第四讲 对数与对数函数(教师版)

合集下载

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册
(3)3lo g 3 √ =9.
解(1)∵ln(log2x)=0,∴log2x=1.∴x=21=2.
(2)∵log2(lg x)=1,∴lg x=2.∴x=102=100.
(3)由3lo g 3 √ =9 得√=9,解得 x=81.
规律方法
1
2
在对数的运算中,常见的对数的基本性质有:(1)负数和零没有对数;
1
解(1)log24=-2.
(2)log10100=2,或 lg 100=2.
(3)loge16=a,或 ln 16=a.
1
3
-
(4)64 =
1
.
4
(5)xz=y(x>0,且 x≠1,y>0).
探究点二 利用对数式与指数式的关系求值
【例2】 求下列各式中x的值:
(1)4x=5·3x; (2)log7(x+2)=2;
3.常见误区:易忽视对数式中底数与真数的范围.
学以致用•随堂检测全达标
1.将log5b=2化为指数式是( C )
A.5b=2 B.b5=2
C.52=b D.b2=5
2.已知ln x=2,则x等于(
A.±2
B.e2
C.2e
)
D.2e
答案 B
解析 由ln x=2,得e2=x,即x=e2.
3.(多选题)下列选项中,可以求对数的是(
A.0
B.-5 C.π
)
D.7
答案 CD
解析 根据对数的定义可知0和负数没有对数,所以选项A,B没有对数,π>0,
选项C有对数.又7>0,所以选项D有对数.
4.已知a=log23,则2a=
.
答案 3
解析 由a=log23,化对数式为指数式可得2a=3.

对数与对数函数(教案)

对数与对数函数(教案)

对数与对数函数一、知识讲解考点1对数的概念及其运算性质(1)对数的概念:b a =N (a >0, a ≠1)N b a log =⇒(2)对数的性质: ①负数与零没有对数; ②,;③对数恒等式:.(3)对数的运算:①log MN a =log N M a a log + ②log N M NMa a alog log -= ③M n M a na log log =(M 、N >0, a >0, a ≠1)推广:M mnMa na m log log =01log =a 1log =a a log a N a N=④换底公式:aNN b b a log log log =(a ,b >0,a ≠1,b ≠1)考点2对数函数(1)对数函数定义:形如y =x a log (a >0且a ≠1,x >0)的函数,叫做对数函数. (2)对数函数的图象与性质二、例题精析【例题1】求下列各式的值:(1); (2); (3);(4).【解析】(1).(2).(3).()352log 24⨯5log 125lg 32lg 21lg1.2+-22log log ()3535222log 24log 2log 4⨯=+235log 435213=+=+⨯=3555log 125log 53log 53===lg32lg 21lg3lg 41lg1.2lg1.2+-+-=lg1.21lg1.2==(4).【例题2】求下列各式的值. (1)35log 5+2log 221-501log 5-14log 5;(2)6log 4log 1836+log 263. 【解析】(1)35log 5+2log 221-501log 5-14log 5 =35log 5-2log 2+50log 5-14log 5 =)145035(log 5÷⨯-1=355log -1=2. (2)6log 4log 1836+log 263=18log 2log 66⋅+log 263=)3log 22(log 2log 666+⋅+log 263 =3log 3log 22log 6626⋅++log 263 =266)2log 3(log +=1.提示:灵活运用对数的运算性质、换底公式进行对数式的转化,是对数学习的重点,需进行反复训练,熟能生巧.【例题3】已知 ,, 用, 表示.【解析】因为,所以, 所以 .22log log2log =22log log 42===2log 3a =3log 7b =a b 42log 562log 3a =31log 2a=2333423333log (79)log 7log 3log 63log (237)log 2log 3log 7⨯+==⨯⨯++22111b ab a ab a b a++==++++【例题4】计算(1);(2)【解析】(1)原式. 或 原式. (2)原式.【例题5】(1)设410=a ,5lg =b ,求b a -210的值. (2)1052==b a ,求ba 11+的值. (3)设3log 22=x ,求xx xx --+-222233的值.【解析】(1)由5lg =b ,得510=b,∴ba -210=51610102=b a .(2)∵1052==b a , ∴a =10log 2,b =10log 5, ∴15lg 2lg 11=+=+ba . (3)由3log 22=x ,得3log 2=x ,∵ N a Na=log,∴xx xx --+-222233=6131331931333133=+-=+-. 提示:对数的运算性质和换底公式都是根据对数的定义及对数与指数的关系推导,灵活进行指数、对数之间的的转化,可以帮助我们解决对数式的求值、化简和等式证明. 【例题6】427125log 9log 25log 16⋅⋅483912(log 3log 3)(log 2log 2)log ++-lg 9lg 25lg16lg 4lg 27lg125=⨯⨯2lg32lg54lg 282lg 23lg33lg59=⨯⨯=23524log 3log 5log 233=⋅⋅89==2233111(log 3log 3)(log 2log 2)232+⋅+25log 24+53556242=⨯+=求下列函数的定义域:(1); (2); (3). 【解析】(1)由得,所以函数的定义域是;(2)由,得, 所以函数的定义域是. (3)由 得,所以,函数的定义域是. 【例题7】对于函数)32(log )(221+-=ax x x f ,解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围;(2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的定义域为),3()1,(+∞-∞ ,求实数a 的值; (5)若函数的值域为]1,(--∞,求实数a 的值;(6)若函数在]1,(-∞内为增函数,求实数a 的取值范围. 【解析】记2223)(32)(a a x ax x x g u -+-=+-==,(1)R x u ∈>对0 恒成立,33032min <<-⇒>-=∴a a u , ∴a 的取值范围是)3,3(-;(2)由u 21log 的值域为R ,即)(x g u =能取遍),0(+∞的一切值.)(x g u = 的值域为),,0(),3[2+∞⊇+∞-a∴命题等价于33032min ≥-≤⇒≤-=a a a u 或,0.2log (4)y x =-71log 13y x=-y =40x ->4x <0.2log (4)y x =-(,4)-∞130x ->13x <71log 13y x =-1{|}3x x <2log (43)0x -≥431x -≥1x≥y =[1,)+∞∴a 的取值范围是),3[]3,(+∞--∞ ;(3)命题等价于“),1[0)(+∞-∈>=x x g u 对恒成立”,应按)(x g 的对称轴a x =0分类,∴ ⎩⎨⎧<<--≥⎩⎨⎧->-<⇒⎩⎨⎧<-=∆-≥⎩⎨⎧>--<33121012410)1(12a a a a a a g a 或或, ∴a 的取值范围是)3,2(-;(4)由定义域的概念知,命题等价于不等式0322>+-ax x 的解集为}31|{><x x x 或, ∴ 3,121==x x 是方程0322=+-ax x 的两根, ∴ ,2322121=⇒⎩⎨⎧=⋅=+a x x ax x 即a 的值为2;(5)函数的值域为]1,(--∞,即)(x g 的值域为),2[+∞, ∵)(x g 的值域是),3[2+∞-a ,∴命题等价于123)]([2min ±=⇒=-=a a x g ; 即a 的值为±1; (6)命题等价于:⎩⎨⎧>≥=⇔⎩⎨⎧-∞∈>-∞0)1(1]1,(0)(]1,()(0g a x x x g x g 恒成立对为减函数在, 即⎩⎨⎧<≥21a a ,得a 的取值范围是)2,1[.三、课堂运用【基础】 1.填空:(1)- ; (2) - ;(3) ; (4)=3+2log 32)(-. 【答案】(1)1;(2)-1; (3)2;(4)-1.2log 62log 3=3log 53log 15=551log 75log 3+=2.计算:(1)14;(2). 【解析】(1)原式.或原式; (2)原式.【巩固】3.已知,试用表示.【解析】因为,所以, 所以. 4.(1)已知a =3log 2,b =7log 3,用a ,b 表示56log 42;(2)已知log ,6log ,3log ,2===c b a x x x 求x abc log 的值. 【解析】(1)log 5642=42lg 56lg =3lg 2lg 7lg 2lg 37lg +++, 又∵,3lg 2lg ,3lg 7lg 3lg 7lg ,2lg 3lg ab b a ==⇒== ∴ log 5642=131133lg 3lg 3lg 3lg 33lg +++=+++=+++a ab ab ab a b a b a b . (2)∵a =x 2,b =63,x c x =,∴ 111log log 632==++x x x abc . lg -2lg18lg 7lg 37-+2lg 2lg32lg 0.362lg 2+++2lg(27)2(lg7lg3)lg7lg(32)=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=0=27lg14lg()lg 7lg183=-+-2147lg 7()183⨯=⨯lg10==2lg 2lg32lg3622lg 2+=+-+2lg 2lg314lg 22lg32+==+3log 12a =a 3log 24333log 12log (34)12log 2a =⨯=+=31log 22a -=333log 24log (83)13log 2=⨯=+1311322a a --=+⨯=5.比较下列各组数中两个数的大小:(1),; (2),; (3),,. 【解析】(1)对数函数在上是减函数,于是;(2)因为,,所以;(3)因为,,而, 所以. 【拔高】6.求值(n n 3log 27log 9log 3log 2842++++ )n 32log 9;【解析】 ∵ ,3log 3log 22=nn∴ 原式=25=2log 3log =32log 3log 532922nn .7.已知11log )(--=x mxx f a是奇函数(其中)1,0≠>a a , (1)求m 的值;(2)讨论)(x f 的单调性; (3)求)(x f 的反函数)(1x f-;(4)当)(x f 定义域区间为)2,1(-a 时,)(x f 的值域为),1(+∞,求a 的值.【解析】(1)011log 11log 11log )()(222=--=--+--+=+-xx m x mx x mx x f x f a a a对定义域内的任意x 恒成立,0.5log 1.80.5log 2.17log 56log 72log 34log 5320.5log y x =(0,)+∞0.5log 1.8>0.5log 2.766log 7log 61>=77log 5log 71<=6log 7>7log 524log 3log 9=43log 82=444log 5log 8log 9<<4log 532<<2log 3∴10)1(11122222±=⇒=-⇒=--m x m xx m , 当)1(0)(1≠==x x f m 时不是奇函数,1-=∴m , (2)11log )(-+=x x x f a,∴定义域为),1()1,(+∞--∞ , 11log )(-+=x x x f a =)121(log -+x a , 1>a 时,)(x f 在),1()1,(+∞--∞与上都是减函数; 10<<a 时,)(x f 在),1()1,(+∞--∞与上都是增函数;另解:设11)(-+=x x x g ,任取111221>>-<<x x x x 或, ∵0)1)(1()(21111)()(2112112212<----=-+--+=-x x x x x x x x x g x g , ∴)()(12x g x g <,结论同上;(3)111)1(1111log -+=⇒+=-⇒-+=⇒-+=y y yy y a a a x a x a x x a x x y , ∵ 01≠-y a ,∴0≠y ;)10,0(11)(1≠>≠-+=-a a x a a x f x x 且.(4))2,1()(,3,21->∴-<<a x f a a x 在 上为减函数, ∴ 命题等价于1)2(=-a f ,即014131log 2=+-⇒=--a a a a a , 解得32+=a .提示:函数的性质综合问题,需要准确把握定义域、值域、奇偶性、单调性、反函数等概念,充分运用数形结合、分类讨论、等价转换等数学思想,灵活运用通性通法.四、课程小结(1)对数函数与指数函数的关系对数函数y =x a log (a >0且a ≠1,x >0)是指数函数xa y =)1,0(≠>a a 且的反函数.互为反函数的两个函数的图象关于直线x y =对称. (2)对数函数图象特征1,0≠>a a 时,)(log x y a -=与x y a log =的图象关于y 轴对称;x x x y a aalog 1log log 1-===,x y a1log =与x y a log =的图象关于x 轴对称; 对数函数y =x a log (a >0且a ≠1,x >0)都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴,当1>a 时,图象向下无限接近y 轴).(3)利用对数函数比较大小问题的处理方法: ①看类型 ②同底用单调性 ③其它类型找中间量. 零和负数无对数,是求函数定义域的又一条原则.五、课后作业【基础】1.把下列各题的对数式写成指数式:(1)27log =5x :___ _____ (2) 7log =8x : ____ _____ (3) 3log =4x : ___ _____ (4)31log 7=x :___ _____ (5)log 241=-2: ___ _____ (6)log 3811=-4:___ _____ 【答案】(1)27=5x ; (2) 7=8x ; (3) 3=4x ;(4)31=7x; (5)41=22-; (6)811=34-.2.计算下列各式的值 (1);(2).【解析】(1)原式. 83log 9log 32⨯272log 9+lg9lg32lg8lg3=⨯2lg35lg 23lg 2lg3=⨯103=(2)原式. 3.函数x a y +=1 (0<a <1)的反函数的图象大致是()(A )(B )(C )(D【答案】 C4.已知=,=,求下列对数的值(精确到小数点后第四位)(1);(2);(3). 【解析】(1)0.7781;(2) 0.1761; (3)1.5050.5.比较下列各题中两个值的大小:(1)5log ,9log 76; (2)6.0log ,log 23π;(3)7.0log ,7.0log 32;【解析】(1)1>9log 6,1<5log 7,∴5log >9log 76;(2)0>log 3π,0<6.0log 2,∴6.0log >log 23π;(3)0<2log <3log 7.07.0,∴7.0log =2log 1>3log 1=7.0log 27.07.03.【巩固】1.求下列函数的定义域:233log 922log 273=+=+=83lg 20.3010lg 30.4771lg 63lg 2lg 32lg 6lg 2lg3=+=3lg lg 3lg 22=-=lg325lg 2==(1); (2); (3). 【解析】(1)由得,所以函数的定义域是.(2),且,解得且,所以函数的定义域是且. (3), 得 或, 所以函数的定义域是.2.将函数()x x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图象2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为()A. ()11log 2+-=x yB. ()11log 2--=x yC. ()11log 2++=x yD. ()11log 2-+=x y【答案】B3.计算1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅. 【解析】分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++; 分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴ 原式=43. 4.(1)已知36log ,518,9log 3018求==b a 值.log a y =(0,1)a a >≠21log y x=2(21)log (23)x y x x -=-++10x ->1x>log a y =(0,1)a a >≠{1}x x >2log 0x ≠0x >0x >1x ≠21log y x={0x >1x ≠}2210211230x x x x ⎧->⎪-≠⎨⎪-++>⎩112x <<13x <<2(21)log (23)x y x x -=-++1(,1)(1,3)2(2)已知a =++-)12(log )122(log 27,求)12(log )122(log 27-++.【解析】(1)518=b ,∴,5log 18b = ∴ab a b -+-=-+-+=++=22)2(2)3log 18(log )9log 18(log 16log 5log 2log 18log 36log 181818181818181830. (2)∵ )12(log )122(log 27++- =a =--+-)12(log )122(log 127 ∴a -=-++1)12(log )122(log 27.【拔高】1.若132log >a,则a 的取值范围是()A .231<<aB .23110<<<<a a 或C .132<<aD .1320><<a a 或 【答案】C .2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为()A .[0,1]B .[1,2]C .[2,4]D .[4,16]【答案】D【解析】∵函数)2(x f y =的定义域为[1,2],即)2(xf y =中的4≤2≤2x ; 再由4≤log ≤22x ,得16≤≤4x ,∴函数)(log 2x f y =的定义域为[4,16]. 3.求函数)32(log 221-+=x x y 的单调递增区间.【答案】),--3∞( 4.函数)+(log =221a ax x y -在]2,(-∞上是增函数,求实数a 的取值范围.【解析】 因为对数的底为21,问题转化为在]2,(-∞上0>+2a ax x -, 且a ax x x u +=)(2-在]2,(-∞上是减函数. 于是有2≥2a ,且0>+22=)2(2a a u -. 所以2+22<≤22a 即为所求实数a 的取值范围.。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

新教材高中数学第四章对数运算与对数函数本章总结提升课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数本章总结提升课件北师大版必修第一册

y=g(x)是函数y=f(x)的相关函数.
(1)当a=1时,解关于x的不等式f(x)<1;
(2)对任意的x∈[0,1],f(x)的图象总在其相关函数图象的上方,求实数a的取
值范围.
+ 1 > 0,
解(1)依题意,
log 3 ( + 1) < 1,
则 > -1, 解得-1<x<2,
+ 1 < 3,
C.alogbc<blogac
D.logac<logbc
答案 (1)C (2)C
解析 (1)根据题意,函数 f(x)=log 1 x 在(0,+∞)上为减函数,又由
3
0<log52<log32<1<20.2,则 f(20.2)<f(log32)<f(log52),即 c<a<b.故选 C.
(2)对于选项 A,考虑幂函数 y=xc,因为 c>0,所以 y=xc 为增函数,又 a>b>1,所以
(3)若f(x)>0,求x的取值范围.
10 + > 0,
解(1)要使函数有意义,则
10- > 0,

>
-10,

即-10<x<10,
< 10,
所以函数的定义域为(-10,10).
(2)函数的定义域关于原点对称,
则f(-x)=loga(10-x)-loga(10+x)=-[loga(10+x)-loga(10-x)]=-f(x),
即函数f(x)是奇函数.
(3)若f(x)>0,
则f(x)=loga(10+x)-loga(10-x)>0,

《 对数与对数函数》课件

《 对数与对数函数》课件

1 题目1
已知log35≈1.465,求log325的值。
3 题目2
已知log23≈1.585,求log63的值。
2 解答1
log325=log3((5)2)=2log35≈2×1.465≈2.93。
4 解答2
log63=log23/log26≈1.585/1.585≈1。
例题: 求解对数方程
1 题目1
求解方程log2(3x-2)=3。
3 题目2
求解方程log2x-14=log2(x-1)。
2 解答1
化为指数形式得:23=3x-2,解得x=7/3。
4 解答2
化为指数形式得:(2x-1)log42=x-1,解得x=3。
例题: 理解对数运算的应用
1 题目1
已知ab=c,则logac=?
2 解答1
根据对数的定义得:logac=b。
定义域为(0,+∞),值域为(-∞,+∞)。

对数函数的图像特征
随着x的增加而变化
当x>1时,y随x的增加而增加;当x=1时,y=0;当 0<x<1时,y随x的减小而增加;当x<0时,对数函数 无意义。
渐近线
对数函数的图像有两条渐近线,即x轴和y轴的反比 例函数。
对数函数的性质
1
单调性
当a>1时,对数函数单调递增;当0<a<1
3 题目2
已知log23≈1.585,log27≈2.807,求log521 的值。
4 解答2
log221=log2(3×7)=log23+log27≈1.585+2.80 7=4.392。利用换底公式得: log521=log221/log25≈4.392/2.322≈1.892。

4.3.2对数的运算课件(人教版)

4.3.2对数的运算课件(人教版)
M log a M
(2).log a

N log a N
(3).log a ( MN ) log a M log a N
(4).log a M (log a M )
n
n
范例应用
1.计算log510-log52等于(
)A.log58 B.lg 5C.1
D.2
C
解析:log510-log52=log55=1.
+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2
=2+(lg 10)2=2+1=3.
范例应用
解:
(3)原式=
1.8
21.8
1
=
2
(2+9−10)
1
2
1.8
=

18
10
21.8
=
范例应用
1.利用对数性质求值的解题关键是化
异为同,先使各项底数相同,再找真数间
范例应用
2.log23·log32=
________.
解析:
log23·log32=1.
范例应用
1
32
计算下列各式的值:(1) −
2
49
4
8 + 245
3
2
(2)5 +
2
8
3
+ 5 ∙ 20 + 2
2+3− 10
(3)
1.8
2
范例应用
解:
7
5
(2)
lg 5 100 .
讲授新知
探究
你能根据对数的定义推导出下面
的换底公式吗?
log c b
a 0, 且a 1; c 0, 且c 1; b 0.

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册

【对点练习】❶ 将下列指数式化为对数式,对数式化为指数式:
(1)42=16;(2)102=100;
1
(3)42=2;(4)log132=-5.
2
[解析] (1)log416=2 . (2)lg 100=2.
(3)log42=12.
(4)21-5=32.
题型二
对数基本性质的应用
例 2求下列各式中的x: (1)log3(log2x)=0; (2)log3(log7x)=1; (3)lg(ln x)=1; (4)lg(ln x)=0. [分析] 利用指数式与对数式的互化进行解答.
【对点练习】❷ 求下列各式中 x 的值:
(1)x=log116; 2
(2)log8x=-13;
(3)log( 2 -1)
1 3+2
2=x.
[解析] (1)∵x=log2116,∴12x=16, 即 2-x=24.∴-x=4,即 x=-4.
(2)∵log8x=-13,∴x=8-13=318=12.
5.若ln e-2=-x,则x=____2_. [解析] 由题意可知e-2=e-x,故x=2.
关键能力•攻重难
题型探究
题型一
对数的定义
例 1 (1)在对数式 y=log(x-2)(4-x)中,实数 x 的取值范围是 ___2_<__x_<__4_且__x_≠__3____.
(2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log216=4;③10-2=0.01;④log 5125=6.
第四章 对数运算与对数函数
§1 指数幂的拓展
【素养目标】 1.能结合指数幂解对数的相关概念,常用对数、自然对数.(数 学抽象) 3.能结合教材中的例题掌握指数与对数的互化、简单的求值.(数 学运算)

新教材高中数学第四章对数运算与对数函数3对数函数 对数函数的概念课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数3对数函数 对数函数的概念课件北师大版必修第一册

基础知识
知识点1 对数函数 1.定义:给定正数a,且a≠1,对应每一个正数y,都存在唯一确定的实
数x,使得y=ax.则______是_x_____的函y 数,称为以a为底的对数函数,记作x =logay.一般写成____________y_=__lo_g_a_x_(_a_>__0_且.a≠1)
2.性质:(1)定义域是(0,+∞);(2)图象过定点(1,0); 3.特殊的对数函数: 常用对数函数:y=lg x;自然对数函数:y=ln x.
[解析] (1)要使函数有意义,需 22-x-x1>>00,,且2x-1≠1,即xx><122,. 且x≠1, ∴12<x<2,且 x≠1, 故函数的定义域为x21<x<2,且x≠1.
(2)要使函数有意义,需使 2-ln(3-x)≥0,即33--xx≤>e02, 解得 3-e2≤x<3,故函数的定义域为{x|3-e2≤x<3}.
[归纳提升] 对于对数概念要注意以下两点: (1)在函数的定义中,a>0且a≠1. (2)在解析式y=logax中,logax的系数必须为1,真数必须为x,底数a必须 是大于0且不等于1的常数.
【对点练习】❶ 指出下列函数中,哪些是对数函数?
①y=5x; ②y=-log3x; ③y=log0.5 x; ④y=log3x;
思考:为什么对数函数的图象过定点(1,0)? 提示:因为x=1时,y=loga1=0.
知识点2 反函数 指数函数y=ax是对数函数y=logax的反函数,对数函数y=logax也是指
数函数y=ax的反函数.即它们互为反函数.
基础自测
1.下列函数是对数函数的是
(D)
A.y=2+log3x B.y=loga(2a)(a>0,且a≠1) C.y=logax2(a>0,且a≠1) D.y=ln x

对数与对数函数省名师优质课赛课获奖课件市赛课一等奖课件

对数与对数函数省名师优质课赛课获奖课件市赛课一等奖课件

=(lg5+lg2)2
=1.
(2)原式=lg 2 (2lg 2 +lg5)+ (lg 2 -1)2 =lg 2 (lg2+lg5)+(1-lg 2 ) =lg 2 +1-lg 2 =1.
(3)原式=lg5(3lg2+3)+3lg22-lg6+lg6-2
=3lg5lg2+3lg5+3lg22-2 =3lg2(lg5+lg2)+3lg5-2 =3(lg2+lg5)-2

log
2
x y
=log
4=4.
2
7.已知 a>b>1, 且 3lgab+3lgba=10, 求 lgab-lgba 旳值.
解: 注意到 lgab·lgba=1,
又已知
lgab+lgba=
10 3
,
∴(lgab-lgba)2=(lgab+lgba)2-464 9
.
5.已知有关 x 旳方程 lg(ax)·lg(ax2)=4 旳全部解都不小于 1, 求
实数 a 旳取值范围.
(0, 1010)
6.设 s, t>1, mR, x=logst+logts, y=logs4t+logt4s+m(logs2t+logt2s). (1)将 y 表达为 x 旳函数 y=f(x), 并求出 f(x) 旳定义域; (2)若有关
A.
2 4
B.
2 2
C.
1 2
D.
1 4
3.对于 0<a<1, 给出下列不等式, 能成立旳是( D )
① loga(1+a)<loga(1+ a1);

高中数学第四章对数运算与对数函数3对数函数 对数函数y=logax的图象和性质课件北师大版必修第一册

高中数学第四章对数运算与对数函数3对数函数 对数函数y=logax的图象和性质课件北师大版必修第一册

(2)当0<x<1,a>1或x>1,0<a<1时,logax<0,即当真数x和底数a中一个大于 1,而另一个大于0且小于1时,也就是说真数x和底数a的取值范围“相异” 时,对数logax<0,即对数值为负数,简称为“异负”.因此对数的符号简称 为“同正异负”.
3.指数型、对数型函数的图象与性质的讨论,常常要转化为相应指 数函数,对数函数的图象与性质的问题.
第四章 对数运算与对数函数
§3 对数函数 3.3 对数函数y=logax的图象和性质
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点1 对数函数的图象和性质 (1)图象和性质:
0<a<1
a>1
图象
性质
0<a<1
a>1
①定义域:(0,+∞)
②值域:R
③过定点(1,0),即x=1时,y=0
若 x∈-∞,13,∵u=3x2-2x-1 为减函数, ∴f(x)=loga(3x2-2x-1)为减函数. 当 0<a<1 时,y=logau 为减函数,若 x∈(1,+∞),则 f(x)=loga(3x2 -2x-1)为减函数, 若 x∈-∞,-13,则 f(x)=loga(3x2-2x-1)为增函数.
关键能力•攻重难
题型一
题型探究 对数函数的图象
例 1 已知图中曲线C1,C2,C3,C4分别是函数y=loga1x,y=loga2x,y=
loga3x,y=loga4x的图象,则a1,a2,a3,a4的大小关系是
()
A.a4<a3<a2<a1
B
B.a3<a4<a1<a2

高中数学第四章对数运算与对数函数3对数函数 对数函数y=log2x的图象和性质课件北师大版必修第一册

高中数学第四章对数运算与对数函数3对数函数 对数函数y=log2x的图象和性质课件北师大版必修第一册

(2)因为函数 y=log2x 在定义域(0,+∞)上是增函数,且 0.5<0.8,
所以 log20.5<log20.8<0,所以log120.8<log120.5.
(3)因为函数 y=log1x 在定义域(0,+∞)上是减函数,且 3.2<3.6,
4
所以 log13.2>log13.6.
4
4
[归纳提升] 关于对数大小的比较 (1)对于底数相同的数,首先考查所涉及的函数的单调性,再比较真数 的大小,最后利用单调性比较两个数的大小. (2)对于底数不同的数,可以借助换底公式化同底,再比较大小.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)函数 y=log2x 的图象都在 y 轴的左侧.
(2)函数 y=log1x 在定义域(0,+∞)上是增函数.
2
(×) (×)
(3)函数 y=log2x 的图象在直线 x=1 右侧,图象位于 x 轴上方;在直
线 x=1 左侧,图象位于 x 轴下方.
题型三
函数y=log2x的性质的应用
例 3 使不等式log2(2x)>log2(5x-3)成立的实数x的集合为 ___x_35_<__x_<__1__.
[解析] 因为函数 y=log2x 是(0,+∞)上的增函数, 2x>0,
所以52xx->35>x-03,,解得35<x<1. 所 以 使 不 等 式 log2(2x) > log2(5x - 3) 成 立 的 实 数 x 的 集 合 为 x35<x<1.
【对点练习】❷ 已知 a=log20.2,b=log10.2,c=log42,则 a,b,
2
c 由小到大的顺序为___a_<__c_<__b___.
[解析] 因为 a=log20.2<0,b=log120.2=log1251=log25,c=log42=

新教材高中数学单元复习课第4课时对数运算与对数函数课件北师大版必修第一册

新教材高中数学单元复习课第4课时对数运算与对数函数课件北师大版必修第一册


【变式训练 1】

解析:
-


答案:
-



+log3+log3=


+log3 +log3


=
.
-


+log31= +0= .



专题二 对数函数的图象
【例2】 如图,函数f(x)的图象为折线ACB,则不等式
f(x)≥log2(x+1)的解集是(
4.对数的换底公式是怎样的?
提示:对数的换底公式为若 a>0,b>0,c>0,且 a≠1,c≠1,


logab=
.

5.对数运算的一般思路是什么?
提示:对数运算的一般思路:
(1)第一利用幂的运算把底数或真数进行变形,化成分数指数
幂的情势,使幂的底数最简,然后正用对数运算性质化简合并.
【变式训练2】 若函数y=logax(a>0,且a≠1)的图象如图所示,
则下列函数图象正确的是(
)
解析:由题意得y=logax(a>0,且a≠1)的图象过(3,1)点,
可解得a=3.
选项 A 中,y=3 =
-x

,显然图象错误;

选项B中,y=x3,由幂函数的图象可知正确;
选项C中,y=(-x)3=-x3,显然图象不符;
(2)若a>0,且a≠1,则loga1=0,logaa=1;
(3) =N.
3.对数的运算性质有哪些?
提示:若 a>0,且 a≠1,M>0,N>0,b∈R,
那么:(1)loga(M·N)=logaM+logaN;

新教材高中数学第四章对数运算与对数函数2对数的运算2-1对数的运算性质课件北师大版必修第一册

新教材高中数学第四章对数运算与对数函数2对数的运算2-1对数的运算性质课件北师大版必修第一册

1 2
-logaz
1 3
=2logax+12logay-13logaz
(3)loga yzx=loga x-loga(yz)=12logax-logay-logaz
状元随笔 熟练掌握对数的运算性质并正确应用是解题的关 键.
题型二 利用对数运算性质求值——师生共研
例 1 计算下列各式的值.
(1)2
跟踪训练1
(1)3
lg
0.01+ln
e3等于(
)
A.14 B.0
C.1 D.6
解析:(1)3 log3 4 -27
2 3
-lg
0.01+ln
e3=4-3
272-lg1100+3=4
-32-(-2)+3=0.选B.
答案:(1)B
(2)lg 2-lg14+3lg 5=________.
1+
1 2
log2
5

(2)3 log3 4-lg 10 +2ln 1;
(3)lg 14-2lg 73+lg 7-lg 18;
lg (4)
27+lg 8-3lg lg 1.2
10;
(5)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
解析:(1)2
1+
1 2
log2
5
=2·2
1 2
答案:D
4.已知 log32=a,3b=5,则 log3 30用 a,b 表示为________.
解析:∵log32=a,b=log35, ∴log3 30=12log330=12(log35+1+log32)=12(1+a+b). 答案:12(1+a+b)
题型一 用简单的对数式表示较复杂的对数式——自主完成

北师版高中数学必修第一册精品课件 第4章 对数运算与对数函数 2.2 换底公式

北师版高中数学必修第一册精品课件 第4章 对数运算与对数函数 2.2 换底公式
∴x=log230=1+log215,y=log330=1+log310,z=log530=1+log56.
1.在对数式、指数式的互化运算中,要注意灵活运用定义、性
质和运算法则,尤其要注意条件和结论之间的关系,进行正确
的相互转化.
2.对于连等式可令其等于k(k>0),然后将指数式用对数式表示,
再由换底公式就可将指数的倒数化为同底的对数,从而使问
x
y
z

,且 + + =1,求
x,y,z
的值.
解:令 2x=3y=5z=k(k>0,且 k≠1),
则 x=log2k,y=log3k,z=log5k,



于是 =logk2, =logk3, =logk5,




由 + + =1,


得 logk2+logk3+logk5=logk30=1,∴k=30,




解:(1)原式= × =
×
= × = .








(2)原式=
+
+
= × ×
· = .


2.2
换底公式
自主预习·新知导学
合作探究·释疑解惑
对数的换底公式
【问题思考】
1.对数式log24·log39可化为2×2=4,那么以你现有的知识能化
简log23·log32吗?
提示:不能,因为两个对数的底数与真数都是最简的形式,难以
求出最后结果,因而需要引入对数的换底公式.

高中数学第4章对数运算和对数函数2对数的运算课件北师大版必修第一册

高中数学第4章对数运算和对数函数2对数的运算课件北师大版必修第一册
(2)lg 5 100=lg 100 =51lg 100=51×2=52. (3)lg 14-2lg73+lg 7-lg 18=lg(2×7)-2(lg 7-lg 3)+lg 7- lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.
(4)法一:原式=lg 5(2lg 2+lg 5)+(lg 2)2=(lg 5+lg 2)2=(lg 10)2=
12345
5.若logab·log3a=4,则b的值为________.
81
[logab·log3a=llgg
b lg a·lg
3a=llgg
3b=4,
所以lg b=4lg 3=lg 34,
所以b=34=81.]
1234 5
[跟进训练] 1.求下列各式的值. (1)24+log23;(2)12log312-log32;(3)lg25+2lg2-lg22.
[解] (1)24+log23=24×2log23=16×3=48.
(2) 12log312-log32=log3
12-log32=log3
12 2
=log3 3=21 .
[跟进训练]
3.已知x,y,z都是大于1的正数,m>0,且logxm=24,logym= 40,logxyzm=12,求logzm的值.
[解] 由logxm=24得logmx=214,由logym=40得logmy=410,由
logxyzm=12得logm(xyz)=112,则logmx+logmy+logmz=112. 所以logmz=112-214-410=610, 所以logzm=60.
[解] 因为9b=5, 所以log95=b. 所以log3645=lloogg994356=lloogg9954× ×99=lloogg9945++lloogg9999=ab++11.

对数及对数函数的图像与性质(教师版)

对数及对数函数的图像与性质(教师版)

第一课时 对数及其运算【知识要点】 1.对数的定义:如果N a b=(a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作b N a =log2.指数式与对数式的关系:b N N a a b=⇔=log (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.3.对数运算公式:如果0a >,1a ≠,0M >,0N >,那么 (1)log 10a =; log 1a a =; log a Na N =; logb a a b =;(2)()log log log a a a MN M N=+ (3)log log log aa a MM N N=- (4)()log log n a a M n M n R =∈(5)1log log aa M n=(6)换底公式 ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠ 换底公式推论:(1)1log log a c c a =;(2)log log log 1a b c b c a ⋅⋅=;(3)log log m n a a n b b m= 【典题精讲】题型一 对数的化简、求值1.b N N a a b=⇔=log .2.注意对数恒等式log aN a N=,对数换底公式log log log b a b NN a=及等式m n a a a 1log b log b,log b b n m log a=⋅=在解题中的灵活应用.【例1】(1) 若23=x,则x = 465=⎪⎭⎫⎝⎛x,求=x(2)设3643==ba ,则=+ba 12__________; (3)计算:22)2(lg 20lg 5lg 8lg 325lg +⋅++解析:(2)由3a =4b =36得a =log 336,b =log 436,再根据换底公式得a =log 336=1log 363,b=log 436=1log 364.所以2a +1b =2log 363+log 364=log 36(32×4)=1.(3)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2(lg5+lg2)+(lg5)2+2lg5·lg2+(lg2)2=2lg10+(lg5+lg2)2=2+1=3. 【变式1】已知32a =,那么33log 82log 6-用表示是( A )A .2a -B .52a -C .23(1)a a -+ D . 23a a -【变式2】若=-=-33)2lg()2lg(,lg lg y xa y x 则( A )A .a 3B .a 23C .23-aD .a【变式3】(1)计算=-+23lg 53lg 25lg __________. 答案:1(2)计算:=+⋅+20lg 5lg 2lg 5lg 2__________. 答案:2【例2()lg1000lg1041lg10lg102-==-⨯-; 【变式1】lg 的值是( )A.12B.1C.10D.100 【答案】B【解析】由1==,故选B.【变式2】已知,lg ,24a x a==则x =________.【解析】由42a =得12a =,所以1lg 2x =,解得x =,【变式3】设2a =5b =m ,且1a +1b =2,则m =_________.【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2,所以m 2=10,m =10.【变式4】(1)若0)](log [log log 432=x ,则x =___________(2)若__________3log ,2log123==则a(3)若2log 2,log 3,m na a m n a +===___________答案:(1) 64 (2)11+a (3) 12【变式5】已知()lg lg 2lg 23x y x y +=-,求32log xy的值.【解析】2009223,230(423)x y x lgx lgy lg x y x y y xy x y >⎧⎪>⎪+=-∴∴=⎨->⎪⎪-⎩Q (),=或1x y =(舍去),33229log log 24x y ==. 题型二 对数换底公式的应用【例2】 设+∈R z y x ,,,且zy x 643==.(1) 求证:yx z 2111=-; (2)比较z y x 6,4,3的大小。

2.6对数与对数函数 教师讲义

2.6对数与对数函数 教师讲义

名思教育辅导讲义学员姓名辅导科目 数学 年 级高一授课教师课 题 对数与对数函数授课时间教学目标重点、难点考点及考试要求教学内容1. 对数的概念一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 2. 对数log a N (a >0,且a ≠1)具有下列性质(1)N >0; (2)log a 1=0; (3)log a a =1. 3. 对数的运算法则(1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M α=αlog a M (α∈R ). 4.两个重要公式 (1)对数恒等式:log a Na=__N __(2)换底公式:log b N =log a Nlog a b .5.对数函数的图象与性质a >10<a <1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)当x>1时,y>0;当0<x<1时,y<0(5)当x>1时,y<0;当0<x<1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数6. 反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若log2(log3x)=log3(log2y)=0,则x+y=5. (√)(2)2log510+log50.25=5. (×)(3)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=2. (√)(4)log2x2=2log2x. (×)(5)当x>1时,log a x>0. (×)(6)当x>1时,若log a x>log b x,则a<b. (×) 2.(2013·课标全国Ⅱ)设a=log36,b=log510,c=log714,则() A.c>b>a B.b>c>aC.a>c>b D.a>b>c答案 D解析a=log36=1+log32=1+1log23,b=log510=1+log52=1+1log25,c=log714=1+log72=1+1log27,显然a>b>c.3.(2013·浙江)已知x,y为正实数,则() A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y答案 D解析 2lg x ·2lg y =2lg x +lg y=2lg(xy ).故选D.4. 函数f (x )=log 5(2x +1)的单调增区间是________.答案 (-12,+∞)解析 函数f (x )的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数, t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间是(-12,+∞).5. 已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (18log x )>0的解集为________________. 答案 ⎝⎛⎭⎫0,12∪(2,+∞) 解析 ∵f (x )是R 上的偶函数, ∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数, 由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f (18log x )>0⇒18log x <-13或18log x >13⇒x >2或0<x <12,∴x ∈⎝⎛⎭⎫0,12∪(2,+∞).题型一 对数式的运算例1 (1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f (log 312)的值是( )A .5B .3C .-1 D.72思维启迪 (1)利用对数的定义将x =log 43化成4x =3; (2)利用分段函数的意义先求f (1),再求f (f (1)); f (log 312)可利用对数恒等式进行计算.答案 (1)D (2)A解析 (1)由x =log 43,得4x =3,即2x =3, 2-x =33,所以(2x -2-x )2=(233)2=43. (2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2.因为log 312<0,所以f (log 312)=31log 231-+=3log 23+1=2+1=3.所以f (f (1))+f (log 312)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=⎩⎪⎨⎪⎧12x ,x ≥4,f x +1,x <4,则f (2+log 23)的值为________.答案124解析 因为2+log 23<4,所以f (2+log 23)=f (3+log 23),而3+log 23>4,所以f (3+log 23)=(12)323log +=18×(12)32log =18×13=124. 题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (12log 3),c =f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象;(2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的. 答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C. (2) 12log 3=-log 23=-log 49,b =f (12log 3)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝⎛⎭⎫1535-=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数, 且在(-∞,0]上是增函数, 故f (x )在[0,+∞)上是单调递减的, ∴f (0.2-0.6)<f (12log 3)<f (log 47),即c <b <a .思维升华 (1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等; (2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a =21.2,b =⎝⎛⎭⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 答案 (1)A (2)2 2解析 (1)b =⎝⎛⎭⎫12-0.8=20.8<21.2=a , c =2log 52=log 522<log 55=1<20.8=b , 故c <b <a .(2)f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,∴⎩⎪⎨⎪⎧ b -1=1b =a ,即⎩⎪⎨⎪⎧b =2a =2. 题型三 对数函数的应用例3 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.思维启迪 f (x )恒有意义转化为“恒成立”问题,分离参数a 来解决;探究a 是否存在,可从单调性入手. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数, x ∈[0,2]时,t (x )最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数, ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a 3-a =1,即⎩⎨⎧a <32a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质 (1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行; (3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f (x )=log 4(4x -1).(1)求f (x )的定义域; (2)讨论f (x )的单调性;(3)求f (x )在区间[12,2]上的值域.解 (1)由4x -1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上递增. (3)f (x )在区间[12,2]上递增,又f (12)=0,f (2)=log 415,因此f (x )在[12,2]上的值域为[0,log 415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( )A .a >b >cB .a <b <cC .b <a <cD .a <c <b(2)已知a =2log 3.45,b =2log 3.65,c =(15)3log 0.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(logπ3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小; (2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. 解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =(15)3log 0.3=53log 0.3=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4, ∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数,∴2log 3.45>5310log 3>5log 43.6.即2log 3.45>(15)3log 0.3>2log 3.65,故a >c >b . (3)因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数. 因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2, 所以0<log π3<20.2<log 39, 所以b >a >c ,选A. 答案 (1)C (2)C (3)A温馨提醒 (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,多选0或1.五、教师评定:1、学生上次作业评价:○好○较好○一般○差2、学生本次上课情况评价:○好○较好○一般○差教师签字:教研主任签字:________。

高中数学第4章对数运算与对数函数2.1对数的运算性质课件北师大版

高中数学第4章对数运算与对数函数2.1对数的运算性质课件北师大版
件,导致出现增根x=0.
正解:原方程可化为log2(9x-5)=log2[4(3x-2)],
- > ①,
于是 - > ②,
- = · -③.
由③得32x-4·3x+3=0,即(3x-3)(3x-1)=0,
解得x=1,或x=0.
将x=1与x=0分别代入①②中检验,知x=1是原方程的根,x=0是
4.设 3a=2,3b=5,则 log3√=
.
解析:由 3a=2,得 a=log32,由 3b=5,得 b=log35,
所以

log3√=log33
=

log
3(3×5×2)



=(log33+log35+log32)=(1+b+a)

= a+ b+ .


增根,舍去.
故原方程的解为x=1.
求解对数问题时,经常需要将对数符号“脱掉”,此时很容易忽
略原式中对数的真数大于0这一“隐性”限制条件,从而导致错
误,因此在解此类题时,一定要首先考虑这一条件.
1.log35-log315=(
)
A.-1
3(-10)

解析:log35-log315=log3=-1.
B.lg 25
C.1
D.lg 32
(2)2log525+3log264=
.
解析:(1)lg 2+lg 5=lg(2×5)=lg 10=1.
(2)原式=2log552+3log226=4+18=22.
答案:(1)C (2)22
【思考辨析】
判断下列说法是否正确,正确的在它后面的括号里画“√”,错
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为什么叫对数?指数跟对数关系是什么?一、对数的定义一般地,如果 ()1,0≠>a a a 的b 次幂等于N , 就是 N a b=,那么数 b 叫做 以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数。

特别提醒:1、对数记号log a N 只有在01a a ≠且>,0N >时才有意义,就是说负数和零是没有对数的。

2、记忆两个关系式:①log 10a =;②log 1a a =。

3、常用对数:我们通常将以10为底的对数叫做常用对数。

为了简便, N 的常用对数N 10log , 简记作:lg N 。

例如:10log 5简记作lg 5 5.3log 10简记作lg 3.5。

4、自然对数:在科学技术中常常使用以无理数e 为底的对数,以e 为底的对数叫自然对数。

为了简便,N 的自然对数N e log ,简记作:ln N 。

如:3log e 简记作ln 3;10log e 简记作ln10。

二、对数运算性质:如果 0,1,0,0,a a M N n R ≠∈>>> 有:log ()log log a a a MN M N =+log log loga a a MM N N=- log log () n a a M n M n R =∈特别提醒:1、对于上面的每一条运算性质,都要注意只有当式子中所有的对数记号都有意义时,等式才成立。

如[]2log (3)(5)--是存在的,但[]222log (3)(5)log (3)log (5)--=-+-是不成立的。

2、注意上述公式的逆向运用:如lg5lg 2lg101+==;对数与对数函数三、对数的换底公式及推论: 对数换底公式:()log log 0,1,0,1,0log m a m NN a a m m N a=≠≠>>>两个常用的推论: (1)1log log =⋅a b b a(2)1log log log =⋅⋅a c b c b a四、两个常用的恒等式:N a N a =log ,log log m n a a nb b m=()0,1,0,0a a b N ≠>>> 五、对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数。

六、对数函数的图像和性质:a >1 01a <<图 像性 质定义域:()0,+∞值域:R过点()1,0,即当1x =时,0y =)1,0(∈x 时,0<y ;),1(+∞∈x 时, 0>y)1,0(∈x 时,0>y ;),1(+∞∈x 时,0<y在()0,+∞上是增函数在()0,+∞上是减函数七、比较对数值的大小,常见题型有以下几类:1、比较同底数对数值的大小:利用函数的单调性;当底数是同一参数时,要对对参数进行分类讨论;2、比较同真数对数值的大小:可利用函数图像进行比较;3、比较底数和真数都不相同的对数值的大小:可选取中间量如:“1”、“0”等进行比较。

八、对数不等式的解法:()()()()()()()()()() 1 log log 0 01log log 0a a a a f x g x a f x g x f x f x g x a f x g x f x >⎧>>⎨>⎩<⎧<<>⎨>⎩当时,与同解。

当时,与同解。

九、对数方程常见的可解类型有:形如()()()()()log log 01,0,0a a f x g x a a f x g x =>≠>>且的方程,化成()()f x g x =求解;形如()log 0a F x =的方程,用换元法解;形如()()log f x g x c =的方程,化成指数式()()cf xg x =⎡⎤⎣⎦求解指数、底数都不同:可利用中间量进行比较。

(20-40分钟)指数幂的运算性质【典题导入】【亮点题】例1:将下列指数式与对数式进行互化.(1)3x=127;(2)⎝ ⎛⎭⎪⎫14x=64; (3)5-12 =15;(4)2log4=4;(5)lg0.001=-3; (6)21log(21)-+=-1.【方法提炼】考点1【小试牛刀】练习1:将下列指数式与对数式进行互化. (1)e 0=1;(2)(2+3)-1=2-3; (3)log 327=3; (4)log 0.10.001=3.对数基本性质的应用【典题导入】【亮点题】例2:求下列各式中x 的值.(1)log 2(log 5x )=0; (2)log 3(lg x )=1;【方法提炼】【小试牛刀】练习2:已知log 2(log 3(log 4x ))=log 3(log 4(log 2y ))=0,求x +y 的值.(20-40分钟)A1.已知log 7[log 3(log 2x )]=0,那么x -12等于( )A .13B .123C .122D .1332.若f (10x )=x ,则f (3)的值为( ) A .log 310 B .lg3 C .103D .3103.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =a +3b -c B .x =3ab5cC .x =ab 3c5D .x =a +b 3-c 34.方程2log 3x =14的解是( )A .33B .3C .19D .95.e ln3-e -ln2等于( )A .1B .2C .52D .3B1.若log (1-x )(1+x )2=1,则x =________. 2.若log x (2+3)=-1,则x =________. 3.已知log 32=a ,则2log 36+log 30.5=________.4. (1)设log a 2=m ,log a 3=n ,求a 2m+n的值;(2)设x =log 23,求22x +2-2x +22x +2-x 的值. 5. 已知log a x +3log x a -log x y =3(a >1). (1)若设x =a t ,试用a 、t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值.C1、使对数log a (-2a +1)有意义的a 的取值范围为( ) A .0<a <12且a ≠1B .0<a <12C .a >0且a ≠1D .a <122、已知x 、y 为正实数,则下列各式正确的是( ) A .2lg x +lg y 2=2lg x +2lg y B .2lg(x +y )=2lg x ·2lg y C .2(lg x ·lg y )=2lg x +2lg yD .2lg(xy )=2lg x ·2lg y3、若lg2=a ,lg3=b ,则lg12lg15等于( )A .2a +b 1-a +bB .2a +b 1+a +bC .a +2b 1-a +bD .a +2b1+a +b4、.log 52·log 425等于( ) A .-1 B .12C .1D .25、化简log 1a b -log a 1b 的值为( )A .0B .1C .2log a bD .-2log a b(5分钟)1.已知a >0且a ≠1,函数y =a x与y =log a (-x )的图象可能是下图中的( )2.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2B .y =x +1xC .y =2x+12xD .y =x +e x3.函数y =x +2,x ∈R 的反函数为( ) A .x =2-y B .x =y -2 C .y =2-x ,x ∈RD .y =x -2,x ∈R4.已知函数y =f (x )与y =e x互为反函数,函数y =g (x )的图象与y =f (x )的图象关于x 轴对称,若g (a )=1,则实数a 的值为( )A .-eB .-1eC .1eD .e5.函数y =log 2(4x -x 2)的递增区间为________.答案部分例1(1)log 3127=x .(2) log 14 64=x .(3)log 515=-12.(4)(2)4=4. (5)10-3=0.001. (6)(2-1)-1=2+1. 练习1答案:(1)ln1=0.(2)2log =-1.(3)33=27.(4)0.13=0.001.例2解析:(1)∵log 2(log 5x )=0, ∴log 5x =1,∴x =5.(2)∵log 3(lg x )=1,∴lg x =3,∴x =103=1 000. 答案:(1)x =5.(2) x =1 000. 练习2答案:80 A1.答案:C2.答案:B3.答案:C4.答案:C5.答案: C B1.答案:-32.答案:2-33.答案:2+a4.答案:(1)12.(2)103. 5.答案:(1)y =at 2-3t +3(t ≠0). (2)a =16,x =64. C1.答案: B2.答案:A3.答案:A4.答案:C5.答案:A优能测1.答案:B2.答案:D3.答案:D4.答案:C5.答案: (0,2]。

相关文档
最新文档