人教版九年级数学二次函数应用题
专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习
专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。
人教版九年级上册数学第二十二章二次函数应用题训练(含答案)
人教版九年级上册数学第二十二章二次函数应用题训练1.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?2.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)如果每天获得160元的利润,销售单价为多少元?(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?3.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x 元.(1)填表(不需要化简)(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?4.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.5.南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,⊥设DF的长为x米,请用含x的代数式表示EF的长;⊥若要求所围成的小型农场DBEF的面积为9平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?6.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?7.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低x元(售价不低于进价),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.9.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?10.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?11.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间有如表关系:(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?12.成绵苍巴高速正在修建中,某单向通行隧道设计图由抛物线与矩形的三边组成,尺寸如图所示,隧洞限高4米,隧洞道路正中间标有一条实线.(1)水平安置一根限高杆,两端固定在洞门上,求限高杆的最小长度.(2)某卡车若装载一集装箱箱宽3m,车与车箱共高3.8m,此车能否不跨越标线通过隧道(标线宽度不计)?说明理由.13.某超市计划共进货50件饮料,其中A款饮料成本为每件20元;当B款饮料进货10件时,成本为每件48元,且每多进货1件,平均每件B款饮料成本降低2元.为保证饮料x x 件.的多样性,规定A款饮料必须进货至少20件,设进货B款饮料(10)(1)根据信息填表:(2)设总成本为W元,写出W关于x的函数关系式,并写出自变量x的取值范围;(3)为了增加盈利,降低进货成本,该超市如何进货才能使得进货总成本最低,最低成本是多少元.14.如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,⊥ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元.(1)探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需_____元;(2)探究2:如果木板边长为1米,当FC的长为多少时,一块木板需用墙纸的费用最省?最省是多少元?(3)探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?15.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套.应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:(2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?16.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式______;所得销售利润w(元)与销售单价x(元)之间的函数关系式______.(2)销售单价定为多少元时,所得销售利润最大,最大利润是多少?17.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?18.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每提高1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价提高x(元)之间的函数关系式.(2)求销售单价提高多少元时,该文具每天的销售利润最大?20.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.参考答案:1.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个2.(1)如果每天获得160元的利润,销售单价为4元(2)当销售单价定为5元时,每天的利润最大,最大利润是240元3.(1)60﹣x ;200+20x ;600﹣200﹣(200+20x )(2)该T 恤第二个月单价为54或46元,该批T 恤总获利为7680元(3)降价10元,单价为50元,获利8000元4.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤5.(1)⊥(12﹣3x )米;⊥3米(2)饲养场的宽DF 为52米时,饲养场DBEF 的面积最大,最大面积为758平方米 6.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元 7.(1)2200y x =-+()3060x ≤≤(2)当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元 8.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为1129.(1)50元或58元(2)54元10.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.11.(1)y =﹣2x +160(2)20件12.(1)(2)能不跨越标线通过隧道13.(1)50-x ;68-2x(2)W =22x -+48x +1000(10≤x ≤30)(3)当A 款饮料进货20件,B 款饮料进货30件时进货总成本最低,最低成本是640元 14.(1)220;(2)当FC 的长为12m 时,一块木板需用墙纸的费用最省,最省是55元; (3)当正方形EFCG 的边长为12a 时,墙纸费用最省. 15.(1)60x +,30010x -(2)第二个月销售定价每套应为80元(3)要使第二个月利润达到最大,应定价为65元,此时第二个月的最大利润是6250元 16.(1)10500y x =-+;21070010000w x x =-+-(2)销售单价定为35元时,所得销售利润最大,最大利润是2250元17.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元18.(1)y =﹣2x +180(2)w =﹣2x 2+260x ﹣7200(3)55元,1050元19.(1)2102001250w x x =-++(2)10元20.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元。
人教版九年级上册数学 第十二章 二次函数 常考应用题总结
人教版九年级上册数学第十二章二次函数常考应用题总结一、销售问题1、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2、商场某商品现在售价为每件600元,每星期可卖出3000件,市场调查反映;如果上调价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件400元,设每星期的销量为y件,每件商品的售价为x(x≥600)元.(1)求y与x的函数关系;(2)每件商品的售价为多少时,每星期所获总利润最大,最大利润是多少元?3、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?4、将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能售出 20 个.若这种商品的零售价在一定范围内每降价 1 元,其日销售量就增加 1 个,为了获得最大利润,则应降价多少元?5、某租赁公司拥有汽车100 辆,当每辆车的月租金为3000 元时,可全部租出.当每辆车的月租金每增加50 元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150 元,未租出的车每辆每月需要维护费50 元.(1)当每辆车的月租金为3 600 元时,能租出辆;(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?6、某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.公司每日租出x辆车时,每辆车的日租金为多少元(用含x的代数式表示);(1)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W(万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?8. 在创新素质实践行活动中,某位同学参加了超市某种水果的销售调查工作.已知该水果的进价为8元/千克,下面是他们在调查结束后的对话:A:如果以10元/千克的价格销售,那么每天可以售出300千克;B:如果以13元/千克的价格销售,那么每天可获利750元;C:通过调查验证,我发现每天的销售量与销售单价之间存在一次函数关系.(1)设超市每天该水果的销售量是y(kg),销售单价是x(元),写出y与x的关系;(2)在进货成本不超过1200元时,销售单价定为多少元可获得最大利润?最大利润是多少?(3)如果要使该水果每天的利润不低于600元,销售单价应在什么范围内?二、面积问题1、如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB为多少米时,矩形土地ABCD的面积最大.2、用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).(1)如图1,当AB=________m,BC=________m时,所围成两间鸭舍的面积最大,最大值为________m2;(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少?3、在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是 2:1.已知镜面玻璃的价格是每平方米 120 元,边框的价格是每米 30 元,另外制作这面镜子还需加工费 45 元.设制作这面镜子的总费用是 y 元,镜子的宽度是 x 米.(1)求 y 与 x 之间的关系式.(2)如果制作这面镜子共花了 195 元,求这面镜子的长和宽.三、图像问题1、如图,△ABC 是一块锐角三角形材料,边 BC=6cm,高 AD=4cm,要把它加工成一个矩形零件,使矩形的一边在 BC 上,其余两个顶点分别在 AB、AC 上,要使矩形 EGFH 的面积最大,求 EG 的长.2、如图是一个横断面为抛物线形状的拱桥,当水面宽 4 米时,拱顶(拱桥洞的最高点)离水面 2 米,水面下降 1 米时,水面的宽度为多少米.3.如图,足球比赛中,一球员从球门正前方10 m 处将球射向球门.当球飞行的水平距离为6 m 时球到达最高点,此时球离地面3 m.若球运动的路线为一条抛物线,球门的高A B 为2.44 m,球能否被射进球门?4、如图,琪琪的父亲在相距2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的琪琪距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米?5.跳绳时,绳甩到最高处时的形状为抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6m,到地面的距离A O 和B D 均为0.9 m.身高为1.4 m 的小丽站在距点O的水平距离为1 m 的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为 y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在O D 之间,且离点O的距离为3m,当绳子甩到最高处时,刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O D 之间,且离点O的距离为t m,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围:.6、如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?7.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?。
人教版九年级上册数学二次函数应用题练习
人教版九年级上册数学二次函数应用题练习1.某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出,在此基础上,当每套设备的月租金提高10元时,这种设备就少租一套,且未租出一套设备每月需要支出费用(维护费、管理费等)20元.(1)设每套设备的月租金为x(元),用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)租赁公司的月收益能否达到11040元?此时应该出租多少套机械设备?每套月租金是多少元?请简要说明理由;(3)租赁公司的月收益能否在11040元基础上再提高?为什么?2.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?3.如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.4.元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时,求宾馆每天的利润;(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?5.学校要围一个矩形花圃, 其一边利用足够长的墙, 另三边用篱笆围成, 由于园艺需要, 还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示), 总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD), 矩形花圃ABCD 的面积为S平方米.(1)求S与x之间的函数关系式, 并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积最大, AB边的长应为多少米?6.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为20.9=++.y ax bx(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过..他们的头顶,请结合图像,写出t的取值范围_______________.7.某公司经销一种商品,每件商品的成本为50元,经市场调查发现,在一段时间内,销售量w (件)随销售单价x (元/件)的变化而变化,具体关系式为2240w x =-+,设这种商品在这段时间内的销售利润为y (元),解答如下问题:(1)求y 与x 之间的函数表达式;(2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,那么销售单价应定为多少?8.为鼓励大学生毕业后自主创业,我市出台了相关政策:由政府协调,本市企业按成本价提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关政策投资销售本市生产的一种新型“儿童玩具枪”.已知这种“儿童玩具枪”的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=−10x+500.(1)赵某在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设赵某获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于28元.如果赵某想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元9.某商场将进货价30元的书包以40元售出,平均每月能售出600个.市场调查发现:这种书包的售价每上涨1元,其销售量就减少10个.(1)请写出每月销售书包的利润y (元)与每个书包涨价x (元)之间的函数关系;(2)设某月的利润为10000元.10000元是否为每月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并求出此时书包的定价应为多少元.(3)请分析售价在什么范围内商家就可获利.10.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x (元)与该士特产的日销售量y (袋)之间的关系如表:若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?12.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?13.柑橘“红美人”汁多味美,入口即化,柔软无渣,经过试验,柑橘“红美人”单位面积的产量与单位面积的种植株数构成一种函数关系,每亩种植100株时,平均单株产量为20kg,每亩种植的株树每增加1株,平均单株产量减少0.1kg.(1)求平均单株产量y与每亩种植株数x的函数表达式;(2)今年柑橘“红美人”的市场价为40元/kg,并且每亩的种植成本为3万元,每亩种植多少株时,才能使得利润达到最大?最大为多少元?14.已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示(1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)(2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.15.某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答下列问题:(1)当销售单价为每千克55元时,计算销售量和月利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式.(3)销售单价定为多少元时,获得的利润最多?16.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.17.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格x(元)满足函数关系:y=﹣2x+200.为保证市场稳定,供货商规定销售价格不得低于75元/件.(1)写出每天的销售利润w(元)与销售价格x(元)的函数关系式(不必写出x的取值范围);(2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是1200元?138.心理学家发现,在一定时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y值越大,表示接受能力越强.(1)当x在什么范围内时,学生的接受能力逐步增强?在什么范围内学生的接受能力逐步减弱?(2)若用10分钟提出概念,学生的接受能力y的值是多少?(3)如果用8分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.19.某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?20.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由。
人教版九年级上册 第二十二章 二次函数应用题 练习(含答案)
二次函数应用题一、利用二次函数解决利润最大化问题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:(1) (130-100)×80=2400(元)(2)设应将售价定为x 元,则销售利润 130(100)(8020)5xy x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+.当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元. 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 解:(1)(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭,即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916 6.083 6.164) 解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. (2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台),根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. 令%m t =,原方程可化为27.514 5.30t t -+=.t ∴==.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为52.8.4、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+,抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
人教版九年级上册数学第二十二章二次函数综合应用题综合训练
人教版九年级上册数学第二十二章二次函数综合应用题综合训练1.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?2.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?3.商场某种商品平均每天可销售20件,每件可获利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)每件商品降价多少元时,商场日销售额可达到1200元?(2)若商场平均每天赢利最多,应降价多少元?获得的最大利润为多少?4.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的,如图所示,水柱的最高点为M ,2m AB =,10m BM =,水嘴高6m AD =,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,求出图中抛物线的表达式.5.一小球M 从斜坡OA 上的点O 处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x =刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x 的取值范围);(2)小球在斜坡上的落点A 的垂直高度为________米;(3)若要在斜坡OA 上的点B 处竖直立一个高4米的广告牌,点B 的横坐标为2,请判断小球M 能否飞过这个广告牌?通过计算说明理由;(4)求小球M 在飞行的过程中离斜坡OA 的最大高度.6.如图,有长为30m 的篱笆,现一面利用墙(墙的最大可用长度a 为9m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数关系式,并写出x 的取值范围;(2)如果围成花圃的面积为263m ,那么AB 应确定多长?7.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”形成的一种生机勃勃的销售方式.农村电商小李在某电商平台上直播销售一种农产品,每件农产品的成本为40元,每销售一件农产品,需向电商平台缴纳推广费2元.物价部门规定,该农产品的销售单价不高于成本价的2倍,经市场调研发现,每月的销售量y (件)与销售单价x (元)满足如图所示的一次函数关系.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当农产品的销售单价定为多少元时,每月的销售利润最大?最大利润是多少?。
人教版九年级上册二次函数与实际应用题------- 销售利润问题
二次函数与实际应用题------- 销售利润问题知识点:销售利润问题中常出现的量有:售价、标价、进价、销量、利润、利润率、折扣等。
涉及的等量关系有:售价=折扣数×10%×标价,利润率=进价售价-进价进价利润=,总利润=(销售单价-进货单价)×销售量。
1.湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做做优做响湘莲等特色农产品品牌。
小亮调查了一家湘潭特产店A ,B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元。
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,A 种湘莲礼盒售价每降3元可多卖1盒。
若B 种湘莲礼盒的售价和销量不娈,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲盒平均每天的总利润最大,最大是多少元?2.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y 本与每本纪念册的售价x 元之间满足一次函数关系:当销售单价为22元时,销售量为35本;当销售单价为24元时,销售量为32本。
(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设文具店每周销售这种纪念册所获得的利润为W 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?利润是多少?3.某超市销售一种文具,进价为5元/件。
售价为6元/件时,当天的销售量为100件。
在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件。
设当天销售单价统一为x元/件(x≥6,且x是按90.5元的倍数上涨),当天销售利润为y元。
(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润。
人教版九年级上册《二次函数实际应用》训练题
人教版九年级上册《二次函数实际应用》训练题限时练习一:30分钟1.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.2.如图,一块矩形田地长100m,宽80m,现计划在田地中修2条互相垂直且宽度为x(m)的小路,剩余面积种植庄稼,设剩余面积为y(m2),求y关于x的函数表达式,并写出自变量的取值范围.3.某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).4.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为S.求S与x之间的函数表达式,并求自变量x的取值范围.5.如图,在靠墙(墙长为20m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为50m,设鸡场垂直于墙的一边长x(m),求鸡场的面积y(m2)与x(m)的函数关系式,并求自变量的取值范围.限时练习二:30分钟6.某厂要制造能装250mL(1mL=1cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.7.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.8.大闸蟹上市,某水厂批发商批发阳澄湖大闸蟹2000只,进价为每只70元,他先计划售价定为每只200元,经市场调查发现,不降价每天销售50只,若每只降10元,则每天的销售只数将增加5只,每只只能降10元的整数倍,还剩下的大闸蟹每天的保存费用为10元(不计只数),因大闸蟹的保存时间只有20天,过期的立即一次性全部处理掉,每只处理价为30元,设这2000只大闸蟹每只售价定为x元(x≥100).(1)用x的代数式表示每天销售只数;(2)用x的代数式表示所获得的利润.9.一条隧道的横截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长为2.5米.如果隧道下部的宽度大于5米但不超过10米,求隧道横截面积S(平方米)关于上部半圆半径r(米)的函数解析式及函数的定义域.10.如图1,有一个抛物线的拱形隧道,隧道的最大高度为6m,跨度为20m,将抛物线放在图2所给的直角坐标系中,求抛物线的解析式.参考答案1.解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.2.解:由题意可得:y=(100﹣x)(80﹣x)=﹣x2﹣180x+8000(0<x<80)3.解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则x=100+=550 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.故答案为:550;(2)当0<x≤100时,P=60当100<x<550时,P=60﹣0.02(x﹣100)=62﹣当x≥550时,P=51所以P=;(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P﹣40)x=当x=500时,L=22×500﹣=6000(元);当x=1000时,L=(51﹣40)×1000=11000(元),因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.4.解:∵AB=xm,∴BC=(28﹣x)m,S=AB•BC=x(28﹣x)=﹣x2+28x,∵篱笆的长为28m,∴0<x<28,即S=﹣x2+28x(0<x<28).5.解:由题意可得:y=x(50﹣2x),∵墙长为20m,∴50﹣2x≤20,解得:x≥15,故自变量的取值范围是:15≤x<25.6.解:∵底面半径是x cm,∴底面周长为2πx,底面积为πx2,∵易拉罐的体积为250mL,∴高为,∴侧面积为2πx×=,∴y=πx2×0.02+πx2×0.02×3+×0.02=x2+.7.解:∵PB=6﹣t,BE+EQ=6+t,∴S=PB•BQ=PB•(BE+EQ)=(6﹣t)(6+t)=﹣t2+18,∴S=﹣t2+18(0≤t<6).8.解:(1)由题意可得:设这2000只大闸蟹每只售价定为x元,则每天销售只数为:50+5×=150﹣;(2)所获得的利润为:(x﹣70)×(150﹣)×20﹣200﹣(70﹣30)[2000﹣(150﹣)×20]=﹣10x2+3300x﹣170200.9.解:半圆的半径为r,矩形的另一边长为2r,则:隧道截面的面积S=πr2+2r×2.5,即S=πr2+5r;∵5<2r≤10,∴2.5<r≤5.10.解:设抛物线解析式为:y=ax2+6,将(10,0)代入得出:0=100a+6,解得:a=﹣0.06.故抛物线解析式为:y=﹣0.06x2+6.。
二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)
二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球 (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。
人教版九年级上册数学期末实际问题与二次函数应用题专题训练
人教版九年级上册数学期末实际问题与二次函数应用题专题训练1.杭州亚运会吉祥物组合名为“江南忆”,三个吉祥物以机器人作为整体造型,融合了杭州的历史人文、自然生态和创新基因,既有深厚的文化底蕴又充满了时代活力.某商家购进了A、B两种类型的吉祥物纪念品,已知每套A型纪念品比每套B型纪念品的多间的函数关系如图;B 类糖果精包装总费用s (单位:万元)与包装数量t (单位:吨)之间的函数关系是123s t =+,平均销售价格为9万元/吨.(1)求出A 类糖果平均销售价格y 与销售量x 之间的函数关系式;(2)第一次,该公司收购了20吨糖果,其中A 类糖果有x 吨,经营这批糖果所获得的总利润为w 万元,求w 关于x 的函数关系式;(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大利润,直接写出此时的最大利润__________万元.5.某公司计划购进一批原料加工销售,已知该原料的进价为2.2万元/t ,加工过程中原料质量的损耗率为40%,加工费m (万元)与原料的质量()t x 之间的关系为400.2m x =+,销售价y (万元/t )与原料的质量()t x 之间的关系如图所示.(1)①直接写出y 与x 之间的函数关系式: ;①设销售收入为P (万元),直接写出P 与x 之间的函数关系式: ;【销售收入1=-(损耗率xy ⨯)】 (2)若所获销售利润为70.2万元,求此时原料的质量x 的值.【销售利润=销售收入-总支出】(3)原料的质量x 为多少吨时,所获销售利润最大,最大销售利润是多少万元?6.某企业设计了一款工艺品,每件的成本是50元,据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与降价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?7.某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm ,中间镶有宽度相同的三条丝绸花边.(1)若除丝绸花边外白色部分的面积为21750cm ,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外还需支付各种费用2000元.根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司把单价降低多少元时,当日所获利润为10000元.(3)当销售单价定为多少元时,才能使当天的销售利润最大?最大利润是多少?8.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x (020x <≤)元.(1)售价上涨x 元后,该商场平均每月可售出_____________个台灯(用含x 的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?(3)台灯售价定为多少元时,每月销售利润最大?12.国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)请求出y关于x之间的关系式.(2)设该商铺销售这批商品获得的总利润(总利润=总销售额-总成本)为P元,求P与x 之间的函数关系式,并求出当x取何值时,P的值最大?最大值是多少?(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围.13.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件.若每件涨价1元销售,则每月能少卖出30件.(1)若每件涨价3元销售,则每月能卖出__________件;(2)设每件涨价x元(x为整数),本月通过销售该商品获利为y元,求y与x的函数关系式,并直接写出自变量x的取值范围;(3)通过计算说明,每件定价多少元时,每月获得的利润最大?并求此最大利润.14.为推进“书香社区”建设,某社区计划购进一批图书,已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变);购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书超过40本,但不超过60本.按此优惠,社区至少要准备多少购书款?15.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.(3)如何围成一个面积最大的矩形羊圈,求此时AB 为多少米?16.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件. 若设每件衬衫降价x 元,商场平均每天赢利y 元.(1)写出y 与x 之间的函数关系式,并化成一般式;(2)若商场平均每天赢利要达到1200元,且让顾客得到实惠,则每件衬衫应降价多少元?(3)请说明商场平均每天赢利能否达到1300元?17.水果商店经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同(1)求每次下降的百分率(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?(3)为了响应脱贫致富攻坚战,商场决定每卖出1千克捐赠m 元()2m ≤给贫困山区学生,设每千克涨价x 元后,若要保证当08x ≤≤时,每天盈利随着x 的增加而增大,求m 的取值范围.96参考答案:。
人教版九年级数学二次函数应用题(含答案)
人教版九年级数学二次函数实际问题(含答案)一、单选题1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为[ ] A.28米B.48米C. 68米D.88米2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2 +bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是[ ] A.过点(3,0)B.顶点是(2,-1)C.在x轴上截得的线段的长是3D.与y轴的交点是(0,3)3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是A.2mB.3mC .4 mD.5 m4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是,则该运动员此次掷铅球的成绩是[ ] A.6 mB.8mC. 10 mD.12 m5.某人乘雪橇沿坡度为1:的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为[ ] A.72 mB.36mC.36 mD.18m6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2 +50x-500,则要想获得最大利润,销售单价为[ ] A.25元B.20元C.30元D.40元7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c所示,则下列结论正确的是①a<;② <a<0;③ a-b+c>0;④ 0<b<-12a[ ]A.①③B.①④C.②③D.②④8.关于x的二次函数y=2mx2 +(8m+1)x+8m的图象与x轴有交点,则m的取值范围是[ ] A.m<B.m≥且m≠0C.m=D.m m≠09.某种产品的年产量不超过1 000吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原点的抛物线的一部分,如图①所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是线段,如图②所示,若生产出的产品都能在当年销售完,则年产量是( )吨时,所获毛利润最大.(毛利润=销售额-费用)①②[ ] A.1 000B.750C. 725D.50010.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)[ ] A.5.1 mB.9.0mC.9.1 mD.9.2 m11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是[ ] A. y= - 2x2B.y=2x2C. y=-2 x2D.y= x212.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第1 4秒时的高度相等,则在下列哪一个时间的高度是最高的?[ ] A.第8秒B.第10秒C. 第12秒D.第15秒二、填空题13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是( ),自变量x的取值范围是( ).14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的表达式为( ).如果不考虑其他因素,那么水池的半径至少要( ),才能使喷出的水流不致落到池外.15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,桥的高度是( )m .16.在距离地面2m高的某处把一物体以初速度v o(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s),若v0=10 m /s,则该物体在运动过程中最高点距离地面( )m三、计算题17.求下列函数的最大值或最小值.(l);(2)y=3(x+l) (x-2).四、解答题18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x (元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x m,面积为Sm2(1)写出S与x之间的函数关系式,并求当S=200 m2时,x的值;(2)设矩形的边BC=y m,如果x,y满足关系式x:y=y:(x+y),即矩形成黄金矩形,求此黄金矩形的长和宽.21.某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:(1)如果方案乙中的第四天,第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?(2)分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S 是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).22.某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后可知:成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间xh的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0)每毫升血液中含药量为0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.(l)试求出含药量y微克与服用时间xh的函数关系式;并画出0≤x≤8内的函数图象的示意图;(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间有多少小时?(有效时间为血液中含药量不为0 的总时间.)23.某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=x m.(不考虑墙的厚度)(1)若想水池的总容积为36 m3,x应等于多少?(2)求水池的容积V与x的函数关系式,并直接写出x的取值范围;(3)若想使水浊的总容积V最大,x应为多少?最大容积是多少?实践探究24.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升3m时,水面CD的宽是10 m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)现有一辆载有一批物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶1 h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0. 25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?25.全线共有隧道37座,共计长达742421.2米.如图所示是庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线EHF的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.26.我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1 000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P 与x之间的函数关系式.(3)李经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)27.在如图所示的抛物线型拱桥上,相邻两支柱间的距离为10 m,为了减轻桥身重量,还为了桥形的美观,更好地防洪,在大抛物线拱上设计两个小抛物线拱,三条抛物线的顶点C、B、D离桥面的距离分别为4m、10 m、2 m.你能求出各支柱的长度及各抛物线的表达式吗?28.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示,如图甲,一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高,如图乙.根据图象提供的信息解答下面问题(1)一件商品在3月份出售时的利润是多少元?(利润=售价一成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?29.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元,已知(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元? 30.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?参考答案1、D2、A3、B4、C5、C6、A7、B8、B9、B10、C11、C12、B13、 0<x<10014、y=-(x-1)2+2. 25 2.515、1516、717、解:(l),y有最大值,当x=-l时,y有最大值.(2)y= 3(x+l) (x-2)=3(x2-x-2)a=3>0,y有最小值,当x=时,y有最小值.18、解:设抛物线的解析式为y=ax2+6,又因为抛物线过点(4,2),则16a+6=2,,抛物线的解析式为y=+6.(2)当x=2.4时,y=+6 =-1. 44+6=4. 56>4.2,故这辆货运卡车能通过该隧道.19、解:(l)y=(x-30) (162-3x)= - 3 x2 +252x-4860(2)y= -3 (x-42) 2+432 当定价为42元时,最大销售利润为432元20、解:(l)S=x(40- 2x)=-2 x2+40x, 当S=200时,.(2)当BC=y,则y=40-2x①又y2=x(x+y) ②由①、②解得x=20±,其中20+不合题意,舍去,x=20-,y=当矩形成黄金矩形时,宽为20-m,长为m.21、解:(1)方案乙中的一次函数为y= -x+200.第四天、第五天的销售量均为20件.方案乙前五天的总利润为:130×70+150×50+160 ×40+180 ×20+180 ×20-120 ×(70+50+40+20+20)=6 200元.方案甲前五天的总利润为(150-120)×50×5=7 500元,显然6200<7 500,前五天中方案甲的总利润大.(2)若按甲方案中定价为150元/件,则日利润为(150-120)×50=1500元,对乙方案:S=xy-120y=x(-x+200) -120(-x+200)= -x2+320x- 24000= - (x-160)2+1600,即将售价定在160元/件,日销售利润最大,最大利润为1600元.22、解:(1)图象略.(2)当x=4时,函数y有最大值8.所以服药后4h,才能使血液中的含药量最大,这时的最大含药量是每毫升血液中含有药8微克.(3)图象与x轴两交点的横坐标的差即为有效时间.故一次服药后的有效时间为8h23、解:(l)因为AD= EF=BC=x m,所以AB=18-3x.所以水池的总容积为1. 5x(18-3x)=36,即x2- 6x+8=0,解得x1=2,x2=4,所以x应为2或4.(2)由(1)可知V与x的函数关系式为V=1. 5x(18-3x)= -4.5x2+27x,且x的取值范围是:0<x<6.(3)V=4.5 x2+27.所以当x=3时,V有最大值,即若使水池总容积最大,x应为3,最大容积为40.5 m3.24、解:(1)设抛物线的解析式为y= ax2,桥拱最高点0到水面CD的高为h米,则D(5,-h).B(10,-h-3).所以即抛物线的解析式为y=-.(2)货车按原来速度行驶不能安全通过此桥.要使货车安全通过此桥,货车的速度应超过60千米/时.25、解:(1)以EF所在直线为x轴,经过H且垂直于EF的直线为y轴,建立平面直角坐标系,显然E(-5,0),F(5,0),H(0,3).设抛物线的解析式为+bx+c 依题意有:所以y= +3.(2)y=1,路灯的位置为(,1)或(一,1).(只要写一个即可)(3)当x=4时,,点到地面的距离为1.08+2=3.08,因为3.08-0.5=2.58>2.5,所以能通过.26、解:(1)y=x+30(1≤x≤160,且x为整数)(2)P=(x+30)(1000-3x)=-3+910x+30000(3)由题意得W=(-3+910x+30000)-30×1000-310x=-3(x-100)2+30000 当x=100时,W最大=30000.100天<160天,存放100天后出售这批野生菌可获得最大利润30000元.27、解:抛物线OBA过B(50, 40) ,A(100,0),抛物线OBA的解析式为.当x=20, 30, 40时,y的值分别为:MC=4( m),EN= (m),FQ=50-=( m),GT= ( m),BR= 10 (m). G 1T1 =GT-(m),PQ1-FQ= (m).又抛物线CE过顶点C(10,46),E(20,),解析式为y=-(x-10)2+46.而抛物线PD过顶点D(85,48),P(70,).解析式为y=-(x-85)2+48.x=80求得y=.KK 1=50--,KK1-LL1=(m).综上:三条抛物线的解析式分别为:从左往右各支柱的长度分别是:4m,m,m,m,10m,m,10m,m,m,m,m28、解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q(元)是时间t(月)的二次函效,由图象可知,抛物线的顶点为(6,4),由题知t=3,4,5,6,7.(3)由图象可知,M(元)是t(月)的一次函数,其中t=3,4,5,6,7∴当t=5时,W∴所以该公司一月份内最少获利元29、解:(1)当x=150吨时,利润最多,最大利润2 000元.当x=150吨时,Q=+45=40(元).30、解:(1)y=(x-20)(-2x+80)=-2+120x-1600(2)y=-2+120x-1 600=-2(x-30)2+200当x=30时,最大利润为y=200元.(3)由题意,y=150,即-2(x-30)2+200=150解得x l=25,x2=35.又销售量w=-2x+80随单价增大而减小,故当x=25时,既能保证销售量大,又可以每天获得150元的利润.。
人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案
人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________1.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?2.正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?3.某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?4.如图,二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的表达式,以及点B的坐标.(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.近年来国家倡导“电动车,上牌照,保安全,戴头盔”.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足函数关系y=−2x+200.专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.(1)设专卖店在优惠活动期间,月销售利润为w元,求w与x之间的函数解析式;(2)嘉嘉说:“在优惠活动期间,该专卖店的月销售的最大利润能达到1700元.”请判断嘉嘉的说法是否正确,并说明理由.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25米)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长40米的栅栏围成(如图),设绿化带的边BC长为x米,绿化带的面积为y 平方米.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带面积最大?最大面积是多少?8.某公司生产某种皮衣,每件成本为200元.据公司往年数据分析预测,今年12月份的日销售量s(件)与时间t(天)的关系如图.前20天每天的价格m1(元/件)与时间t(天)的函数关系式m1=2.5t+250(1≤t≤20且t为整数),第21天到月底每天的价格m2(元/件)与时间t(天)的函数关系式m2=-5t+400(21≤t≤31且t为整数).(1)求s与t之间的函数关系式;(2)求预测12月份中哪一天的日销售利润最大,最大利润是多少?(3)根据疫情情况,在实际销售的前20天中,该公司决定每销售一件衣服就捐赠10a元(a<4)给红十字会.公司要求在前20天中,每天扣除捐款后的日销售利润随时间t(天)的增大而增大,问第10天时,日销售利润能不能超过3600元,请说明理由.9.某化工材料经销公司购进一种化工原料若干千克价格为每千克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元。
人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)
(2)当销售单价定为多少时, 最大,最大为多少元?
(3)销售期间,为了确保获利不低入36000元,直接写出该花生销售价格的范围.
10.合肥某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.
(1)求该款T恤4月份到6月份销售量的月平均增长率;
(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?
16.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)(元)之间的关系可近似的看作一次函数: .
(1)求y与x的函数解析式
(2)求出当x是多少时,利润y有最大值,最大值是多少?
2.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加 元,日均销售量减少40瓶.
(1)当每㼛售价为11元时,日均销售量为______瓶;
(2)当每㼛售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
(1)当每月获利5250元时,求此时每顶头盔的售价;
(2)当每顶头盔售价多少元时,每月的销售利润最大?最大利润是多少元?
9.直播扶贫助农已经成为10万淘宝主播共同的公益事业.为切实提高农民的收入,推动贫困乡村脱贫致富,在明星直播间销售花生.已知该花生的成本为8元/kg,销售量 与销售单价 (元/kg)的函数关系如图所示,销售获利为 元.
6.(1) ,详见解析
(2)售价定为70元/千克时,最大利润是1800元
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
人教版九年级上册数学实际问题与二次函数 应用题专题训练(带答案)
实际问题与二次函数应用题专题训练1.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1) 饲养场的长为米(用含a的代数式表示).(2) 若饲养场的面积为288m2,求a的值.(3) 当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?2.在新秦淮区的对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以188万元的优惠价转让给了尚有120万无息贷款还没有偿还的小型福利企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支 5.6万元后,逐步偿还转让费(不计利息).如果维持乙企业的正常运转每月除职工最低生活费外,还需其他开支 2.4万元,并且从企业甲提供的相关资料中可知这种热门消费品的进价是每件12元,月销售量y(万件)与销售单价x(元)之间的函数关系式是y=−x+20.(1) 当商品的销售单价为多少元时,扣除各类费用后的月利润余额最大?(2) 企业乙依靠该店,能否在3年内偿还所有债务?3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=−2x+ 240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1) 求y与x的关系式;(2) 当x取何值时,y的值最大?(3) 如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?4.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1) 求出y与x之间的函数关系式;(2) 如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3) 写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?5.某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果毎件童装降价1元,那么平均每天可多售出2件,设每件降价x元(x>0),平均每天可盈利y元.(1) 写出y与x的函数关系式;(2) 当该专卖店每件童装降价多少元时,平均每天盈利400元?(3) 该专卖店要想平均每天盈利600元,可能吗?请说明理由.6.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?7.某商店出售一款商品,商店规定该商品的销售单价不低于68元.经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系.关于该商品的销售单价,日销售量,日销售利润的部分对应数据如下表:[注:日销售利润=日销售量×(销售单价−成本单价)]销售单价x(元)757882日销售量y(件)15012080日销售利润w(元)52504560m(1) 求y关于x的函数关系式,并直接写出自变量的取值范围;(2) ①根据以上信息,填空:该产品的成本单价是元,表中m的值是;②求w关于x的函数关系式;(3) 求该商品日销售利润的最大值.8.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=−x+26.(1) 求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2) 该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3) 第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.9.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200−4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1) 求公司生产该商品每件的成本为多少元?(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).10.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1) 商家一次购买这种产品多少件时,销售单价恰好为2600元?(2) 设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数解析式,并写出自变量x的取值范围.(3) 该公司的销售人员发现:当商家一次购买这种产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)11.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用.(1) 当每个房间的定价增加120元时,求一天订出的房间数;(2) 设每个房间的房价定价增加x元(x为10的正整数倍),宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?12.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图①所示,每千克成本y2(元)与销售月份x之间的关系如图②所示,其中图①中的点在同一条线段上,图②中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1) 求出y1与x函数关系式.(2) 求出y2与x函数关系式.(3) 设这种蔬菜每千克收益为ω元,试问在哪个月份岀售这种蔬菜,ω将取得最大值?并求出此最大值.(收益=售价−成本)13.A,B两书店都有同版《英汉小词典》一书出售,封底标价为20元,现两书店都同时进行促销活动,A书店一律按标价的7折销售;B书店若只购1本则按标价销售,若一次性购买多于1本,但不多于20本时,每多购1本,每本售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买3本每本价优惠4%,依此类推),若多于20本时,每本售价为12元;设在A,B两书店购此书总价分别为y A,y B.(1) 试分别写出y A,y B与购书本数x之间的函数关系式.(2) 如果老师给你176元钱,要你去B书店买该书,问一次性最多能购买此书多少本?若要你去A书店最多又能购买此书多少本呢?(3) 若要分别在A,B两书店一次性购买此书相同本数(x本)时,问当x(0<x≤20)为多少,购此书总价y A与y B相差最大,最大值是多少?14.某货车销售公司,分别试销售两种型号货车各一个月,并从中选择一种长期销售,设每月销售量为x辆,若销售甲型货车,每月销售的利润为y1(万元),已知每辆甲型货车的利润为(m+6)万元,(m是常数,9≤m≤11),每月还需支出其他费用8万元,受条件限制每月最多能销售甲型货车25辆;若销售乙型货车,每月的利润y2(万元)与x的函数关系式为y2=ax2+bx−25,且当时x=10,y2=20,当x=20时,y2=55,受条件限制每月最多能销售乙型货车40辆.(1) 分别求出y1,y2与x的函数关系式,并确定x的取值范围;(2) 分别求出销售这两种货车的最大月利润;(最大利润能求值的求值,不能求值的用式子表示)(3) 为获得最大月利润,该公司应该选择销售哪种货车?请说明理由.15.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1) 写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2) 求销售单价为多少元时,该文具每天的销售利润最大;(3) 商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元,请比较哪种方案的最大利润更高,并说明理由.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1) 直接写出y与x之间的函数关系式;(2) 如何确定销售价格才能使月利润最大?求最大月利润;(3) 为了使每月利润不少于6000元应如何控制销售价格?17.2021年3月南山区在深圳湾举办风筝节,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个.请回答以下问题:(1) 用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3) 当售价定为多少时,王大伯获得利润最大,最大利润是多少?18.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx−75,其图象如图所示.时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)(参考公式:当x=−b2a(1) 求a与b的值;(2) 销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3) 销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?19.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y 越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10<x≤20和20<x≤40时,图象是线段.(1) 当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2) 一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?20.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1) 请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?答案一、解答题1. 【答案】(1) 60−3a(2) 依题意,列方程 a (60−3a )=288,解得 a 1=12;a 2=8(舍去),∴a =12.(3) a (60−3a )=−3a 2+60a =−3(a −10)2+300,∵2<60−3a ≤27,当 a =11 时,最大面积是 297 m 2.2. 【答案】(1) 设扣除各类费用后的月利润余额 W 万元.根据题意,得W =(x −12)y −5.6−2.4=(x −12)(−x +20)−5.6−2.4=−x 2+32x −248=−(x −16)2+8.当 x =16 时,W 最大值=8. 答:当商品的销售单价为 16 元时,扣除各类费用后的月利润余额最大.(2) 按扣除各类费用后的月利润余额最大值 8 万元计算,3 年总利润为:8×12×3=288 万元.所有债务为:188+120=308 万元.∵288<308,∴ 不能在 3 年内偿还所有债务.3. 【答案】(1) y =(x −50)⋅w=(x −50)⋅(−2x +240)=−2x 2+340x −12000,∴y 与 x 的关系式为 y =−2x 2+340x −12000.(2) y =−2x 2+340x −12000=−2(x −85)2+2450,∴ 当 x =85 时,y 的值最大.(3) 当 y =2250 时,可得方程 −2(x −85)2+2450=2250.解这个方程,得 x 1=75,x 2=95.根据题意,x 2=95 不合题意应舍去.∴ 当销售单价为 75 元时,可获得销售利润 2250 元.4. 【答案】(1) 设 y 与 x 之间的函数关系式为 y =kx +b (k ≠0),由所给函数图象可知:{130k +b =50,150k +b =30,解得:{k =−1,b =180,故 y 与 x 的函数关系式为 y =−x +180.(2) 根据题意,得:(x −100)(−x +180)=1500.整理,得:x 2−280x +19500=0.解得:x =130.或x =150.答:每件商品的销售价应定为 130 元或 150 元.(3) ∵y =−x +180,∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴ 当 x =140 时,W 最大=1600,∴ 售价定为 140 元/件时,每天最大利润 W =1600 元.5. 【答案】(1) 根据题意y =(20+2x )(60−40−x ),y =−2x 2+20x +400(0<x <20).(2) 当 y =400 时,−2x 2+20x +400=400,解得 x 1=10,x 2=0(舍).答:当每件童装降价 10 元时平均每天盈利 400 元.(3) 不可能盈利 600 元.当 y =600 时,600=−2x 2+20x +400,x 2−10x +100=0,Δ=(−10)2−4×1×100=−300<0.方程无实数根.答:不可能盈利 600 元.6. 【答案】(1) ω=(x −30)⋅y=(−x +60)(x −30)=−x 2+30x +60x −1800=−x 2+90x −1800.ω 与 x 之间的函数表达式为 ω=−x 2+90x −1800.(2) 根据题意得,ω=−x 2+90x −1800=−(x −45)2+225.∵−1<0,当 x =45 时,ω 有最大值,最大值是 225.即这种双肩包销售单价定为 45 元时,每天的销售利润最大,最大利润是 225 元.(3) 当 ω=200 时,−x 2+90x −1800=200,解得 x 1=40,x 2=50.∵50>48,∴x 2=50 不符合题意,舍去.故该商店销售这种双肩包每天要获得 200 元的销售利润,销售单价应定为 40 元.7. 【答案】(1) 设 y =kx +b ,将 (75,150),(78,120) 代入,{75k +b =150,78k +b =120,∴{k =−10,b =900.∴y =−10x +900(68≤x ≤90).(2) ① 40;3360② w =y (x −40)=(−10x +900)(x −40)=−10x 2+1300x −36000.(3) w =−10(x −65)2+6250,∵a =−10<0,∴w 有最大值,∵ 当 x ≥65 时,w 随 x 的增大而减小,而 68≤x ≤90,∴ 当 x =68 时,w max =−10(68−65)2+6250=6160,即该商品日销售利润的最大值为 6160 元.8. 【答案】(1) W 1=(x −6)(−x +26)−80=−x 2+32x −236.(2) 由题意:20=−x 2+32x −236.解得:x =16,答:该产品第一年的售价是 16 元.(3) 由题意:7≤x ≤16,W 2=(x −5)(−x +26)−20=−x 2+31x −150,∵7≤x ≤16,∴x =7 时,W 2 有最小值,最小值 =18(万元),答:该公司第二年的利润 W 2 至少为 18 万元.9. 【答案】(1) 设成本为 m 元,10+20=30,30×0.8=24,24−m m =20%,解得m =20,答:公司生产该商品每件成本为 20 元.(2) 设利润为 Z ,则利润 Z =(200−4x )x =−4x 2+200x ,当 x =25 时,利润最大,最大利润为:2500 元,答:第 25 天时利润最大,最大利润为 2500 元.(3) 0<a ≤30010. 【答案】(1) 设商家一次购买这种产品 x 件时,销售单价恰好为 2600 元.由题意,得3000−10(x −10)=2600,解得x =50.故商家一次购买这种产品 50 件时,销售单价恰好为 2600 元.(2) 当 0≤x ≤10 时,y =(3000−2400)x =600x ;当 10<x ≤50 时,y =x [3000−10(x −10)−2400]=−10x 2+700x ;当 x >50 时,y =(2600−2400)x =200x .故 y 与 x 之间的函数解析式为y ={600x,0≤x ≤10,且x 为整数−10x 2+700x,10<x ≤50,且x 为整数200x,x >50,且x 为整数. (3) 若要满足一次购买的数量越多,公司所获的利润越大,则 y 应随 x 的增大而增大.y =600x 及 y =200x 均是 y 随 x 的增大而增大,二次函数 y =−10x 2+700x =−10(x −35)2+12250,当 10<x ≤35 时,y 随 x 的增大而增大;当 35<x ≤50 时,y 随 x 的增大而减小,因此 x 的取值范围只能为 10<x ≤35,即一次购买的数量为 35 件时的销售单价应为调整后的最低销售单价.当 x =35 时,销售单价为 3000−10×(35−10)=2750(元).故公司应将最低销售单价调整为 2750 元.11. 【答案】(1) 50−12010=38(间). (2) w =(50−x 10)×(180+x −20)=−110x 2+34x +8000.(3) ∵−110<0,∴ 抛物线开口向下,抛物线有最高点,函数有最大值,∴ 当 x =−b 2a =34−2×(−110)=170 时, w 最大值=4ac−b 24a =4×(−110)×8000−3424×(−110)=10890. 50−170÷10=33 间.答:一天订住 33 个房间利润最大,最大为 10890 元.12. 【答案】(1) 设 y 1=kx +b ,∵ 直线经过 (3,5),(6,3),{3k +b =5,6k +b =3,解得:{k=−23, b=7.∴y1=−23x+7(3≤x≤6,且x为整数)(2) 设y2=a(x−6)2+1,把(3,4)代入得:4=a(3−6)2+1,解得a=13,∴y2=13(x−6)2+1.(3) 由题意得ω=y1−y2=−23x+7−[13(x−6)2+1]=−13(x−5)2+73,当x=5时,ω最大值=73.故5月出售这种蔬菜,每千克收益最大.13. 【答案】(1) 在A书店购书的总费用为:y A=20×0.7x=14x,在B书店购书的总费用为:y B={20×[1−2%(x−1)]×x,0<x≤20 12x,x>20化简整理得:y B={1025x−25x2,0<x≤20 12x,x>20(2) B书店:当x>20时,12×20=240(元)>176元,∴在B书店购买的本数不多于20件,∴1025x−25x2=176,解得:x1=11或x2=40(舍),∴在B书店,176元钱最多购买此书11本.A书店:14x=176,解得:x=1247≈12,∴在A书店,176元钱最多购买此书12本.(3) ∵当0<x≤20时,设y=y A −y B =14x −1025x +25x 2=25x 2−325x =25(x −8)2−1285, ∵25>0,开口向上,且对称轴为 x =8,∴ 当 x =20 时,y 有最大值,最大值 y =32.14. 【答案】(1) 根据题意,得y 1=(m +6)x −8,(0≤x ≤25).将 x =10,y 2=20,x =20,y 2=55 代入 y 2=ax 2+bx −25,{100a +10b −25=20,400a +20b −25=55, 解得:{a =−120,b =5.∴y 2=−120x 2+5x −25,(0≤x ≤40).(2) ∵m 是常数,(9≤m ≤11),∴m +6>0,∴y 1 随 x 的增大而增大,∴ 当 x =25 时,y 1 取得最大值,最大值为 25m +142.∵y 2=−120(x −50)2+100,∴ 当 x <50 时,y 随 x 的增大而增大,∵0≤x ≤40,∴ 当 x =40 时,y 2 有最大值,最大值为 95.(3) ∵y 1 的最大值为 25m +142.且 9≤m ≤11,∴367≤y 1≤417,y 2 有最大值为 95,∴95<367.故应选择甲种货车.15. 【答案】(1) 由题意得,销售量 =250−10(x −25)=−10x +500,则w =(x −20)(−10x +500)=−10x 2+700x −10000.(2) w =−10x 2+700x −10000=−10(x −35)2+2250.因为 −10<0,所以函数图象开口向下,w 有最大值,当 x =35 时,w 最大=2250,故当单价为 35 元时,该文具每天的利润最大.(3) A 方案利润高,理由如下:A 方案中:20<x ≤30,故当 x =30 时,w 有最大值,此时 w A =2000;B 方案中:{−10x +500≥10,x −20≥25,故 x 的取值范围为:45≤x ≤49,因为函数 w =−10(x −35)2+2250,对称轴为直线 x =35,所以当 x =45 时,w 有最大值,此时 w B =1250,因为 w A >w B ,所以A 方案利润更高.16. 【答案】(1) 由题意可得y ={300−10x (0≤x ≤30),300−20x (−20≤x <0);(2) 由题意可得w ={(20+x )(300−10x )(0≤x ≤30),(20+x )(300−20x )(−20≤x <0).化简得w ={−10x 2+100x +6000(0≤x ≤30),−20x 2−100x +6000(−20≤x <0).即w ={−10(x −5)2+6250(0≤x ≤30),−20(x +52)2+6125(−20≤x <0).由题意可知 x 应取整数,故当 x =−2 或 x =5 时,w <6125<6250,故当销售价格为 65 元时,利润最大,最大利润为 6250 元;(3) 由题意 w ≥6000,如图,令 w =6000,即6000=−10(x −5)2+6250,6000=−20(x +52)2+6125,解得x 1=−5,x 2=0,x 3=10,所以−5≤x ≤10,故将销售价格控制在 55 元到 70 元之间(含 55 元和 70 元)才能使每月利润不少于 6000 元.17. 【答案】(1) 设蝙蝠型风筝售价为 x 元时,销售量为 y 个,据题意可知:y =180−10(x −12)=−10x +300(12≤x ≤30).(2) 设王大伯获得的利润为 W ,则 W =(x −10)y =−10x 2+400x −3000, 令 W =840,则−10x 2+400x −3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得 840 元利润,售价应定为 16 元.(3) ∵W =−10x 2+400x −3000=−10(x −20)2+1000,∵a =−10<0,∴ 当 x =20 时,W 取最大值,最大值为 1000.答:当售价定为 20 元时,王大伯获得利润最大,最大利润是 1000 元.18. 【答案】(1) y =ax 2+bx −75 图象过点 (5,0),(7,16),所以 {25a +5b −75=0,49a +7b −75=16,解得:{a =−1,b =20.(2) 因为 y =−x 2+20x −75=−(x −10)2+25,所以当 x =10 时,y 最大=25.答:销售单价为 10 元时,该种商品每天的销售利润最大,最大利润为 25 元.(3) 销售单价在 8≤x ≤12 时,销售利润不低于 21 元.19. 【答案】(1) 设 0≤x ≤10 时的抛物线为 y =ax 2+bx +c .由图象知抛物线过 (0,20),(5,39),(10,48) 三点,∴{c =20,25a +5b +c =39,100a +10b +c =48, 解得 {a =−15,b =245,c =20,∴y =−15x 2+245x +20(0≤x ≤10).(2) 由图象知,当 20<x ≤40 时,y =−75x +76,当 0≤x ≤10 时,令 y =36,得 36=−15x 2+245x +20, 解得 x 1=4,x 2=20(舍去);当 20<x ≤40 时,另 y =36,得 36=−75x +76,解得 x =2007=2847. ∵2847−4=2447>24,∴ 老师可以通过适当的安排,在学生的注意力指标数不低于 36 时,讲授完这道数学综合题.20. 【答案】(1) y =300−10(x −44)=−10x +740,44≤x ≤52.(2) w=(x−40)(−10x+740)=−10(x−57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,∴当x=52时,w有最大值,最大值为2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.。
人教版九年级上册数学 第二十二章 二次函数应用题 专题训练(含答案)
人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元. (1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x 元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg ,每日销售量y (kg )与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg .设公司销售板栗的日获利为w (元).(1)请求出日销售量y 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元? (3)当销售单价在什么范围内时,日获利w 不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y 是x 的什么函数?并求出解析式. (2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价(元)满足y =﹣10x +400,设销售这种商品每天的利润为w (元). (1)求w 与x 之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元? (3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x +(2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元 10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。
人教版九年级上册数学第二十二章二次函数应用题训练
人教版九年级上册数学第二十二章二次函数应用题训练1.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?2.某服装店销售一款卫衣,该款卫衣每件进价为60元,规定每件售价不低于进价.经市场调查发现,该款卫衣每月的销售量y(件)与每件售价x(元)满足一次函数关系y=-20x+2800.(1)若服装店每月既想从销售该款卫衣中获利24000元,又想尽量给顾客实惠,售价应定为多少元?(2)为维护市场秩序,物价部门规定该款卫衣的每件利润不允许超过每件进价的50%.设该款卫衣每月的总利润为w(元),那么售价定为多少元时服装店可获得最大利润?最大利润是多少元?3.为响应国家提出的由中国制造向中国创造转型的号召,某公司自主设计了一款可控温杯,每个的生产成本为18元,投放市场进行试销,经过调查得到每月销售量y(万/个)与销售单价x(元/个)之间的部分数据如下:(1)试判断y 与x 之间的函数关系,并求出函数关系式; (2)设每月的利润为w (万元),求w 与x 之间的函数关系式;(3)该公司既要获得一定利润,又要符合相关部门规定(产品利润率不高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?求出最大利润.4.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224x ≤<)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件. ①当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润; ①若线下月利润与线上月利润的差不低于800元,直接写出x 的取值范围.5.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:千克)之间的函数关系.(1)求折线ABD 所表示的,1y 与x 之间的函数表达式.(2)若产品产量不超过70千克,求产量x 为多少千克时,获得的利润最大?最大利润是多少?6.某农场有100亩土地对外出租,现有两种出租方式:方式一 若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩. 方式二 每亩土地的年租金是600元.(1)若选择方式一,当出租80亩土地时,每亩年租金是_____元;(2)当土地出租多少亩时,方式一与方式二的年总租金差.....最大?最大值是多少? (3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a 元()0a >给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构,当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a 的取值范围. (注:年收入=年总租金-捐款数)7.已知每张门票价格为30元时,平均每天有游客4000人,经调研知,若每张门票价格每增加10元,平均每游客减少500人,物价部门规定,每张门票不低于30元,不高于100元.设每天游客人数为y (人),每张门票价格涨价x (元)(x 为10的倍数).(1)写出y 与x 之间的函数关系式,并写出自量x 的取值范围;(2)若某天的门票收入为15万元,此收入是否为每天的门票最大收入?请说明理由; (3)请分析并回答门票价格在什么范围内每天门票收入不低于12万元.8.“童心迎六一,欢乐共成长”,某超市计划在儿童节期间进行一款文具的促销活动.该文具进价为5元/件,售价为9元/件时,当天的销售量为100件.在销售过程中发现:售价每下降0.5元,当天的销售量就增加5件.设当天销售单价统一为x 元/件(59x <≤,且x 是按0.5元的倍数下降),当天销售利润为y 元.(1)求y与x的函数关系式;(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过60%,要想当天获得最大利润,每件文具的售价应为多少元?并求出最大利润.9.某景区由A,B两个核心区域构成,可单独购票,也可购联票,挂牌价格如下表.去年6月份旺季到来,选择甲、乙、丙三种购票方式人数分别约有2万、3万、2万.预测今年6月份大致相当.为鼓励游客扩大游玩区域,决定调整联票价格.预期丙种票单价每下降1元,将约有原计划购甲种票600人,乙种票400人改购丙种票.(1)若丙种票单价下降10元,求景区今年6月份门票预期总收入.(2)将丙种票单价下降多少时,今年6月份门票总收入有最大值?最大值是多少?10.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;①当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.11.调查了某个考点上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,并绘制了如图所示图像.(1)研究发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x之间的函数关系式;(2)如果考生一进考点就开始排队测量体温,体温监测点有2个,每个监测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?12.用一根长20cm的铁丝围矩形.(1)若围成的矩形的面积是16cm2,求该矩形的长和宽;(2)当长和宽分别为多少时,该矩形的面积最大?最大面积是多少?13.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边m,面积为2AB xS.m(1)写出S与x之间的关系式,并指出x的取值范围;AB BC分别为多少米时,羊圈的面积最大?最大面积是多少?(2)当,14.自由落体运动是由于引力的作用而造成的,地球上物体自由下落的时间t (s )和下落的距离h (m )的关系是h =4.9t 2.我们知道,月球的引力大约是地球引力的16,因此月球上物体自由下落的时间t (s )和下落的距离h (m )的关系大约是h =0.8t 2. (1)在同一平面直角坐标系中作图,分别表示地球、月球上h 和t 的关系; (2)比较物体下落4s 时,在地球上和月球上分别下落的距离;(3)比较物体下落10m 时,在地球上和月球上分别所需要的时间(结果精确到0.1s ).15.如图,有一座抛物线型拱桥,在正常水位时水面宽20m AB =,当水位上升3m 时,水面宽10m CD =.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5km /h 的速度向此桥径直驶来,当船距离此桥35km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25m ,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?16.一个高尔夫球手击出一个高尔夫球,水平距离()m d 和球上升的高度()m h 满足关系:20.004h d d =-.(1)当球飞了90m 远时,它上升的高度是多少?(2)当球第一次到达50m 高处时,它已飞了多远?(结果精确到1m )17.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?18.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x 时,完成以下两个问题:(1)当4①请补全下面的表格:①若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.19.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).20.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的??
[???? ]
A.第8秒????
B.第10秒??
C.??第12秒????
D.第15秒
二、填空题
13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是(???????),自变量x的取值范围是(????? ).
16.在距离地面2m高的某处把一物体以初速度vo(m/s)竖直向上抛出,在不计空气阻力的情况下,其 上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s),若v0=10 m/s,则该物体在运动过程中最高点距离地面(???? )m
三、计算题
17.求下列函数的最大值或最小值.
(l) ;
19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.?
?(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升
≥ 且m≠0
C.m=
m≠0
9.某种产品的年产量不超过1 000吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原点的抛物线的一部分,如图①所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是线段,如图②所示,若生产出的产品都能在当年销售完,则年产量是(?? )吨时,所获毛利润最大.(毛利润=销售额-费用)??
[???? ]
A.72 m??
B.36 m
C.36 m??
D.18 m
6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,则要想获得最大利润,销售单价为
[???? ]
A.25元????
B.20元??
C.30元????
D.40元
7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c所示,则下列结论正确的是
①????????????????????????????????????????????????????? ②
[???? ]
A.1 000????
B.750??
C.?? 725????
D.500????????
10.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到,水泥建筑物的厚度忽略不计)
[???? ]
A.过点(3,0)?
B.顶点是(2,-1)?
C.在x轴上截得的线段的长是3??
D.与y轴的交点是(0,3)
3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面 m,则水流落地点B离墙的距离OB是???
20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x m,面积为Sm2
(1)写出S与x之间的函数关系式,并求当S=200 m2时,x的值;
A.2m????
B.3m??
C .4 m????
D.5 m
4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是 ,则该运动员此次掷铅球的成绩是
[???? ]
A.6 m????
B.8m????
C.? 10 m??
D.12 m
5.某人乘雪橇沿坡度为1: 的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为????
①a< ;② <a<0;③ a-b+c>0;④ 0<b<-12a
[???? ]
A.①③????????????????????
B.①④
C.②③????????????????????
D.②④
8.关于x的二次函数y=2mx2+(8m+1)x+8m的图象与x轴有交点,则m的取值范围是??
[???? ]
A.m<
[???? ]
A.m????
B.??
C.m????
D.m
11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是????
[???? ]
?A.? y= - 2x2??
B.y=2x2??
C.? ?y=-2 x2??????
14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,,水流路线最高处B(1,,则该抛物线的表达式为(???? ).如果不考虑其他因素,那么水池的半径至少要(???? ),才能使喷出的水流不致落到池外.
15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,桥的高度是(???? )m .
(2)y=3(x+l) (x-2).
四、解答题
18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.??
(1)求抛物线的解析式;
?(2)如果该隧道内设双行道,现有一辆货运卡车高为m,宽为m,这辆货运卡车能否通过该隧、单选题
1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为?
[???? ]
?A.28米?
?B.48米
?C.? 68米??
?D.88米
2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2+bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是???