15的因数,且3和5都是质数 。
数和倍数关系。
代数运算
在代数运算中,质因数分解可以 帮助我们简化复杂的式子,例如

5.1.02五年级奥数上册:第二讲质数、合数和分解质因数(2021年整理)

5.1.02五年级奥数上册:第二讲质数、合数和分解质因数(2021年整理)

5.1.02五年级奥数上册:第二讲质数、合数和分解质因数(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(5.1.02五年级奥数上册:第二讲质数、合数和分解质因数(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为5.1.02五年级奥数上册:第二讲质数、合数和分解质因数(word版可编辑修改)的全部内容。

五年级奥数上册:第二讲质数、合数和分解质因数五年级奥数上册:第二讲质数、合数和分解质因数
五年级奥数上册:第二讲质数、合数和分解质因数习题
五年级奥数上册:第二讲质数、合数和分解质因数习题解答。

五年级奥数精品讲义 第2讲 分解质因数(有精讲,有分层精炼)

五年级奥数精品讲义 第2讲 分解质因数(有精讲,有分层精炼)

五年级奥数讲义第二讲分解质因数一、学法指导1、什么叫做质数?2、什么叫做质因数?3、怎样分解质因数?把一个合数用质因数相乘的形式表示出来叫分解质因数。

例:36=2⨯2⨯3⨯3或36=22⨯32。

二、例题:例1、有7个不同的质数,它们的和是60,其中最小的质数是_______。

例2、两个质数的和是49,这两个数分别是_______和_______。

例3、60 =()+()=()+()=()+()=()+()在()里填出不同的质数。

例4、一个长方体,它的正面和上面的面积之和是209平方分米,如果它的长、宽、高都是质数,那么长方体的体积是_______例5、求3600一共有多少个因数,所有因数的和是多少?例6、求恰有8个因数的最小自然数是几?例7、求1⨯2⨯3⨯4⨯……⨯2007⨯2008 乘积的末尾有多少个连续的‘0’?例8、把8、21、25、35、44、65、78、99平均分成两组,使每组四个数的乘积相等。

例9、四个好伙伴,恰好一个比一个大一岁,四个人年龄的乘积是11880,求四个人的年龄。

三、练习A卷、基本能力训练1、有五个连续奇数,它们的乘积是328185,则最大的一个奇数是_______。

2、三个数的积为84,其中两个数的和等于另一个数,这三个数分别是_______。

3、1260共有_______个约数。

4、要使四个数的乘积:135⨯1925⨯486⨯()结果的最后五位数都是零,括号中的数最小应填_______。

5、1500共有_______个约数。

6、有八个数693,175,28,35,108,363,165,48,把它们分成两组,使两组数的乘积相等。

7、把50拆成10个质数之和,要求其中最大的质数尽可能大,那么最大的质数是几?8、有一个长方体,相邻三个面的面积分别为35cm2、77cm2、55 cm2,求它的体积是多少?9、王老师带着班上的同学(不超过100人)去植树,学生按人数正好可以平均分成三组。

五年级 第2讲 分解质因数(教师版)【修订版1.0】

五年级 第2讲 分解质因数(教师版)【修订版1.0】

第2讲 分解质因数一、教学目标1.掌握质因数及分解定义.2.学习短除法分解质因数.3.利用分解质因数解决实际问题.二、知识要点1.定义:质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数.分解质因数往往是解数论题目的突破口,可以帮助我们分析数字的特征.3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个质数,一直除到商是质数为止.格式如图: ↓被除数待分解2 242 122 6 32 36 2 183 9 34.特殊数分解=⨯;10101371337=⨯⨯⨯.=⨯⨯;1000173137=⨯;1001711131113372017=______×______;2018=______×______;2019=______×______×______×______.三、例题精选【例1】对以下数进行质因数分解.(1)51=_______×_______(2)87=_______×_______(3)3528=______×______×______×______×______×______×______【★★★★★】【解析】51=3×17,87=3×29,3528=2×2×2×3×3×7×7.【巩固1】对以下数进行质因数分解.(1)57=_______×_______(2)91=_______×_______(3)1764=______×______×______×______×______×______【★★★★★】【解析】57=3×19,91=7×13,1764=2×2×3×3×7×7.【例2】如果两个自然数的和与差的积是23,那么这两个自然数分别是多少?【★★★★★】【解析】11和12.因为23是一个质数,23=1×23,故这连个自然数的和应为23,差应为1。

5102五年级奥数上册第二讲质数合数和分解质因数

5102五年级奥数上册第二讲质数合数和分解质因数

五年级奥数上册:第二讲质数、合数和分解质因数五年级奥数上册:第二讲质数、合数和分解质因数一r基本慨念和知识L质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数〉.一个数除了1和它本身,还有别陶约数,这个数叫做台数。

要特别记住’ 1不是质教,也不是台数。

Z质因数与分解质因数如果一个质数是某个数的约数.那么就说这个质数是这个数的质因数。

把一个合数埔质因数相乘的形式春示出耒,叫做分解质因数。

例’把孔分解质因数。

解建30=2X3X5e其中2、3s 5叫做孔的质因数。

又如12 = 2X2X3二上X3* 2. 3都叫做12的质因数。

二例题例1三个连续自然数的乘积是210,求这三个数-解,V210=2X3X5X7•••可知这三个数是5、&和7。

例2两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40 二17+23=11 + 29=33。

717X23 = 391> 11X29 = 319>3 X 37= 111.・・・所求的最大值是391。

答:这两个质数的最大乘积是391。

例3自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4连续九个自然数中至多有几个质数?为什么*?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1〜9中有4个质数2、3、§、7)。

如杲这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有$个•这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

综上所述,连续九个自然数中至多有J个质数。

例5把5、6、7. 14. 15这五个数分成两组,使每组数的乘积相等。

解;丁5=5, 7=7, 6=2X3, 14=2*7, 15=3X5,ZL 这些数中质因数2、3、5、7各共有2个,所以如把14 02X7)放在笫一组,那么7和6 O2X?)只能放在笫二组,继而廿(=3X5)只能畝在第一组,则5必须放在第二组。

五年级奥数专题讲义(基础卷+提高卷)-第24讲 分解质因数(二) 通用版(含答案)

五年级奥数专题讲义(基础卷+提高卷)-第24讲  分解质因数(二)   通用版(含答案)

第 24 讲分解质因数(二)基础卷1.如果 A+B=14,A×B=48,那么 A 与 B 的差是多少?A 与B 的差是22.把 247/323 和 46/69 约分。

323-247=76247-76=171171-76=9595-76=1976-19=5757-19=3838-19=19,故最大公约数是19所以为13/17同理第二个为2/33.老师用 100 元去买一种钢笔若干支,如果每支便宜 1 元,那就多买 5 支。

问:钢笔的原价是多少?100÷1=100(支)100+5=105(支)100支×105=105支×100105-100=5(元)4.求 1150 的约数中,除了它本身以外最大的约数是几?用1150除以任何可以整除的数例如1150/2=575 575/5=115 115/5=23那么也就是说1150的约数可以有2,5,5,23,这4个数每两个或三个任意相乘,如果四个数相乘就是1150那么你想要最大的约数就是23*5*5等于5755.一盒棋子共有 48 粒,如果不一次全拿出,也不一粒一粒拿出,但每次拿出的粒数要相同,最后一次正好拿完,共有几种拿法?每次2粒 24次每次3粒 16次每次4粒 12次每次6粒 8次每次8粒 6次每次12粒 4次每次16粒 3次每次24粒 2次共8种拿法6.有三个自然数 a、 b、 c,已知a×b=35,b×c=55,c×a=77,求 a、 b、 c 三个数的乘积。

a×b = 35=5×7,b×c = 55=5×7,c×a = 77=7×11a*b*c=5*7*11=385提高卷1.张爷爷今年 84 岁,他告诉人家:“我有 3 个孙子,他们年龄的乘积和我的年龄一样大,而且两个孙子的年龄和正好是另外一个孙子的年龄。

”问:张爷爷的三个孙子各是多大?设一个孙子的年龄为x岁,一个孙子的年龄为y岁,则另外的一个孙子的年龄为x+y岁,xy(x+y)=84,而(3×4)(3+4)=84,所以x=3,y=4,另外一个孙子的年龄是3+4=7(岁),答:这三个孙子今年分别是3岁、4岁、7岁.2.把一批图书分给三个班,每个班所得的本数一班比一班多 3 本,且各班所得图书的乘积为 910。

五年级奥数第24周分解质因数(二)

五年级奥数第24周分解质因数(二)

五年级奥数第24周分解质因数(二)专题简析:许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。

因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。

例题1 三个质数的和是80,这三个数的积最大可以是多少?分析三个质数相加的和是偶数,必有一个质数是2。

80-2=78,剩下两个质数的和是78,而且要使它的积最大,只能是41和37。

因此,这三个质数是2、37和41。

最大积是2×37×41=3034练习一1,有三个质数,它们的乘积是1001,这三个质数各是多少?2,张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。

求张明的成绩、名次和年龄分别是多少?3,写出若干个连续的自然数,使它们的积是15120。

例题2 长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?分析这道题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。

375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。

练习二1,237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。

2,有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,这4个孩子中最大的几岁?3,有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长。

例题3 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?分析根据每人种树棵数×参加人数=1073,把1073分解质因数:1073=29×37,再根据学生恰好平均分成三组可知:参加种树的人数是3的倍数多1,由于只有37比3的倍数多1,所以有37人,平均每人种29棵。

五年级奥数基础教程-分解质因数

五年级奥数基础教程-分解质因数

小学数学奥数基础教程(五年级)分解质因数自然数中任何一个合数都可以表示成若干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的。

把合数表示为质因数乘积的形式叫做分解质因数。

例如,60=22×3×5, 1998=2×33×37。

例1 一个正方体的体积是13824厘米3,它的表面积是多少?分析与解:正方体的体积是“棱长×棱长×棱长”,现在已知正方体的体积是13824厘米3,若能把13824写成三个相同的数相乘,则可求出棱长。

为此,我们先将13824分解质因数:把这些因数分成三组,使每组因数之积相等,得13824=(23×3)×(23×3)×(23×3),于是,得到棱长是23×3=24(厘米)。

所求表面积是24×24×6=3456(厘米2)。

例2 学区举行团体操表演,有1430名学生参加,分成人数相等的若干队,要求每队人数在100至200之间,共有几种分法?分析与解:按题意,每队人数×队数=1430,每队人数在100至200之间,所以问题相当于求1430有多少个在100至200之间的约数。

为此,先把1430分解质因数,得1430=2×5×11×13。

从这四个质数中选若干个,使其乘积在100到200之间,这是每队人数,其余的质因数之积便是队数。

2×5×11=110,13;2×5×13=130,11;11×13=143,2×5=10。

所以共有三种分法,即分成13队,每队110人;分成11队,每队130人;分成10队,每队143人。

例3 1×2×3×…×40能否被90909整除?分析与解:首先将90909分解质因数,得 90909=33×7×13×37。

五年级下数学课件-分解质因数_苏教版

五年级下数学课件-分解质因数_苏教版
7
下面各数是哪些质数相乘得到的?
15=(3 ) ×(5 ) 26=(2 ) ×(13) 42=(2 ) ×(3 ) ×( 7 ) 66=(2 ) ×( 3 ) ×(11)
8
9
9=( 3 ) ×( 3 ) 16=( 2) ×(2 ) ×(2 ) ×( 2) 20=( 2 ) ×( 2 ) ×( 5 ) 25=( 5 ) ×( 5 )
五年级数学下册
分解质因数
1
复习
只有1和它本身两个因数,没有别的因数的数叫作 质数
除了1和它本身还有别的因数的数叫作 合数
1是质数还是合数?
1既不是质数,也不是合数。
2
如果一个数的因数是质数,这个因数就是它的质因数。
5是5的质因数,7是28的质因数。
3
15
35 235
把一个合数用质数相乘的形式表示 出来,叫作分解质因数。
10
11
25
37
27
3 11
2
3
3
5 13 7 11
12
3 X13
2 X2 X5
班级人数可以分成几个相同的小 组,说明这个班级的人数• 本节课有什么收获?
14
4
把6和14分解质因数。
6=( 2 )X ( 3 ) 14=( 2 )X ( 7 )
5
讨论交流: 1.把要分解的数写在哪里? 2.分解质因数时,先用哪一个数去除? 除到什么时候停止? 3.最后写成谁和谁的积的形式?
6
短除法:
1.把要分解的数写在短除号里。 2.用这个数的因数中的质数去除,一般
从最小的质因数开始。 3.直到商是质数为止。 4.把除数和商写成相乘的形式。

五年级奥数2.分解质因数

五年级奥数2.分解质因数

2、分解质因数在数学学习中,许多题目初看起来很玄妙,但它们都与乘积有关。

对于这类题目,我们可以用分解质因数的方法来解答。

把一个合数用质数相乘的形式表示出来,叫作分解质因数。

此时,分解式中的因数称为质因数。

如:12=2×2×3,式中的2和3都是12的质因数。

判断一个数是不是质数的技巧如下:(1)判断一个自然数是不是质数,可以用所有比它小的质数,由小到大依次去除它,除到商比除数小时仍除不尽,那么它就是质数。

(2)判断100以内的数是不是质数,只需用2,3,5,7这四个数去试除,如果没有一个数能整除它,那么这个数一定是质数。

(3)判断200以内的数是不是质数,只需用2,3,5,7,11,13这六个质数去试除,如果没有一个数能整除它,那么这个数一定是质数。

分解质因数时,我们常用短除法。

掌握并灵活运用分解质因数的知识,能帮助我们解答许多用常规方法无法解答的与积有关的应用题。

如果将分解式中相同的质因数合并为它的幂,则任一个大于1的整数N只能唯一地表示成:N=p1r1×p2r2×···×pnrn ①(其中p1<p2<…<pn均为质数.r1,r2,…,rn是正整数,它们分别是p 1,p2,…,pn的指数)我们称①式为整数N的“质因数标准分解式”.例如: 72=2×2×2×3×3=23×32 就是72的标准分解式.例1.把100分解质因数。

(提示:用短除法)随堂练习1.(1)把60分解质因数(2)把210分解质因数(3)把750分解质因数例2.如果将某日子的日期与月份用数写出时,若该日期与其月份的乘积等于120,则称该日子为一个“幸运日”,例如:4月30日是“幸运日”,因为4×30=120.请间2022年共有多少个“幸运日”?随堂练习2.如果两个合数互质,它们的最小公倍数是126,那么它们的和是。

小学数学奥数方法讲义之-分解质因数法_通用版

小学数学奥数方法讲义之-分解质因数法_通用版

第三十一讲分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC 是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

2304=2×2×2×2×2×2×2×2×3×3=(2×2×2×2×3)×(2×2×2×2×3)=48×48正方形的边长是48米。

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数分解质因数(一)【专题导引】一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

【典型例题】【例1】把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?【试一试】1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120。

【试一试】1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。

2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【例3】将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99【试一试】1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等。

【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?【试一试】1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【小学五年级奥数讲义】分解质因数(二)
一、专题简析:
许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。

因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。

二、精讲精练
例题1 三个质数的和是80,这三个数的积最大可以是多少?
练习一
1、有三个质数,它们的乘积是1001,这三个质数各是多少?
2、张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。

求张明的成绩、名次和年龄分别是多少?
1。

相关文档
最新文档