浙教版八年级数学下册第六章 反比例函数练习题

合集下载

八年级数学下册《第六章 反比例函数》练习题-附答案(浙教版)

八年级数学下册《第六章 反比例函数》练习题-附答案(浙教版)

八年级数学下册《第六章反比例函数》练习题-附答案(浙教版) 一、选择题1.反比例函数y=15x中的k值为( )A.1B.5C.15D.02.反比例函数y=-2x的图象在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.-12B.2C.1D.-15.如图,A,C是函数y=1x的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )A.S1>S2B.S1<S2C.S1=S2D.S1和S2的大小关系不能确定6.如图,直线y=14x与双曲线y=4x相交于点(-4,-1)和(4,1),则不等式14x>4x的解集为( )A.-4<x<0或x>4B.x<-4或0<x<4C.-4<x<4且x≠0D.x<-4或x>47.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )8.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,若以此蓄电池为电源的用电器限制电流不得超过10 A,则此用电器的可变电阻应( )A.不小于4.8 ΩB.不大于4.8 ΩC.不小于14 ΩD.不大于14 Ω9.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( ) A.﹣5 B.﹣4 C.﹣3 D.﹣210.如图,在第一象限的点A既在双曲线y=12x上,又在直线y=2x﹣2上,且直线y=2x﹣2与x轴相交于点B,C(0,b)、D(0,b+2),当四边形ABCD周长取得最小值时,b=( )A.12B.34C.1D.52 二、填空题11.若y =1x 2n -5是反比例函数,则n =________.12.若反比例函数y =的图象位于第一、三象限,则正整数k 的值是 .13.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x 和y =-4x 的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.14.已知点A(-2,y 1),B(-1,y 2)和C(3,y 3)都在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系为____________(用“<”连接).15.小明家离学校1.5 km ,小明步行上学需x min ,那么小明步行速度y(单位:m/min)可以表示为y =1500x ;水平地面上重1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)可以表示为y =1500x ……,函数关系式y =1500x还可以表示许多不同情境中变量之间的关系,请你再列举一例:____________________________________________________________.16.如图,在平面直角坐标系中,反比例函数y =2x (x >0)的图象与正比例函数y =kx ,y =1k x(k>1)的图象分别交于点A ,B ,若∠AOB =45°,则△AOB 的面积是______.三、解答题17.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=-12时,y的值.18.已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.19.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.如图,反比例函数y=kx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.如图,已知正方形OABC的面积为4,点O是坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(x>0,k>0)的图象上,点P(m,n)是函数y=kx(x>0,k>0)的图象上任意一点.过点P分别作x轴、y轴的垂线,垂足分别为点E,F.若设矩形OEPF和正方形OABC不重合部分的面积为S.求当S>1时,求m的取值范围.23.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.24.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y=kx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kx(x>0)的图象于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.参考答案1.C2.D3.B.4.D5.C6.A7.C8.A9.C. 10.A. 11.答案为:3. 12.答案为:1. 13.答案为:3. 14.答案为:y 2<y 1<y 3.15.答案为:体积为1500 cm 3的圆柱底面积为x cm 2,那么圆柱的高y cm 可以表示为y =1500x(答案不唯一,正确合理均可). 16.答案为:2.17.解:依题意,设y 1=k 1x 2,y 2=k 2x则y =y 1+y 2=k 1x 2+k 2x.∵当x =1时,y =3;当x =-1时,y =1 ∴⎩⎨⎧k 1+k 2=3,k 1-k 2=1,解得⎩⎨⎧k 1=2k 2=1, ∴y =2x 2+1x.当x=-12时,y=12-2=-32.18.解:(1)∵反比例函数y=kx的图象经过点A(2,3)把点A的坐标代入解析式,得3=k2,解得k=6.∴这个函数的解析式为y=6 x .(2)点B不在这个函数的图象上,点C在这个函数的图象上.理由:分别把点B,C的坐标代入y=6 x可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式∴点B不在这个函数的图象上,点C在这个函数的图象上. (3)∵当x=-3时,y=-2;当x=-1时,y=-6.又由k>0,知当x<0时,y随x的增大而减小∴当-3<x<-1时,-6<y<-2.19.解:(1)∵反比例函数y=mx(m≠0)的图象过点A(3,1)∴m=3.∴反比例函数的表达式为y=3 x .∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2). ∴,解得:∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0). ∵S△ABP=31 2PC×1+12PC×2=3.∴PC=2∴点P的坐标为(0,0)、(4,0).20.解:(1)将(40,1)代入t=kv,得1=k40,解得k=40.函数关系式为:t=40 v.当t=0.5时,0.5=40m,解得m=80.所以,k=40,m=80.(2)令v=60,得t=4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)把点A(2,6)代入y=kx,得m=12,则y=12x.把点B(n,1)代入y=12x,得n=12,则点B的坐标为(12,1).由直线y=kx+b过点A(2,6),点B(12,1)得,解得则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE 则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).22.解:∵正方形OABC 的面积为4∴OA =AB =2∴B 点坐标为(2,2).∵点B 在函数y =k x(x >0,k >0)的图象上 ∴把B(2,2)代入y =k x中,得k =4. ∴反比例函数的解析式为y =4x. ∵P(m ,n)在y =4x上 ∴mn =4∴n =4m. ∵S =AE ·PE +CB ·CF∴S =(m -2)·n +2(2-n)=mn -2n +4-2n =mn -4n +4=8-16m. ∵S >1,∴16m<7. ∵x >0∴m 的取值范围m >167. 23.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,﹣3)∴AB =5∵四边形ABCD 为正方形∴点C的坐标为(5,﹣3).∵反比例函数y=kx的图象经过点C∴解得k=﹣15∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C ∴,解得∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积∴12×OA•|x|=52∴12×2•|x|=25,解得x=±25.当x=25时,y=﹣35;当x=﹣25时,y=35.∴P点的坐标为(25,﹣35)或(﹣25,35).24.解:(1)∵一次函数y=x+b的图象经过点A(-2,0) ∴0=-2+b,解得b=2∴一次函数的表达式为y=x+2.∵一次函数y=x+2的图象与反比例函数y=kx(x>0)的图象交于B(a,4)∴4=a+2,解得a=2,∴B(2,4)∴4=k2,解得k=8∴反比例函数的表达式为y=8x(x>0).(2)∵点A(-2,0),∴OA=2.设点M(m-2,m),点N(8m,m)当MN∥AO且MN=AO时,四边形AONM是平行四边形|8m-(m-2)|=2且m>0解得m=22或m=23+2∴点M的坐标为(22-2,22)或(23,23+2).。

浙教版八年级数学下册第六章 反比例函数练习(包含答案)

浙教版八年级数学下册第六章 反比例函数练习(包含答案)

第六章 反比例函数一、单选题1.下列选项中的函数,y 关于x 成反比例函数的是()A .12y x =+B .13y x =C .21y x =D .2x y = 2.已知y 与x 成反比例,且当2x =时,3y =,则y 关于x 的函数解析式是( ) A .6y x = B .1 6y x = C .6y x = D .26y x-= 3.已知反比例函数k y x=经过点()2,3A -,当3y <时自变量x 的取值范围为( ) A .2x <- B .2x >C .2x <-或0x >D .2x >或0x < 4.关于反比例函数y =﹣3x,下列说法错误的是( ) A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点5.反比例函数y=-3x -1的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A .x 1<x 2 B .x 1=x 2 C .x 1>x 2 D .不确定 6.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x7.如图,直线l⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2的值为( )A .2B .3C .4D .﹣48.在矩形ABCD 中,E 点为AB 上的一点,AB =8,AD =6,连接CE ,作DF ⊥CE 于F 点,令CE =x ,DF =y ,下列关于y 与x 的函数关系图象大致是( )A .B .C .D .9.近视镜镜片的焦距y (单位:米)是镜片的度数x (单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:( )A .y=1100xB .y=100xC .y=﹣1200x+32D .y=21131940008008x x -+ 10.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=k x过P 、B 两点,则k 的值为( )A .23BC .43 D二、填空题11.已知反比例函数13m y x-=(m 为常数)的图象在一、三象限,则m 的取值范围为_____. 12.如果点1(3,)A y 、2(4,)B y 在反比例函数2y x=的图象上,那么1y _____2y .(填“>”、“<”或“=”) 13.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.14.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.三、解答题15.己知y -1与x+2成反比例函数关系,且当x=-1时,y=3.求:(1)y 与x 的函数关系式;(2)当x=0时,y 的值.16.如图,在平面直角坐标系中,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于(4,2),(2,)A B n --两点,与x 轴交于点C . (1)求2,k n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A '处,连接,A B A C '',求A BC '∆的面积.17.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?18.长为300m 的春游队伍,以/v m s ()的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2/v m s (),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t s (),排头与O 的距离为S m 头().(1)当2v 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);①当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T s (),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程答案1.B 2.C 3.C 4.B 5.C 6.C7.C 8.B 9.B 10.D11.m<13.12.>13.-10 14.7.87515.(1)y=2x2++1;(2)y=2.16.(1)k2=−8,n=4;(2)−2<x<0或x>4;(3)8.17.(1)1400m;(2)1400yx=;(3)小芳的骑车速度至少为175/m min.18.(1)①2300头=S t+;②41200S t+=-甲;(2)T与v的函数关系式为:400Tv=,此时队伍在此过程中行进的路程为400m。

浙教版八年级数学下册第六章 反比例函数练习(含答案)

浙教版八年级数学下册第六章 反比例函数练习(含答案)

第六章 反比例函数一、单选题1.在下列函数中表示y 关于x 的反比例函数的是( )A .2x y =B .21y xC .2y x =D .22y x= 2.点A (a ,﹣1),在双曲线y =3x 上,则a 的值是( ) A .1 B .﹣1 C .3 D .﹣33.如图,点A 的坐标是()2,0,ABO ∆是等边三角形,点B 在第一象限.若反比例函数k y x=的图象经过点B ,则k 的值是( )A .1B .2CD .4.若点()()()1233,,2,,3,A y B y C y --在反比例函数1y x =-的图像上,则123,,y y y 大小关系是( )A .123y y y <<B .132y y y <<C .231y y y <<D .312y y y << 5.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( (A .12B .4C .3D .66.反比例函数(0)k y k x=≠的图象如图所示,以下结论错误的是( )A .0k >B .若点()1,3M 在图象上,则3k =C .在每个象限内,y 的值随x 值的增大而减小D .若点()1,A a -,()2,B b 在图象上,则a b >7.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)8.如图,直线l⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2的值为( )A .2B .3C .4D .﹣49.如图,已知双曲线(0)k y k x=<经过直角三角形OBA 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(8,4)-,则AOC ∆的面积为( )A .12B .16C .8D .3210.如图,在x 轴正半轴上依次截取1122311n p OA A A A A A A -=====,过点1A 、2A 、3A 、……n A 分别作x 轴的垂线,与反比例函数2(0)y x x=>交于点1P 、2P 、3P 、…、n P ,连接12PP 、23PP 、…1n n P P -,,过点2P 、3P 、…、n P 分别向1P A 、22P A 、…、11n n P A --作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于( ).A .2nB .1n n -C .21nD .22n n+二、填空题 11.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 12.已知反比例函数6y x=,当x >3时,y 的取值范围是_____. 13.某物体对地面的压强P (Pa )与物体和地面的接触面积S (m 2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m 2时,该物体对地面的压强是______Pa .14.如图,AOB 的边OB 在x 轴上,反比例函数(0,0)k y x k x=>>的图象经过点A ,且交AB 边于点C ,过点A ,C 分别作x 轴的垂线,垂足分别为D ,E ,若AOB 的面积为6,OD DE EB ==,则反比例函数的表达式为________.三、解答题15.反比例函数k y x=的图象经过点A (2,3).(1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.16.如图,一次函数y kx b =+的图象分别交x 轴、y 轴于C ,D 两点,交反比例函数n y x =图象于A (32,4),B (3,m )两点.(1)求直线CD 的表达式;(2)点E 是线段OD 上一点,若154AEB S =,求E 点的坐标; (3)请你根据图象直接写出不等式n kx b x +≤的解集. 17.如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?18.驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?知识像烛光,能照亮一个人,也能照亮无数的人。

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数的图象如图所示,以下结论错误的是()A. B.若点在图象上,则 C.在每个象限内,的值随值的增大而减小 D.若点,在图象上,则2、下列函数关系式中,表示y是x的反比例函数的是()A.y=B.y=C.y=D.y=3、如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1B.2C.3D.44、已知正比例函(k是常数, )中y随x的増大而增大,那么它和函数(k是常数,k≠0)在同一平面直角坐标系内的大致图像可能是( )A. B. C. D.5、对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6、已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限7、如图,过反比例函数y= (x>0)上一点A作AB⊥x轴于点B,AC⊥y轴于点C,则四边形OBAC的面积是()A.2B.4C.6D.88、如图,△DEF 的三个顶点分别在反比例函数 xy = n 与 xy = m (x > 0,m > n > 0) 的图像上,若 DB ⊥ x 轴于 B 点,FE⊥x 轴于C 点,若 B 为OC 的中点,△DEF 的面积为 2,则 m,n 的关系式是()A.m - n = 8B.m + n = 8C.2m - n = 8D.2m + n = 39、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.小于1.25m 3B.大于1.25m 3C.不小于0.8m 3D.大于0.8m 310、一次函数y=ax+a(a为常数,a≠0)与反比例函数y= (a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A. B. C. D.11、已知点A(x1, y1)、B(x2, y2)是反比例函数y=﹣图象上的两点,若x2<0<x1,则有()A.0<y1<y2B.0<y2<y1C.y2<0<y1D.y1<0<y212、若反比例函数y= (k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)13、若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A.(1,-2)B.(-1,﹣2)C.(0,﹣1)D.(﹣1,﹣1)14、如图,已知直线y=k1x+b与x轴,y轴相交于P,Q两点,则y= 的图象相交于A(﹣2,m),B(1,n)两点,连接OA,OB,给出下列结论:①k1k2<0;②m+ n=0;③S△AOP =S△BOQ;④不等式k1x+b>的解集在x<﹣2或0<x<1,其中正确的结论是()A.②③④B.①②③④C.③④D.②③15、如图,直线y1= x+2与双曲线y2= 交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<2二、填空题(共10题,共计30分)16、如图,已知点A在反比例函数y= (x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=________.17、已知直线 y=ax(a≠0)与反比例函数 y= (k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是________.18、如图,在平面直角坐标系中,等腰三角形ABC的顶点A在y轴上,底边AB//x轴,顶点B、C在函数的图象上.若,点A的纵坐标为1,则k的值为________.19、如图,点A是反比例函数y= 图像上一点,过点A作AB⊥y轴于点B,点C,D在x轴上,且BC∥AD,四边形ABCD的面积为4,则k=________ 。

浙教版八年级下册《第6章反比例函数》含答案

浙教版八年级下册《第6章反比例函数》含答案

阶段性测试(十一)[考查范围:第 6章 6.1〜6.2 总分:100分]一、选择题(每小题5分,共30分) 1. 下列函数中,属于反比例函数的是 (B ) 1 A . 7y = x B . y = 6X 2 C . y =_2 D . y = 3x + 6 x 2. 若反比例函数y = k 的图象经过点(2m , 3m ),其中m ^ 0,则此反比例函数图象经过 (D ) x A •第三、四象限 B •第二、四 象限 C .第一、二象限 D .第一、三象限 5 一 k 3. 在反比例函数y = ——的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是(D ) x2 反比例函数 y =的图象经过矩形 OABC 的边AB 的中点D ,则矩形OABC 的xA . 2B . 4C . 5D . 8二、填空题(每小题5分,共25分)A . 8B . 7C . 55.如果点A (X 1, 式中正确的是 A . 0>y 1>y 2 C . 0<y 1<y 2 y 1), B (X 2, C ) y 1>y 2>0( B . D . y 1<y 2<0y 2)都在反比例函数 1y =--的图象上,并且X 1<x 2<0,那么下列各x 6.如图所示, 面积为(BD . 3 4.已知k 1<0g 则函数 D7.已知反比例函数图象经过点(一1, 4), (m, 2),那么m = 2__ .&已知一个函数的图象与y=6的图象关于y轴成轴对称,则该函数的表达式为y= —6 x _x9•如图所示,点P 是正比例函数 PA 丄 OP ,交x 轴于点A , OA = 6,贝y k 的值是__9__. —a 2— 1 函数y =x —(a 为常数)的图象上有三点(一4, y 1), (— 1, y 2), (2,yj ,则函数数值 y 2, y 的大小关系是 —丫3<丫1<丫2 . 10. y i 11. 如图所示,在平面直角坐标系中,菱形 OABC 的面积为12,点B 在y 轴上,点C 在反 k 比例函数y =上的图象上,贝U k 的值为 一6 . x — ---- — 三、解答题洪45分) k12. (10分)如图所示,已知反比例函数 y = 一的图象经过点 A(— 3,— 2).X(1)求反比例函数的表达式.⑵若点B(1, m), C(3, n)在该函数的图象上,试比较 m 与n 的大小. 解: (1)y = X .⑵•/ k = 6>0, •••图象在一、三象限,y 随x 的增大而减小. 又•/ 0<1<3,• B(1, m), C(3, n)两个点在第一象限,二 m>n. 4 13.(10分)如图所示,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数y = _(x>0) X 的图象上,求点 解:依据比例系数 设点E 的纵坐标为则 m(2 + m) = 4, 解得m i =材5 — 1, 4,则其边长为2, m ,则横坐标为2+ m , m 2 =— \|' 5 — 1(不合题意,舍去),故m= 5—1, 2 + m= ,5+ 1, 故点E的坐标是(5+ 1 , 5 — 1).k14. (12分)已知反比例函数y = -(k为常数且k z 0)的图象经过点A(2, 3).X(1) 求这个函数的表达式.(2) 当一3v x v—1时,直接写出y的取值范围.(3) 判断点B(—1, 6), C(3, 2)是否在这个函数的图象上,并说明理由.k解:(1) •••反比例函数y = x(k为常数且k z 0)的图象经过点A(2, 3),•••把点A的坐标代入y = k,得3= k,解,得k= 6,x 2•这个函数的表达式为y=6x⑵•••当x=— 3 时,y =—2,当x=— 1 时,y= —6,又••• k> 0,•••当x v 0时,y随x的增大而减小,•当一3v x v — 1 时,一6v y v — 2.⑶•••反比例函数的表达式为y= 1,x•- 6 = xy.分别把点B, C的坐标代入,得(—1) X 6=—6Z 6,则点B不在该函数图象上.3X 2 = 6,则点C在该函数图象上.k15. (13分)已知:一次函数y=—2x+ 10的图象与反比例函数y= _(k> 0)的图象相交于A, Bx两点(A在B的右侧).(1)当A点坐标为(4, 2)时,求反比例函数的表达式.⑵当A的横坐标是3, B的横坐标是2时,直线0A与此反比例函数图象的另一支交于另一点C,连结BC交y轴于点D.①求C点的坐标;②求D点的坐标;③求△ABC的面积.昂1 ffi;k解:(1) •••反比例函数y = -(k> 0)的图象经过A(4, 2),x•k= 4X 2= 8,•••反比例函数的表达式为y=8x⑵①•••一次函数y=—2x + 10的图象经过A, B两点,A的横坐标是3, B的横坐标是2, •••当x= 3 时,y= 4 ;当x= 2 时,y= 6,•A(3, 4), B(2 , 6).又•••直线0A与此反比例函数图象的另一支交于另一点C,•C(—3,—4).②设直线BC的表达式为y= ax+ b,则。

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10B.11C.12D.132、如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB 的中线,点B,C在反比例函数的图象上,则△OAB的面积等于()A.2B.3C.4D.63、反比例函数y=(k≠0)的图象经过点(-2,3),则该反比例函数图象在()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限4、在闭合电路中,电流I,电压U,电阻R之间的关系为:I=.电压U(伏特)一定时,电流I(安培)关于电阻R(欧姆)的函数关系的大致图象是()A. B. C. D.5、若是反比例函数,则a的取值为()A.1B.-1C.±1D.任意实数6、下列说法正确的是A.两条对角线互相垂直且相等的四边形是正方形B.任意两个等腰三角形相似 C.一元二次方程,无论a取何值,一定有两个不相等的实数根 D.关于反比例函数,y的值随x值的增大而减小7、如图,双曲线与直线交于点M,N,并且点M坐标为(1,3)点N坐标为(-3,-1),根据图象信息可得关于x的不等式的解为( )A. B. C. D.8、某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16000Pa,当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应( )A.不小于0.5m 3B.不大于0.5m 3C.不小于0.6m 3D.不大于0.6m 39、若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定10、反比例函数y=的图象上有两个点为(1,y1),(2,y2),则y1与y2的关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法判断11、一次函数与反比例函数( )的图象的形状大致是()A. B. C.D.12、如果点(-a,-b)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(a,b)B.(b,-a)C.(-a,b)D.(-b,a)13、如图,在平面直角坐标系中,将一块含有45°的直角三角板按照如图方式摆放,顶点A、B的坐标为(1,4)、(4,1),直角顶点C的坐标为(4,4),若反比例函数的图象与直角三角板的边有交点,则k的取值范围为()A. B. C. D.14、如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA 的中点,则过点D的反比例函数的解析式是()A.y=B.y=-C.y=D.y=15、若反比例函数的图象位于第二、四象限内,则m的取值范围是()A.m>0B.m<0C.m>1D.m<1二、填空题(共10题,共计30分)16、如图,已知点A,C在反比例函数y= (a>0)的图象上,点B,D在反比例函数y= (b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是________.17、已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式________.18、已知,是反比例函数图象上两个点的坐标,且,请写出一个符合条件的反比例函数的解析式________.19、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.20、在平面直角坐标系中,A为反比例函数y=﹣(x>0)图象上一点,点B的坐标为(4,0),O为坐标原点,若的面积为6,则点A的坐标为________.21、如图,直线y=x向下平移b个单位后得直线l,l与函数y=(x>0)相交于点A,与x轴相交于点B,则OA2﹣OB2=________ .22、如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=________ .23、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.24、若反比例函数的图象经过第一、三象限,则 k的取值范围是________.25、如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”)三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、水池内有水40m3,经过排水管的时间y(h)与每小时流出的水量xm3之间的关系是反比例函数吗?28、已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.29、如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(Ⅰ)求一次函数的解析式;(Ⅱ)根据图象直接写出的x的取值范围;(Ⅲ)求△AOB的面积.30、如果y是z的反比例函数,z是x的反比例函数,那么y与x具有怎样的函数关系?参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、A5、A6、C7、D9、B10、A11、C12、A13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章 反比例函数含答案

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如图是下列四个函数中的某个函数的图象,这个函数是()A. B.y=2x+3 C. D.2、如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y= 位于第二象限的图象上,矩形面积为6,则k的值是()A.3B.6C.﹣6D.﹣33、已知点P(1,-3)在反比例函数y=(k≠0)的图象上,则k的值是( )A.3B.-3C.D.-4、如图,在中,,轴,点A在反比例函数的图象上.若点B在y反比例函数的图象上,则k的值为()A. B. C.3 D.-35、已知点(2,﹣4)在反比例函数图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)6、如图,矩形OABC中,A(1,0),C(0,2),双曲线y= (0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF =2S△BEF,则k值为()A. B.1 C. D.7、在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是( )A. B. C. D.8、函数与()在同一平面直角坐标系的图象可能是()A.B.C.D.9、如图,已知点A在反比例函数y= 上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=B.y=C.y=D.y=﹣10、双曲线y= (k≠0)经过(1,﹣4),下列各点在此双曲线上的是()A.(﹣1,﹣4)B.(4,1)C.(﹣2,﹣2)D.(,﹣4 )11、给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④B.②③④C.②④D.②③12、如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A. B. C. D.13、已知反比例函数y= 的图象经过点P(﹣2,3),则下列各点也在这个函数图象的是()A.(﹣1,﹣6)B.(1,6)C.(3,﹣2)D.(3,2)14、反比例函数的图象一定不经过点()A.(2,-3)B.(-2,3)C.(3,2)D.(-1,6)15、某体育场计划修建一个容积一定的长方体游泳池,设容积为a(m3),泳池的底面积S(m2)与其深度x(m)之间的函数关系式为S=(x>0),该函数的图象大致是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,反比例函数的图象与以原点为圆心的圆相交,其中,则图中阴影部分面积为________(结果保留π).17、如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数=32,tan∠DOE= ,则BN的长为y= (x<0)的图象交AB于点N,S矩形OABC________.18、若函数是关于x的反比例函数,则m的值是________19、若A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数的图象上的点,且,则,,由小到大的顺序是________.20、如图,在函数y=(x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P 2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=________ .(用含n的代数式表示)21、如图,矩形OABC的对角线OB长为6,顶点A,C在坐标轴上,反比例函数(k>0,x>0)的图象交边BC于点E,交边AB于点D,连结DE,若CE=2BE,则DE的长为 ________;22、如图,一次函数y=﹣与反比例函数y=的图象交于A、B两点,与y轴交于C点.若OC=OA,△ABO的面积为5.则∠CAO的正切值为________,k的值为________.23、如图,点A在双曲线y= 的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为________.24、若点在反比例函数的图象上,则代数式的值为________.25、已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=的图象所在的象限是第________象限.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、已知y=y +y ,y 与x 成正比例,y 与x-1成反比例,并且x=0时y=1,x=-1时y=2;求当x=2时y的值.28、如图一次函数的图象分别交x轴、y轴于点A,B,与反比例函数图象在第二象限交于点C(m,6),轴于点D,OA=OD.(1)求m的值和一次函数的表达式;(2)在X轴上求点P,使△CAP为等腰三角形(求出所有符合条件的点)29、如图,直线y=﹣2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.30、某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=18时,大棚内的温度约为多少度?参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、D6、A7、C8、B9、C10、D11、D12、A13、C14、C15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

浙教版八年级数学下册第六章 反比例函数练习(含答案)

浙教版八年级数学下册第六章 反比例函数练习(含答案)

第六章 反比例函数一、单选题1.下列选项中的函数,y 关于x 成反比例函数的是()A .12y x =+B .13y x =C .21y x =D .2x y = 2.已知y 与x 成反比例,且当2x =时,3y =,则y 关于x 的函数解析式是( ) A .6y x = B .1 6y x = C .6y x = D .26y x -= 3.已知反比例函数k y x =经过点()2,3A -,当3y <时自变量x 的取值范围为( ) A .2x <- B .2x >C .2x <-或0x >D .2x >或0x < 4.关于反比例函数y =﹣3x,下列说法错误的是( ) A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点5.反比例函数y=-3x -1的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( ) A .x 1<x 2 B .x 1=x 2 C .x 1>x 2 D .不确定 6.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x7.如图,直线l⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2的值为( )A .2B .3C .4D .﹣48.在矩形ABCD 中,E 点为AB 上的一点,AB =8,AD =6,连接CE ,作DF ⊥CE 于F 点,令CE =x ,DF =y ,下列关于y 与x 的函数关系图象大致是( )A .B .C .D .9.近视镜镜片的焦距y (单位:米)是镜片的度数x (单位:度)的函数,下表记录了一组数据,在下列函数中,符合表格中所给数据的是:( ) x (单位:度) … 100 250 400 500 … y (单位:米)… 1.00 0.40 0.25 0.20 …A .y=1100xB .y=100xC .y=﹣1200x+32D .y=21131940008008x x -+ 10.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=k x过P 、B 两点,则k 的值为( )A .23B .233C .43D .433二、填空题11.已知反比例函数13m y x-=(m 为常数)的图象在一、三象限,则m 的取值范围为_____. 12.如果点1(3,)A y 、2(4,)B y 在反比例函数2y x=的图象上,那么1y _____2y .(填“>”、“<”或“=”) 13.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.14.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.三、解答题15.己知y-1与x+2成反比例函数关系,且当x=-1时,y=3.求:(1)y 与x 的函数关系式;(2)当x=0时,y 的值.16.如图,在平面直角坐标系中,一次函数1y k x b =+的图像与反比例函数2k y x =的图像交于(4,2),(2,)A B n --两点,与x 轴交于点C .(1)求2,k n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A '处,连接,A B A C '',求A BC '∆的面积.17.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?18.长为300m 的春游队伍,以/v m s ()的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2/v m s (),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t s (),排头与O 的距离为S m 头().(1)当2v 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T s (),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程答案1.B 2.C 3.C 4.B 5.C 6.C 7.C 8.B 9.B 10.D11.m<13.12.>13.-10 14.7.87515.(1)y=2x2++1;(2)y=2.16.(1)k2=−8,n=4;(2)−2<x<0或x>4;(3)8.17.(1)1400m;(2)1400yx=;(3)小芳的骑车速度至少为175/m min.18.(1)①2300头=S t+;②41200S t+=-甲;(2)T与v的函数关系式为:400Tv=,此时队伍在此过程中行进的路程为400m。

浙教版八年级下册数学第六章 反比例函数含答案(配有卷)

浙教版八年级下册数学第六章 反比例函数含答案(配有卷)

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y 与x之间的变化关系,最有可能与上述情境类似的是()A.y=xB.y=x+3C.y=D.y=(x﹣3)2+32、下列函数中,y是x的反比例函数的是()A.y=x﹣1B.y=C.D.y=3、如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )A.∠POQ不可能等于90°B. =C.这两个函数的图象一定关于轴对称 D.△POQ的面积是(|k1|+|k2|)4、反比例函数y=的图象如图所示,则k的值可能是()A.-1B.C.1D.25、如图,在平面直角坐标系中,点A、B均在函数(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2)B.(2,3)C.(3, 2)D.(4,)6、如图,的顶点在反比例函数的图像上,顶点在轴上,轴,若点的坐标为,,则的值为()A.4B.-4C.7D.-77、已知变量y与x成反比例,当x=3时,y=﹣6,则该反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣8、下列函数中,y是x的反比例函数的是()A. B. C. D.9、已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1, y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对10、公元前世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力阻力臂动力动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为和,则动力(单位: )关于动力臂(单位: )的函数图象大致是()A. B. C.D.11、如图,函数的图象相交于点A(-2,3),B (1,-6)两点,则不等式的解集为()A. B. C. D.12、如图,直线OA与x轴的夹角为α,与双曲线y= (x>0)交于点A (1,α),则tanα的值为()A.4B.3C.2D.613、若A(a,b),B(a-2,c)两点均在函数y=的图象上,且a<0,则b 与c的大小关系为()A.b>cB.b<cC.b=cD.无法判断14、如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y= 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=15、已知:如图,直线1经过点A(-2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为( )A.y=B.y=C.y=D.y=二、填空题(共10题,共计30分)16、如果反比例函数的图象经过点(3,1),那么k=________。

第六章 反比例函数 精练 浙教版数学八年级下册

第六章 反比例函数 精练   浙教版数学八年级下册

2023浙教版数学八年级下册第六章反比例函数精练一、选择题1.若点(﹣1,2)在反比例函数y=(k为常数,k≠0)的图象上,则下列有关该函数的说法正确的是()A.该函数的图象经过点(1,2)B.该函数的图象位于第一、三象限C.y的值随x的增大而增大D.当x<﹣1时,y的值随x的增大而增大2.描点法是画未知函数图象的常用方法.请判断函数的图象可能为()A.B.C.D.3.要确定方程x2+x﹣5=0的解,只需知道一次函数y=x+1和反比例函数的图象交点的横坐标.由上面的信息可知,k的值为()A.3B.4C.5D.64.设反比例函数,当x=p,q,r(p<q<r)时,对应的函数值分别为P,Q,R,若pqr<0,则必有()A.Q>R B.R>P C.P>Q D.P>R5.已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E都在反比例函数y=(x>0)图象上,则k的值为()A.8B.9C.9 D.166.如图,四边形OABC和四边形BDEF都是正方形,反比例函数y=在第一象限的图象经过点E,若两正方形的面积差为12,则k的值为()A.12B.6C.﹣12D.87.已知点A(a,y1),B(b,y2),C(c,y3)在反比例函数的图象上,若点B与点C在同一分支上且y3>y2>y1,则下列选项正确的是()A.若c>0,则a>b>c B.若c>0,则c>b>aC.若c<0,则c>a>b D.若c<0,则a>b>c二、填空题8.在平面直角坐标系中,我们把横坐标、纵坐标都是整数的点称为“整点”,已知点A,B在反比例函数y=的图象上,若点A,B都是整点,点O是坐标原点,且△ABO是等腰三角形,则AB的长为.9.在直角坐标系中,已知直线y=kx(k>0)与反比例函数y=(t>0)的图象交点A(2,p),B(q,﹣3),则k=.10.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,+1).其中正确结论的有.11.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为,则k=.12.若反比例函数y=,当x≥a或x≤﹣a时,函数值y范围内的整数有k个;当x≥a+1或x≤﹣a﹣1时,函数值y范围内的整数有k﹣2个,则正整数a=.13.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连接OC,OD.若△COE的面积与△DOB的面积相等,则k 的值是.三、解答题14.如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F (单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.15.如图,直线y=﹣x+7与反比例函数y=(m≠0)的图象交于A,B两点,与y轴交于点C,且点A的横坐标为2.(1)求反比例函数的表达式;(2)求出点B坐标,并结合图象直接写出不等式<﹣x+7的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.16.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.17.如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO =S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.18.如图,在平面直角坐标系中,等腰三角形OAB的顶点A在反比例函数y=的图象上.若OA=AB=5,点B的坐标为(6,0).(1)如图1,求反比例函数y=的表达式.(2)如图2,把△OAB向右平移a个单位长度,对应得到△O′A′B′,设A'B'的中点为M.①求点M的坐标(用含a的代数式表示);②当反比例函数y=的图象经过点M时,求a的值.19.如图,在平面直角坐标系xOy中,一次函数y=x+2的图象与x轴,y轴分别交于点A和点B,与反比例函数y=(k>0,x>0)的图象交于点C,B为线段AC的中点.(1)求点A的坐标.(2)求k的值.(3)点D为线段AC上的一个动点,过点D作DE∥x轴,交该反比例函数图象于点E,连结OD,OE.若△ODE的面积为,求点D的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 反比例函数
一、单选题
1.下列函数中,表示y 是x 的正比例函数的是( )
A .1y x =-
B .3y x =
C .y=3x
D .2y x = 2.点(2,﹣4)在反比例函数y=
k x 的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8)
C .(﹣2,﹣4)
D .(4,﹣2) 3.如图,矩形OABC 的顶点B 在反比例函数(0)k y k x
=
>的图象上,6OABC S =矩形,则k 的值为( )
A .3
B .6
C .9
D .12 4.反比例函数3y x
=图象上三个点的坐标为()11,x y 、()22,x y 、()33,x y ,若1230x x x <<<,则123,,y y y 的大小关系是( )
A .123y y y <<
B .213y y y <<
C .231y y y <<
D .132y y y << 5.位于第一象限的点
E 在反比例函数y =k x
的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )
A .4
B .2
C .1
D .-2
6.关于反比例函数3y x
=的图像,下列说法正确的是() A .图像经过点(1,1) B .两个分支分布在第二、四象限
C .两个分支关于x 轴成轴对称
D .当x <0时,y 随x 的增大而减小 7.如图,123,,P P P 是双曲线上的三点,
过这三点分别作y 轴的垂线l ,垂足分别为1A ,2A ,3A 得到三个三角形11P A O ,22P A O ,33P A O ,设它们的面积分别是1S 、2S 、3S ,则( )
A .123S S S <<
B .213S S S <<
C .312S S S <<
D .123S S S == 8.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )
A .气压P 与体积V 的关系式为(0)P kV k =>
B .当气压70P =时,体积V 的取值范围为70<V<80
C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半
D .当60100V 剟
时,气压P 随着体积V 的增大而减小 9.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于B 、C 两点,若函数y=k x
(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )
A .5≤k≤20
B .8≤k≤20
C .5≤k≤8
D .9≤k≤20 10.如图,在x 轴正半轴上依次截取1122311n p OA A A A A A A -=====L ,过点1A 、2A 、3A 、……n A 分别作x 轴的垂线,与反比例函数2(0)y x x
=>交于点1P 、2P 、3P 、…、n P ,连接12PP 、23P
P 、…1n n P P -,,过点2P 、3P 、…、n P 分别向1P A 、22P A 、…、11n n P A --作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于( ).
A .2n
B .1n n -
C .21n +
D .22n n
+
二、填空题 11.反比例函数 y =(a -3)x | a | - 4 的函数值为4时,自变量 x 的值是________. 12.若点A (1,y 1)和点B (2,y 2)在反比例函数y =
1x 的图象上,则y 1与y 2的大小关系是y 1________y 2(填“>”“<”或“=”).
13.在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD △x 轴于点D ,交1y x
=的图象于点C ,连结AC .若
△ABC 是等腰三角形,则k 的值是______.
14.在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,
点A 在反比例函数(0)k y x x
=>的图象上,点D 的坐标为.将菱形ABCD 沿x 轴正方向平移____个单位,可以使菱形的另一个顶点恰好落在该函数图象上.
三、解答题
15.若函数()252m
y m x -=-是y 关于x 的反比例函数。

(1)求m 的值;
(2)函数图象在哪些象限?在每个象限内,y 随x 的增大而怎样变化?
(3)当132
x -≤≤-时,求y 的取值范围。

16.如图,一次函数y =kx +b 的图象与反比例函数y =
m x
的图象交于点A (-3,m +8),B (n ,-6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB 的面积.
17.将油箱注满k升油后,轿车可行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千
米)之间是反比例函数关系s=k
a
(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油
量为每千米耗油0.1升的速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程s与平均耗油量a之间的函数解析式;
(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
18.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.
(1)直接写出v与t的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.
△求两车的平均速度;
△甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.
答案
1.C
2.D
3.B
4.B
5.B
6.D
7.B
8.D
9.A
10.B
11.-32
12.>
13.k
=7
或5
. 14
15.(1)2m =-;
(2)第二象限、第四象限;在每个象限内,y 随x 的增大而增大;(3)483y ≤≤ 16.(1)y=-6x
,y=-2x -4(2)8 17.(1)s=70a
(2)该轿车可以行驶875千米 18.(1)与的函数关系式为600v t =(510t ≤≤);(2)△客车和货车的平均速度分别为110千米/小时和90千米/小时.△甲地与B 加油站的距离为220或440千米。

相关文档
最新文档