苯—甲苯精馏塔设计
化工原理课程设计(苯-甲苯精馏塔设计)
课程设计任务书一、课题名称苯——甲苯分离过程板式精馏塔设计二、课题条件(原始数据)一、设计方案的选定原料:苯、甲苯年处理量:55000t原料组成(甲苯的质量分率):、0.65料液初温: 30℃操作压力、回流比、单板压降:自选进料状态:饱和液体进料塔顶产品浓度:98.5%塔底釜液含甲苯量不低于97%(质量分率)塔顶采用全凝器,泡点回流塔釜:饱和蒸汽间接/直接加热塔板形式:筛板生产时间:330天/年,每天24h运行冷却水温度:20℃~35℃设备形式:筛板塔厂址:武汉地区三、设计内容(包括设计、计算、论述、实验、应绘图纸等根据目录列出大标题即可)1设计方案的选定2精馏塔的物料衡算3塔板数的确定4精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5精馏塔塔体工艺尺寸的计算6塔板主要工艺尺寸的计算7塔板的流体力学验算8塔板负荷性能图(精馏段)9换热器设计10馏塔接管尺寸计算11制生产工艺流程图(带控制点、机绘,A2图纸)12绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13撰写课程设计说明书一份设计说明书的基本内容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14 有关物性数据可查相关手册15 注意事项●写出详细计算步骤,并注明选用数据的来源●每项设计结束后列出计算结果明细表●设计最终需装订成册上交四、进度计划(列出完成项目设计内容、绘图等具体起始日期)1.设计动员,下达设计任务书0.5天2.收集资料,阅读教材,拟定设计进度1-2天3.初步确定设计方案及设计计算内容5-6天4.绘制总装置图2-3天5.整理设计资料,撰写设计说明书2天6.设计小结及答辩1天指导教师(签名):年月日学科部(教研室)主任(签名):年月日说明:1.学生进行课程设计前,指导教师应事先填好此任务书,并正式打印、签名,经学科部(教研室)主任审核签字后,正式发给学生。
苯与甲苯的精馏塔设计
苯与甲苯的精馏塔设计苯与甲苯是常见的有机化工原料,其精馏塔设计是化工工程中的重要环节之一首先,我们需要确定设计的目标和要求。
在苯与甲苯的精馏过程中,一般的设计目标是实现高纯度的苯和甲苯产品,并且在经济效益上达到最佳。
第二步,需要进行物性参数测定和实验数据收集。
包括苯和甲苯的蒸气压、沸点、密度等物性参数,以及其在不同温度下的相平衡数据等。
接下来,可以运用精馏塔设计的经典方法,如麦凯布-塔克方法或史密斯方法,进行精馏塔的初步设计。
在初步设计中,首先确定塔顶和塔底的操作压力,即以什么方式进行冷凝和加热。
其中,冷凝方式可以通过冷凝器来进行,而加热可以通过加热器来实现。
然后,可以根据塔底的更容易凝结的成分,例如甲苯,选择合适的塔底冷凝器类型。
常见的塔底冷凝器类型包括冷却盘、冷凝卷管和冷凝器。
接下来,进行塔板的设计。
塔板的设计包括确定板间距、塔板孔径、塔板的有效蒸汽速度等参数。
这些参数对于实现塔板上液相和气相的充分搅拌、易于负荷和操作都非常重要。
在塔板设计完成后,可以进行塔塞的设计。
塔塞的设计包括塔塞的形状、大小以及布置在塔板上的位置。
塔塞的作用是增加交换效果,提高分离效果。
在塔板和塔塞设计完成后,可以进行填料的设计。
填料的设计包括填料的材料选择、填料的形状和尺寸。
填料的作用是增加表面积,提高蒸馏效率。
最后,进行精馏塔的热力学计算和模拟。
可以通过现有的化工流程模拟软件,如Aspen Plus,对精馏塔进行热力学计算和性能预测。
这可以帮助我们更好地了解在不同操作条件下,塔的性能如何,以及它能否满足设计要求。
总结起来,苯与甲苯的精馏塔设计是一项复杂且精细的工程,需要综合考虑物性参数、操作要求和经济效益等因素。
通过前期的物性参数测定和实验数据收集,结合经典的精馏塔设计方法和现代化工流程模拟软件的应用,可以设计出高效、可靠的精馏塔。
化工原理课程设计苯与甲苯精馏塔
化工原理课程设计苯与甲苯精馏塔本文将针对化工原理课程设计,探讨苯与甲苯精馏塔的工艺设计。
一、工艺流程苯与甲苯精馏塔的工艺流程如下:苯与甲苯混合物在进入塔后,首先通过反应塔抽收制冷剂进行冷却,从而达到冷却效果,然后通过塔顶进入预分离器进行处理,将其中的气相成分与液相成分分离,剩余的液相通过进料口进入塔体,反复上升和下降,与上部的气相进行平衡沸腾,不断提高纯度,最后在顶部凝结出高纯度的甲苯。
二、设计考虑因素1.塔型塔型应根据生产规模和成本考虑。
一般而言,小型的塔型适合处理小流量、高品质的混合物,而大型的塔型则适合处理大流量、低品质的混合物。
2.动力学参数在设计苯与甲苯精馏塔时,要考虑动力学参数,如液相和气相的流速、物料的热量传递效应等等。
这些参数将直接影响塔的效率和产品品质。
3.填料和操作条件由于苯与甲苯混合物具有一定的粘度和密度差异,因此应在填料和操作条件上进行制约,以避免不同成分之间发生混合或分离出现问题。
三、设计基础1.填料设计填料是苯与甲苯精馏塔的重要组成部分,是决定塔效率和塔高的关键因素。
填料材料应具有良好的性能,如高效的传质、良好的气体液体接触、稳定的抗攻击性等等。
常见的填料材料有氧化铝、陶瓷、合金等。
2.除塔器设计除塔器是苯与甲苯精馏塔的一个重要设计组成部分。
它的主要作用是在塔底处收集返回的液相,防止溢出和保持塔内的可控性。
除塔器的设计应根据填料类型、流量、操作温度和压力等多个因素进行综合考虑,以确保塔的正常运行。
3.塔底设计塔底是苯与甲苯精馏塔的重要组成部分,主要用于收集精馏出的液态产品。
由于反应塔存在高温、高压等因素,因此需要考虑塔底的材料和设计。
常见的材料有碳钢、不锈钢、合金等。
此外,塔底还应配备可靠的排放和泄压装置,以确保塔的安全性。
四、结论苯与甲苯精馏塔是一种常见的化工装置,其设计应考虑多种因素,如塔型、填料、动力学参数等等。
从而确保塔的高效、稳定和可靠性。
苯甲苯精馏塔设计
化工原理课程设计常压、连续精馏塔分离苯-甲苯设计班级:化学工程系2011级1班姓名:学号:指导老师:贾鑫老师完成时间:2014年6月26日化工系常压、连续精馏塔分离苯-甲苯设计一、前言1.1设计任务及条件:泡点进料(q=1),塔顶进入全凝器,塔釜间接蒸汽加热,塔板压降:(0.5-0.7)KPa1.2物系用途及性质(1)苯的性质:摩尔质量78.11g/mol,密度0.8786 g/mL,相对蒸气密度(空气=1):2.77,蒸汽压(26.1℃):13.33kPa,临界压力:4.92MPa,熔点278.65 K (5.51 ℃),沸点353.25 K (80.1 ℃),在水中的溶解度 0.18 g/ 100 ml 水,标准摩尔熵So(298.15K):173.26 J/mol·K,标准摩尔热容 Cpo:135.69 J/mol·K (298.15 K),闪点 -10.11℃(闭杯),自燃温度 562.22℃,结构:平面六边形,最小点火能:0.20mJ,爆炸上限(体积分数):8%,爆炸下限(体积分数):1.2%,燃烧热:3264.4kJ/mol,溶解性:微溶于水,可与乙醇、乙醚、乙酸、汽油、丙酮、四氯化碳和二硫化碳等有机溶剂互溶。
它有机化合物,是组成结构最简单的芳香烃,在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。
苯可燃,有毒。
苯难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。
苯是一种石油化工基本原料。
苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。
苯具有的环系叫苯环,是最简单的芳环。
(2)苯在工业上的用途:苯是工业上一种常用溶剂,主要用于金属脱脂。
苯有减轻爆震的作用而能作为汽油添加剂。
苯在工业上最重要的用途是做化工原料。
苯可以合成一系列苯的衍生物:苯与乙烯生成乙苯,后者可以用来生产制塑料的苯乙烯与丙烯生成乙丙烯,后者可以经乙丙苯法莱生产丙酮与制树脂和粘合剂的苯酚,制尼龙的环己烷,合成顺丁烯二酸酐,用于制作苯胺的硝基苯,用于农药的各种氯苯,合成用于生产洗涤剂和添加剂的各种烷基苯,合成氢醌、蒽醌等化工产品。
苯甲苯精馏塔设计
苯甲苯精馏塔设计
一、任务
本报告旨在根据苯甲苯精馏塔的反应特性,以及生产性质和操作条件,设计一个能够达到合理的精馏效果的固定塔塔式精馏塔。
二、设计的基本要求
1、罐体和塔台:由罐体和塔台组成,其罐体采用优质不锈钢制造,
外形平整,具有良好的热抗性和耐腐蚀,表面光洁度达到Ra0.4μm以上,依据国家地质矿产局标准规定,应符合GB5003-2024(气力、热力改造和
设备)标准。
2、罐内部结构:选择符合国家行业标准的有效的折流器。
设计时应
考虑合理的流量分配和精馏效率,提高精馏效率。
3、罐内衬板:罐内衬板采用不锈钢板,厚度为0.5mm,安装时可用
柔性膨胀螺栓、特殊型法兰、密封圈等来安装,使能够提高使用寿命。
4、吸附剂:精馏塔内需要采用吸附剂来降低其蒸汽温度,从而保证
精馏效果的良好性。
吸附剂的选择应当考虑其结构、反应特性以及性能指标。
5、密封闸:精馏塔的密封闸负责保证内外塔罐压力的稳定,确保生
产安全可靠。
精馏塔的密封闸应选择采用法兰室型密封闸,满足精馏塔的
防火、防渗漏和防爆要求。
三、精馏塔参数
1、罐体直径:2400mm
2、罐体长度:8400mm
3、塔底压力:2MPa。
苯和甲苯精馏塔课程设计
苯和甲苯精馏塔课程设计一、引言在化工工艺中,精馏是一种常用的方法,用于将混合物中的不同组分分离。
在本课程设计中,我们将研究苯(C6H6)和甲苯(C7H8)的精馏过程。
苯和甲苯都是重要的化工原料,在许多工业领域有广泛的应用。
本文将从以下几个方面对苯和甲苯精馏塔进行课程设计:1.塔板设计2.塔顶和塔底的操作条件3.塔的热力设计4.塔的操作优化二、塔板设计苯和甲苯的分离需要高效的塔板设计。
塔板是精馏塔中的一个关键部件,用于增加气液接触面积,实现组分的分离。
在塔板设计中,需要考虑以下几个因素:1.塔板间距:塔板间距的选择应考虑到塔内液相流动的良好性,通常为0.5-1.0米。
2.塔板孔径:塔板孔径的选择需要满足固液分离要求,并尽可能减小液体在孔中的停留时间。
通常为2-5毫米。
3.塔板孔位:塔板孔位的布置应使液体能均匀地流过塔板,并实现气液混合。
常见的孔位布置有正交孔位和方孔位。
4.塔板活性高度:塔板活性高度的选择应满足组分分离的要求,并考虑到不同塔板间液位的变化。
三、塔顶和塔底的操作条件在塔顶和塔底的操作条件设计中,我们需要确定适当的温度和压力,以便实现苯和甲苯的分离。
1.塔顶:在塔顶,通过降低温度和增加压力,可以将甲苯从苯中分离出来。
一般情况下,塔顶的温度应低于塔底的温度,以保证甲苯的净蒸发。
同时,通过适当的塔顶压力调节,可以控制甲苯的回流比例。
2.塔底:在塔底,苯和甲苯的混合物会进行分馏。
通过增加温度和降低压力,可以将苯从甲苯中分离出来。
塔底的温度应高于塔顶的温度,以保证苯的净蒸发。
同时,通过适当的塔底压力调节,可以控制苯的回流比例。
四、塔的热力设计塔的热力设计是保证苯和甲苯精馏效果的关键。
在热力设计中,需要考虑以下几个方面:1.热稳定性:苯和甲苯在精馏塔中的热稳定性要求较高,避免产生不稳定的产物,影响产品质量。
2.能量平衡:通过热交换器对塔内液体和气体进行能量平衡,提高塔的热效率。
3.冷却方式:选择合适的冷却方式,如水冷却或气冷却,以控制塔顶和塔底的温度。
苯-甲苯分离精馏塔设计
摘要在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一。
塔设备一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
70年代初能源危机的出现,突出了节能问题。
随着石油化工的发展,填料塔日益受到人们的重视,此后的20多年间,填料塔技术有了长足的进步,涌现出不少高效填料与新型塔。
苯和甲苯的分离对于工业生产具有重要的意义。
关键词:苯甲苯精馏塔第一章文献综述1.1苯1.1.1苯的来源工业上大量的苯主要由重整汽油及裂解汽油生产,甲苯歧化、烷基苯脱烷基等过程也是苯重要的工业来源,由煤焦化副产提供的苯占的比例已经很小。
不同国家和地区的苯供应情况各不相同:美国主要从重整汽油中获得;西欧主要来自裂解汽油;中国则主要由重整汽油及炼焦副产品生产。
由重整汽油及裂解汽油分离苯在石脑油经催化重整所得的重整汽油中,约含苯6%(质量),用液-液萃取法将重整汽油中芳烃分出,再精馏得到苯、甲苯、二甲苯。
由烃类裂解得到的裂解汽油中,苯含量最高可达40%(质量),工业上也用液-液萃取的方法从中抽提芳烃,然后精馏得苯等芳烃组分,但萃取前需先用催化加氢方法除去裂解汽油中的烯烃及含硫化合物等杂质。
(见芳烃抽提)脱烷基制苯所用烷基苯可以是甲苯、二甲苯或多烷基苯,由芳烃的供需平衡决定。
烷基苯脱烷基工艺可分为催化脱烷基法和热脱烷基法。
催化脱烷基法反应温度500~650℃,压力3.0~7.0MPa,用负载于氧化铝上的铬、钴或钼系催化剂,特点是能耗低,但因催化剂易结焦,需有较大的氢/烷基苯比,俗称氢油比。
此外,还要求原料中非芳烃含量不能太高。
热脱烷基法允许原料中非芳烃含量较高,反应温度比催化脱烷基法高约100~200℃,压力为3.0~10.0MPa,特点是操作比较简单,但能耗大、反应器材料要求高。
两种脱烷基法流程十分相似(图2),其主要差异只是在反应器构造上。
原料与氢混合加热后进入反应器。
反应后,混合物经冷却进入气液分离器,分出氢气等气相物料。
苯和甲苯精馏塔课程设计
苯和甲苯精馏塔课程设计简介本文旨在介绍苯和甲苯精馏塔的设计方案。
苯和甲苯是工业上重要的有机化学物质,它们的精馏分离是工业上的常见操作。
本文将介绍苯和甲苯的物性参数、塔设计流程以及模拟计算过程。
物性参数苯的密度为 1.045g/cm³,沸点为80.1℃,甲苯的密度为0.867g/cm³,沸点为139.1℃。
对于本设计,需要知道苯和甲苯的汽液平衡常数和相对挥发度。
汽液平衡常数是指在一定温度下,液相和气相中物质浓度的比例关系,它是塔设计的关键参数。
相对挥发度则是指两种组分在液相中的蒸气压比值,是计算汽液平衡常数的必要参数。
塔设计流程苯和甲苯的精馏分离可以采用塔式设备,它是一种常见的分离设备。
塔设计的流程分为以下几个步骤:1. 确定进料组成和塔顶组成。
这是塔设计的基础,进料组成和塔顶组成决定了塔的操作条件和输出产品的质量。
2. 估算塔的理论板数。
理论板数是指在理想状态下,需要多少个塔板才能完成分离。
估算理论板数是塔设计的关键步骤,它涉及物性参数和操作条件。
3. 选择填料类型和填料高度。
填料是塔内部的一种结构,它能够增加液相和气相之间的接触面积,从而增加精馏效率。
填料的选择和高度决定了塔的性能。
4. 确定塔的尺寸。
塔的尺寸包括直径、高度和塔板间距等参数。
这些参数是根据填料类型、操作条件和理论板数等因素来确定的。
5. 进行塔的模拟计算。
模拟计算是为了验证前面步骤中的估算和选择是否正确。
模拟计算可以通过计算机程序或实验来进行。
模拟计算苯和甲苯的精馏塔设计需要进行模拟计算,以验证前面步骤中的估算和选择是否正确。
模拟计算可以通过计算机程序或实验来进行。
在计算机程序中,可以采用化工流程模拟软件来进行塔设计。
这些软件可以模拟塔的运行过程,包括传热、传质和反应等过程。
通过这些软件,可以得到塔的操作条件和输出结果。
在实验中,可以采用塔的模型进行实验。
塔的模型是一种缩小的实验装置,它可以模拟塔的运行过程。
苯和甲苯精馏塔课程设计
苯和甲苯精馏塔课程设计一、引言苯和甲苯是两种常见的有机化合物,在工业生产中广泛应用。
为了提高产率和纯度,需要进行精馏分离。
本文将介绍苯和甲苯精馏塔的设计过程。
二、设计目标1. 提高产率:通过精馏分离,提高苯和甲苯的产率;2. 提高纯度:使得分离后的苯和甲苯纯度达到要求。
三、设计流程1. 确定塔型:选择板式塔或填料塔;2. 确定操作压力:根据组成和沸点差确定操作压力;3. 确定板数或填料高度:根据理论计算确定板数或填料高度;4. 确定进料位置:在塔的上部或下部进料;5. 确定回流比:根据经验确定回流比;6. 确定冷凝器类型:选择直接冷凝器或间接冷凝器。
四、详细设计过程1. 塔型选择根据实际情况,我们选择了板式塔。
板式塔结构简单,易于维护,适用于小规模生产。
2. 操作压力确定根据苯和甲苯的沸点差,我们确定了操作压力为1 atm。
3. 板数或填料高度确定根据理论计算,我们确定了塔的板数为10个。
每个板的高度为0.5 m。
4. 进料位置确定我们选择在塔的下部进料,以便更好地控制进料速度和分离效果。
5. 回流比确定根据经验,我们选择回流比为2:1。
6. 冷凝器类型选择考虑到成本和维护难度,我们选择了直接冷凝器。
五、设计结果通过以上设计过程,我们得到了苯和甲苯精馏塔的具体参数:1. 塔型:板式塔;2. 操作压力:1 atm;3. 板数:10个;4. 进料位置:下部进料;5. 回流比:2:1;6. 冷凝器类型:直接冷凝器。
六、结论通过本次课程设计,我们成功地设计出了苯和甲苯精馏塔,并得到了具体的参数。
在实际生产中,需要根据实际情况进行调整和优化。
苯—甲苯精馏塔设计化工原理课程设计书
化工原理课程设计书苯—甲苯精馏塔设计目录(一)化工原理设计任务书 (3)(二)概述 (4)一、精馏基本原理 (5)二、设计方案的确定 (5)(三)塔工艺计算 (6)一、精馏塔物料衡算 (6)二、塔板数确定 (8)三、精馏塔的工艺条件及有关物性数据的计算 (10)四、精馏塔的塔体工艺尺寸设计 (15)五、塔板主要工艺尺寸计算 (17)六、筛板的流体力学验算 (19)七、塔板负荷性能图 (23)八、设计结果一览表 (29)(四)辅助设备的设定 (30)(五)设计评述心得 (32)(六)参考书目及附表 (33)(一)化工原理设计任务书一、设计名称:苯-甲苯精馏塔设计二、设计条件:在常压连续精馏塔中精馏分离含苯35%(质量%,下同)的苯-甲苯混合液,要求塔顶流出液中苯的回收率为97%,塔底釜残液中含苯不高于2%。
处理量:17500 t/a,料液组成(苯质量分数):35%,塔顶产品组成(质量分数):97%,塔顶易挥发组分回收率:99%,每年实际生产时间:300天三、设计任务完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
四、基础数据或其他操作条件所需数据自己查阅资料或根据资料确定五、设计说明书内容1 目录2 概述(设计方案的确定和流程说明、精馏基本原理等)3.塔的物料恒算、塔板数的确定、塔的工艺条件及有关物性数据的计算;4.塔和塔板的主要工艺尺寸的设计:(1)塔体工艺尺寸的计算;(2)塔板主要工艺尺寸的计算;(3)塔板的流体力学验算;(4)塔板负荷性能图。
5.设计结果概要或设计一览表6.辅助设备的选型——对再沸器进行设计,对预热器进行选型7.参考文献8.对本设计的评述或有关问题的分析讨论。
(二)概述一、精馏基本原理精馏操作就是利用液体混合物在一定压力下各组分挥发度不同的性质,在塔内经过多次部分汽化与多次部分冷凝,使各组分得以完全分离的过程。
二、设计方案的确定本设计任务为分离苯一甲苯混合物。
苯—甲苯精馏分离板式塔设计
一设计题目:苯—甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量)7000吨/年操作周期300天/年进料组成35%(质量分率,下同)塔顶产品组成99.8%塔底产品组成0.2%2、操作条件操作压力 4 kPa (表压)进料热状态泡点进料单板压降≯0.7 kPa回流比: R=2Rmin 由设计者自选塔顶采用全凝器泡点回流塔釜采用间接饱和水蒸气加热全塔效率为0.63、设备型式筛板精馏塔4、厂址荆门地区三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔和塔板主要工艺结构的设计计算(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、对本设计的评述或对有关问题的分析与讨论。
四、设计要求1、设计程序简练清楚,结果准确并有汇总表。
2、计算公式、图表正确并注明来源,符号和单位要统一。
五、设计时间:四周注意事项:1、写出详细计算步骤,并注明选用数据的来源;2、每项设计结束后,列出计算结果明细表3、图、表分别按顺序编号4、按规定的时间进行设计,并按时完成任务四、要求(1)对精馏过程进行描述(2)对精馏过程进行物料衡算和热量衡算(3)对精馏塔进行设计计算(4)对精馏塔的附属设备进行选型(5)画一张精馏塔的装配图(6)编制设计说明书符号说明英文字母-阀孔的鼓泡面积m2Aα-降液管面积 m2Af-塔截面积 m2ATb -操作线截距c -负荷系数(无因次)c-流量系数(无因次)D -塔顶流出液量 kmol/hD -塔径 md-阀孔直径 m-全塔效率(无因次)ETE -液体收缩系数(无因次)e-物沫夹带线 kg液/kg气vF -进料流量 kmol/h-阀孔动能因子 m/sFg -重力加速度 m/s2H-板间距 mTH -塔高 mH-清液高度 md-与平板压强相当的液柱高度 mhc-与液体流径降液管的压降相当液柱高度 m hd-与气体穿过板间上液层压降相当的液柱高度 m hr-板上鼓泡高度 mhf-板上液层高度 mhL-降液管底隙高度 mhh-堰上液层高度 m02v-与板上压强相当的液层高度 mhp-与克服液体表面张力的压降所相当的液柱高度 m hσ-溢液堰高度 mh2vK -物性系数(无因次)-塔内下降液体的流量 m3/sLs-溢流堰长度 mLwM -分子量 kg/kmolN -塔板数-实际塔板数Np-理论塔板数NTP -操作压强 PaΔP-压强降 Paq -进料状态参数R -回流比-最小回流比Rminu -空塔气速 m/sw -釜残液流量 kmol/h-边缘区宽度 mwc-弓形降液管的宽度 mwd-脱气区宽度 mwsx -液相中易挥发组分的摩尔分率y -气相中易挥发组分的摩尔分率z -塔高 m希腊字母α-相对挥发度μ-粘度 Cpρ-密度 kg/m3σ-表面张力下标r -气相L -液相l -精馏段q -q线与平衡线交点min-最小max-最大A -易挥发组分B -难挥发组分化工原理课程设计----------筛板塔的设计第一章流程及生产条件的确定和说明第一节概述流程示意图冷凝器→塔顶产品冷却器→苯的储罐→苯↑↓回流原料→原料罐→原料预热器→精馏塔↑回流↓再沸器←~ 塔底产品冷却器→氯苯的储罐→氯苯精馏塔是现在化工厂中必不可少的设备,因此出现了很多种的精馏塔。
分离苯—甲苯混合液的浮阀板式精馏塔工艺设计
分离苯—甲苯混合液的浮阀板式精馏塔工艺设计苯和甲苯是两种常用的有机溶剂,它们通常通过精馏过程进行分离。
浮阀板式精馏塔是一种常用的精馏设备,具有高效、节能、操作方便等特点。
下面就对分离苯和甲苯混合液的浮阀板式精馏塔工艺进行设计。
1.工艺流程:分离苯和甲苯混合液的浮阀板式精馏塔工艺流程一般包括进料、初留、尾留和回流等环节,具体流程如下:1)进料:将苯和甲苯混合液进料到精馏塔的顶部。
进料包括苯和甲苯的混合物以及一部分回流。
2)初留:通过多个塔板的精馏,将苯分离出来,初留液位以下的液体为初馏液,初留液通过凝气冷却器冷却后分为初留顶部产品和初留底部回流。
3)尾留:在塔底通过降温器冷却后,即可得到尾液,尾留底部产品通常作为顶部产品的回流,以保证塔托和稳定操作。
4)回流:回流是为了提高塔板的效率,减小焦失和能耗。
可通过将一部分的顶部产品送回到塔顶部作为回流。
2.浮阀板式精馏塔的设计参数:在进行浮阀板式精馏塔的工艺设计时,需要考虑以下参数:1)塔高:塔高应根据塔板的数量和塔板高度来确定,总体来说,塔高越高,分馏效果越好,但是设备成本和能耗也会增加。
2)塔板数:塔板数的确定需要考虑到初留和尾留的要求,一般根据初留质量分数和尾留质量分数进行迭代计算。
3)流量:进料流量、回流流量以及所需的产品流量都需要根据需求和经验来确定,可通过仪表和流量控制阀来调节。
4)进料温度:进料温度一般在常温下进行,如果需要提高分离效率,可以适当降低进料温度。
5)塔底温度:塔底温度是通过冷凝器来冷却的,根据具体情况来确定冷凝器的设计参数。
3.优化调整:在实际工艺操作中,可能需要对工艺参数进行优化调整,以达到更好的分离效果和降低能耗。
具体调整方法如下:1)调整回流比:根据实际需要,调整回流比可以提高塔板的效率。
2)改变操作压力:通过改变操作压力,可以改变馏出物的温度和塔板的效果,进而实现优化调整。
3)塔板节流孔调整:通过调整塔板节流孔的大小,可以影响流体的分布和液体在塔板上的停留时间,从而达到更好的分离效果。
苯-甲苯精馏塔课程设计
吉林化工学院化工原理课程设计化工原理课程设计任务书1.设计题目苯-甲苯二元筛板精馏塔设计2.设计条件在常压下连续筛板精馏塔中精馏分离苯-甲苯混合液。
要求进料组成X D=0.42,塔顶组成X F=0.985,塔底组成X W=0.015.已知参数:苯-甲苯混合液处理量80kmol/h,进料热状况q=0.97.塔顶压强 1atm(绝压)。
单板压降小于0.7KPa.回流比R=(1.1~2.0R min)。
3.设计任务:(1)完成该精馏塔的工艺设计,包括辅助设备及进出口管路的计算和选型;(2)画出带控制点工艺流程图、x-y相平衡图、塔板负荷性能图、塔板布置图、精馏塔工艺条件图;(3)写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
指导教师:庄志军设计时间:2012年11月22日-2010年12月16日专业:化学工程与工艺班级:化工1003班姓名:任云霞学号:10110307吉林化工学院化工原理课程设计题目筛板精馏塔分离苯--甲苯工艺设计教学院化工与材料工程学院专业班级化工1003班学生姓名学生学号 ********指导教师庄志军2012年12月06日目录摘要.............................................................................................................................. - 1 -第1章绪论........................................................................................................................... - 2 -第2章精馏流程确定 ............................................................................................................. - 3 -第3章精馏塔的设计计算....................................................................................................... - 4 -3.1物料衡算.................................................................................................................. - 4 -3.2塔板数的确定........................................................................................................... - 5 -3.2.1相对挥发度α的求解 ........................................................................................ - 5 -3.2.2确定最小回流比Rmin和回流比 ........................................................................ - 6 -3.2.3精馏段、q线、提馏段方程求解........................................................................ - 6 -3.2.4逐板计算法求解NT ......................................................................................... - 7 -3.2.5全塔效率ET.................................................................................................... - 8 -3.2.6实际塔板数 .................................................................................................... - 9 -3.3工艺条件的计算........................................................................................................ - 9 -3.3.1操作压强Pm................................................................................................... - 9 -3.3.2温度∆tm...................................................................................................... - 10 -3.4物性数据计算......................................................................................................... - 10 -3.4.1平均相对分子质量Mm................................................................................... - 10 -3.4.2平均密度ρm................................................................................................. - 11 -3.4.3液体表面张力σm.......................................................................................... - 13 -3.4.4液体粘度μLm............................................................................................... - 15 -3.5塔的气液负荷计算 .................................................................................................. - 16 -3.6塔和塔板主要工艺尺寸计算 ..................................................................................... - 16 -3.6.1塔径D.......................................................................................................... - 16 -3.6.2溢流装置...................................................................................................... - 18 -3.6.3塔板布置...................................................................................................... - 19 -3.6.4筛孔数n与开孔率φ...................................................................................... - 20 -3.6.5塔的有效高度Z............................................................................................. - 21 -3.7.1塔板压降验算............................................................................................... - 21 -3.7.2雾沫夹带量ev的验算..................................................................................... - 22 -3.7.3漏液的验算 .................................................................................................. - 22 -3.7.4液泛验算...................................................................................................... - 23 -3.8塔板负荷性能图...................................................................................................... - 24 -3.8.1雾沫夹带线(1) .......................................................................................... - 24 -3.8.2液泛线......................................................................................................... - 26 -3.8.3液相负荷性能图............................................................................................ - 28 -3.8.5液相负荷下限线............................................................................................ - 29 -3.8.6操作弹性...................................................................................................... - 30 -第4章塔的热量衡算 ........................................................................................................... - 32 -4.1加热介质的选择...................................................................................................... - 32 -4.2冷却剂的选择......................................................................................................... - 32 -4.3比热容及汽化潜热的计算......................................................................................... - 32 -4.3.1塔顶温度tD下的比热容.................................................................................. - 32 -4.3.2进料温度tF下的比热容 .................................................................................. - 32 -4.3.3塔底温度tW下的比热容................................................................................. - 33 -4.3.4塔顶温度tD下的汽化潜热 .............................................................................. - 33 -4.4热量衡算................................................................................................................ - 33 -4.4.10℃时塔顶上升的热量QV的求解 ...................................................................... - 33 -4.4.2回流热的热量QR........................................................................................... - 34 -4.4.3塔顶馏出液的热量QD.................................................................................... - 34 -4.4.4进料的热量QF .............................................................................................. - 34 -4.4.5塔底残液的热量QW ...................................................................................... - 34 -4.4.6冷凝器消耗的热量QC .................................................................................... - 34 -4.4.7再沸器提供的热量QB.................................................................................... - 35 -第5章塔总体高度计算........................................................................................................ - 35 -5.2塔顶空间................................................................................................................ - 36 -5.3塔底空间................................................................................................................ - 36 -5.4人孔...................................................................................................................... - 36 -5.5进料处板间距......................................................................................................... - 36 -5.6裙座...................................................................................................................... - 36 -第6章塔的附属设备计算..................................................................................................... - 37 -6.1塔的接管................................................................................................................ - 37 -6.1.1进料管......................................................................................................... - 37 -6.1.2回流管......................................................................................................... - 38 -6.1.3塔底出料管 .................................................................................................. - 38 -6.1.4塔顶蒸汽出料管............................................................................................ - 38 -6.1.5塔底蒸汽出气管............................................................................................ - 39 -6.2换热器的选择......................................................................................................... - 39 -6.2.1冷凝器的选择............................................................................................... - 39 -6.2.2再沸器的选择............................................................................................... - 40 -6.3进料泵的选择......................................................................................................... - 40 -第7章结果汇总表............................................................................................................... - 42 -主要符号说明 ..................................................................................................................... - 44 -参考文献............................................................................................................................ - 47 -结束语......................................................................................................................... - 48 -摘要根据化工原理课程设计任务书的要求对苯-甲苯二元筛板精馏塔的主要工艺流程进行设计,并画出了精馏塔的工艺流程图和设备条件图,此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。
化工原理课程设计_苯-甲苯精馏塔设计
化工原理课程设计_苯-甲苯精馏塔设计苯-甲苯连续精馏筛板塔的设计表1 苯和甲苯的物理性质项目苯A 甲苯B 0温度C 分子式 C6H6 C6H5—CH3 分子量M 85 沸点 90 95 90 临界温度t 100 95 临界压强PC 表2 苯和甲苯的饱和蒸汽压 105 100 0PA,kPa PB,kPa 0表3 常温下苯—甲苯气液平衡数据0温度C 85 105 120 液相中苯的摩尔分率汽相中苯的摩尔分率温度苯,mN/m 甲苯,Mn/m表4 纯组分的表面张力([1]:P378附录图7)90 20 680 100 110 苯-甲苯连续精馏筛板塔的设计表5 组分的液相密度([1]:P382附录图8)温度(℃) 苯,kg/m3 甲苯,kg/m3 温度(℃) 苯 80 80 814 809 90 90 805 801 100 791 791 100 110 778 780 110 120 763 768 120 表6 液体粘度μL甲苯表7常压下苯——甲苯的气液平衡数据温度t ℃液相中苯的摩尔分率 x 气相中苯的摩尔分率y 精馏塔的物料衡算(1) 原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量苯-甲苯连续精馏筛板塔的设计甲苯的摩尔质量 MB/kmol/////////原料液及塔顶、塔底产品的平均摩尔质量xFMF(1)(kg/kmol) MD(1)(kg/kmol) MW(1)(kg/kmol) 物料衡算原料处理量90000000F102(kmol/h)31024 总物料衡算 DW10 苯物料衡算联立解得2 D10kmol/h 2 W10kmol/h2式中 F------原料液流量D------塔顶产品量W------塔底产品量3 塔板数的确定理论板层数NT的求取苯一甲苯属理想物系,可采逐板计算求理论板层数。
①求最小回流比及操作回流比。
采用恩特伍德方程求最小回流比。
ai(xD,i)maiRm1ai(xF,i)1qai解得,最小回流比Rm苯-甲苯连续精馏筛板塔的设计取操作回流比为R②求精馏塔的气、液相负荷LRD119(kmol/h) V(R1)D(1)119(kmol/h)V'(R1)D(1q)F119(kmol/h)(泡点进料:q=1) L'RDqF1191149(kmol/h)③求操作线方程精馏段操作线方程为RxxnD1R1yn1提馏段操作线方程为WxL'yn1'xnW'逐板法求理论板1xD(1xd) 可解得= 1xF1xf又根据Rmin相平衡方程 y 解得 1(1)x1y 1 变形得用精馏段操作线和相平衡方程进行逐板计算y1xD = , x1y1y1=y1(1y1)y1(1y1)9苯-甲苯连续精馏筛板塔的设计y2,x2yy3,y yy4,y5,yy6,y因为,x6xF故精馏段理论板 n=5,用提留段操作线和相平衡方程继续逐板计算x7。
化工原理课程设计苯与甲苯精馏塔
化工原理课程设计苯与甲苯精馏塔1.引言苯和甲苯是广泛应用于化工工业的有机化合物。
苯用于生产塑料、橡胶、染料、医药等领域,甲苯则用于生产苯酚、甲醇、马来酸酯等有机化合物。
为了从苯和甲苯的混合物中获得高纯度的目标物质,需要进行精馏过程。
本次课程设计将设计苯与甲苯的精馏塔。
2.设计目标本次设计的目标是设计一个能够将苯和甲苯混合物中的甲苯分离出来,获得高纯度的甲苯产品的精馏塔。
设计要求如下:(1)产物中甲苯的纯度大于99%;(2)若需要,可考虑对废气回收的技术。
3.设计步骤(1)确定温度、压力和流量条件:根据实际情况,确定苯与甲苯的蒸馏温度和压力范围,以及流量要求。
(2) 确定理论塔板数:根据精馏物质的性质,使用McCabe-Thiele图来确定理论塔板数。
假设有N个塔板,输入混合物的进料温度T1,塔底温度T2,塔顶温度T3、若有Q个馏出物从塔顶进入回流相,那么Q个馏出物中,有αQ个进入塔顶,(1-α)Q个进入回流液,并且最终得到的进料液中含有αQ个甲苯。
通过计算可得到,苯与甲苯的含量变化和温度分布情况,进而确定塔板数。
(3)安装塔床和设备:根据设计要求,选择合适的填料和塔板,进行塔床的安装。
确定合适的进料方式和回流液的流量。
(4)进行操作条件和算例计算:根据输入的温度、压力和流量条件,进行操作条件的预测。
利用模拟软件或手工计算,进行塔板上的组分计算和流量平衡计算,以确定最佳操作条件。
(5)安全措施:在设计过程中,需要考虑安全措施,包括防爆、监测和报警系统的设置。
4.结果与讨论通过精心的设计和计算,得到了一个满足要求的苯与甲苯精馏塔。
该塔能够将苯和甲苯的混合物中的甲苯分离出来,并获得高纯度的甲苯产品。
在设计过程中,需要考虑到流量、温度和压力等因素对操作效果的影响,以确保塔的性能和安全运行。
5.结论本次设计实现了苯与甲苯精馏塔的设计,满足了高纯度甲苯产品的要求。
通过合理的操作条件和安全措施,确保了塔的性能和安全运行。
苯甲苯精馏塔设计
编号山东化工职业学院毕业论文系:化学工程系专业:有机化工生产技术班级:06级2班姓名:***指导教师:设计学期:学年第学期完成时间:年月日山东化工职业学院毕业设计(论文)任务书专业:有机化工生产技术班级:06级2班设计者:仲崇涛合作者:指导教师:课题名称:苯甲苯精馏塔设计2008 年月日苯—甲苯精馏塔设计一、设计题目:精馏塔分离苯—甲苯混合物二、设计任务:⑴、进精馏塔的料液含苯40%(质量)⑵、产品的苯含量不得低于97%(质量)⑶、残液中苯含量不得高于1%(质量)⑷、原料液的处理量为4500kg/h三、操作条件:⑴、精馏塔顶压强4Kpa(表压)⑵、进料热状况:20℃的冷液体进料⑶、回流比:自选⑷、加热蒸汽0.5KPa(表压)⑸、单板压降 0.7Kpa⑹、全塔效率:ET=52%四、设备型式:设备型式为筛板塔或浮阀塔五、设计内容:⑴、设计方案的确定及流程说明⑵、精馏塔的物料衡算⑶、塔板数的确定⑷、精馏塔的工艺条件及有关物性数据的计算⑸、精馏塔的塔体工艺尺寸计算⑹、塔板主要工艺尺寸的计算⑺、塔板的流体力学验算⑻、塔板负荷性能图⑼、设计结果概要或设计一览表⑽、生产工艺流程图及精馏塔的工艺条件图⑾、对本设计的评价或有关问题的分析讨论摘要近年来,随着化工产业的飞速发展,一些工艺设备也跟着不断的完善,比如吸收塔、精馏塔等等,一般化工厂都会用到塔,因此,就必须设计自己工厂中需要用到的吸收塔及精馏塔等等。
本设计结合国内精馏塔的设计研究成果对精馏塔进行了设计。
在精馏塔中将苯和甲苯的溶液加热使之部分气化,形成汽液两相。
当汽液两相趋于平衡时,由于苯的挥发性能比甲苯强(即苯的沸点较甲苯低),气相中苯的含量必然较原来溶液高,将蒸汽引出并冷凝后,即可得到含苯较高的液体。
而残留在容器中的液体,苯的含量比原来溶液的低,也即甲苯的含量比原来溶液的高。
目录摘要 (i)目录 (ⅱ)第1章前言 (1)第2章板式精馏塔的设计及工艺计算 (2)2.1 概述 (2)2.1.1 精馏原理 (2)2.1.2 精馏装置流程 (2)2.1.3 操作条件 (3)2.2 工艺参数的确定 (3)2.2.1 精馏塔的物料衡算 (3)2.2.2 q值、R值、塔温求法 (4)2.3塔板设计 (7)2.3.1 理论塔板数 (7)2.3.2 实际塔板计算 (9)2.4板式精馏塔主要工艺尺寸的设计计算 (10)2.4.1容许气速与塔径的估算 (10)2.4.2 塔高计算 (12)2.4.3 溢流装置计算 (12)2.4.4 塔板板面布置 (13)2.4.5 塔板校核 (14)2.4.6 负荷性能图 (16)第3章塔辅助设备设计及选用 (23)3.1 换热器 (23)3.1.1 换热器的选用 (23)3.1.2 再沸器的选用 (23)3.1.3 热量衡算 (24)3.2 泵 (25)3.2.1 进料泵的选用 (25)3.2.2 出料泵的选用 (26)3.2.3 回流泵的选用 (26)第4章简易流程及发现的问题与解决 (27)4.1 简易流程概述 (27)4.2 设计过程问题及解决 (27)5章结论 (28)致谢 (30)参考文献 (31)- -山东化工职业学院2008届化学工程系毕业论文第1章前言化工生产中为了达到提纯或回收有用组分的目的,常常需要对液体均相混合物进行分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计起止时间:2010年12月29日至2011年1月14日题目苯—甲苯精馏塔设计学院名称化学化工学院学生姓名班级本08化工2班指导教师阳鹏飞职称讲师院长聂长明2011年1月14日目录苯-甲苯精馏塔设计任务书 (I)前言 (1)一.设计方案的确定 (1)1.1设计流程的说明 (2)1.2操作方案的说明 (2)1.3本设计中符号的说明 (3)二.精馏塔的物料衡算 (4)2.1原料液及塔顶、塔底产品的摩尔分率 (4)2.2原料液及塔顶、塔底产品的平均摩尔质量 (4)三.塔板数的确定 (5)3.1理论板数N T的求取 (5)3.2实际板层数的求取 (7)四.精馏塔的工艺条件及物性数据的计算 (8)4.1操作压力的计算 (8)4.1操作温度的计算 (8)4.3平均摩尔质量的计算 (8)4.4平均密度的计算 (8)4.5平均粘度计算 (8)4.6液体平均表面张力计算 (9)五.精馏塔的塔体工艺尺寸计算 (9)5.1塔径的计算 (10)5.2精馏塔有效高度的计算 (11)六.塔板主要工艺尺寸的计算 (11)七.塔板的流体力学验算................................................................错误!未定义书签。
八.塔板负荷性能图 (15)九.筛板塔设计计算结果 (16)十.参考文献 (17)十一.设计感言 (18)板式精馏塔设计任务(一)设计题目苯—甲苯溶液连续精馏塔设计。
(二)设计任务及操作条件(1)进精馏塔的料液含苯35%(质量),其余为甲苯。
(2)塔顶产品的苯含量不得低于96%(质量)(3)塔底产品的苯含量不得高于0.01(质量)(4)混合液处理量为5t/h(5)操作条件(A)精馏塔顶压强4kpa(表压)(B)饱和液料进料(C)回流比R/Rmin=1.5(D)间接蒸汽加热(E)单板压降不大于0.7Kpa。
(三)设备形式设备形式为筛板塔。
(四)设计内容1.设计方案的确定及流程说明。
2.塔的工艺计算。
3.塔和塔板主要工艺尺寸的设计。
(1)塔高,塔径及塔板结构尺寸的确定。
(2)塔板的流体力学验算。
(3)塔板的负荷性能图。
4.设计结果概要货设计一览表。
5.塔板结构俯视图和塔板安装图。
6.对本设计的评述或有关问题的分析讨论。
苯—甲苯分离过程筛板精馏塔设计(南华大学化学化工学院,衡阳,421001黄刚)摘要:本设计对苯—甲苯分离过程筛板精馏塔装置进行了设计,主要进行了以下工作:1、对主要生产工艺流程和方案进行了选择和确定。
2、对生产的主要设备—筛板塔进行了工艺计算设计,其中包括:①精馏塔的物料衡算;②塔板数的确定;③精馏塔的工艺条件及有关物性数据的计算;④精馏塔的塔体工艺尺寸计算;⑤精馏塔塔板的主要工艺尺寸的计算。
3、绘制了生产工艺流程图和精馏塔设计条件图。
4、对设计过程中的有关问题进行了讨论和评述。
本设计简明、合理,能满足初步生产工艺的需要,有一定的实践指导作用。
关键词:苯—甲苯;分离过程;精馏塔The Design of sieve plate-distillation Tower about the Separating Process ofBenzene-Toluene(Academe of chemistry and chemical Engineering,University of southChina,Hengyang,421001Huanggang)Abstract:A suit of equipment of sieve distillation column devices which make Benzene separate from Toluene designed.The main work comprising:1.The main processes and programmes of the production have been selected and determined.2.The main container filler tower has been designed,including①the balance reckon of the sieve plate tower②the number of the tower plank has been determinated③the calculation of properties of matter date④the size of the Distillation tower has been computed⑤The main tray sizeof the distillation tower.has been reckoned3.Production craftwork flow chart and design condition chart of the distillation tower have been drawn.4.The questions of the design process have been discussed and reviewed.The design is simple and reasonable,and can meet the needs of the initial production process,a certain role in guiding the practice. Keyword:benzene-toluene;separation process;Distillation前言塔设备的应用有着悠久的历史,在很多工业部门都有应用,尤其用在化工、石油、能源等部门。
精馏塔是分离混合主份的常用方法。
由于、蒸馏属于气液两相见的传质过程。
塔设备主要包括以下两类:板式塔、填料塔两大类。
对一个具体达到分离过程,设计中选择何种塔型,应该根据生产能力、分离效率、塔压力降、操作弹性等要求,并结合制造、维修、造价等因素综合考虑。
精馏塔的设计主要包括以下内容:①根据分离任务和有关要求确定设计方案;②初步确定精馏塔的结构尺寸;③核算流体力学;④确定塔的工艺结构。
⑤绘制塔板的负荷性能图。
(一)设计方案的确定本设计任务为分离苯-甲苯溶液混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点送入精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
1.设计流程的说明:精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。
釜液冷却器和产品冷凝器等设备。
热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。
在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。
另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免受泵操作波动的影响塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。
若后继装置使用气态物料,则宜用全分凝器。
总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。
冷凝器再沸器连续精馏操作流程图2.操作方案的说明:本设计任务为分离苯—甲苯混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,降原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸汽采用全凝器冷凝。
冷凝器在泡点下一部分回流到塔内,其余部分经产品冷却器冷却后送入储罐。
该物系属于易分离物系,最小回流比较小,故操作回流比去最小回流比的两倍。
塔釜采用间接蒸汽加热,塔底产品冷却送到储罐。
设计操作流程图3.本设计中符号的说明英文字母:A0筛孔面积,㎡h0降液管底高度,mA a塔板开孔面积,㎡hσ相克服表面张力压降所当高度,m A f降液管面积,㎡k筛板的稳定系数A T塔截面积,㎡L塔内下降液体流量,kmol/hC计算时u max的负荷因数l W溢流堰高度,mC O流量系数L S下降液体流率,m3/sD塔径,m N理论板数d0筛孔直径,mm N P实际塔板数E液流收缩系数N T理论塔板数E T全塔效率n筛孔数e v雾沫夹带量,kg液/kg气P操作压强,p a或kp aF进料流量,kmol/h△P压强降,p a或kp aF a气相动能因数q进料热状态承参数H板间距,mm R回流比h c与干板压降相当液柱高度,m S直接蒸汽量,kmol/hh1进口堰与降液管的水平距离,m t筛孔中心距,mmh l与气流穿过液层的压降相当液柱高度m u空塔气速,m/sh f板上鼓泡层高度,m u0筛孔气速,m/sh L板上液曾高度,m u′0降液管底隙处液体流速,m/sh d,与液体流经降液管压降相当液柱高度,mD F进料管直径,m D l回流管直径,mD W釜液出口管直径,m D T塔顶蒸汽管直径,m下标:h p与单板压降相当液层高度,m A易挥发组分B难挥发组分h ow堰上液层高度,m D馏出液h w溢流堰长度,m L液相W釜残液流量,kmol/h h小时W C无效区块度,m i组分序号W d弓形降液管高度,m m平均w s安定区宽度,m F原料液X液相中易挥发组分摩尔分率min最小Y气相中易挥发组分摩尔分率max最大Z塔的有效高度,m n塔板序号v s塔内上升蒸汽流量,m3/s希腊字母:α相对挥发度,无因次β干筛孔流量系数的修正系数,无因次σ液体表面张力,mN/mδ筛板厚度,mmμ粘度,mP a.sψ液体密度校正系数φ开孔率t时间,sρL液相密度,kg/m3ρV液相密度,kg/m3(二)精馏塔的物料衡算1.原料及塔顶产品的摩尔分率苯的摩尔质量为:78.11kg/kmol甲苯的摩尔质量为:92.13kg/kmolx f=(0.35/78.11)/(0.35/78.11+0.65/92.13)=0.388x d=(0.96/78.11)/(0.96/78.11+0.04/92.13)=0.966x w=(0.01/78.11)/(0.01/78.11+0.99/92.13)=0.0122.原料液及塔顶产品的平均摩尔质量M f=0.388×78.11+92.13×(1-0.412)=86.69kg/kmolM d=0.966×78.11+92.13×(1-0.966)=78.59kg/kmolMw=0.012×78.11+92.13×(1-0.012)=91.96kg/kmol则可知:原料的处理量:F=50000/86.69=57.67kmol/h由总物料衡算:F=D+W以及:x f ×F=x d ×D+W ×x w 容易得出:D=22.73kmol/hW=34.94kmol/h(三)塔板数的确定1.理论板数T N 的求取(1)相对挥发度的求取苯的沸点为80.1℃,甲苯额沸点为110.63℃1当温度为80.1℃时006.279.2201.80033.12110355.6lg =+-=A P591.1482.2191.808.134407954.6lg =+-=B P 解得KPa P A 34.101= ,KPaP B 96.38= 2当温度为110.63℃时376.279.22063.110033.12110355.6lg =+-=A P006.2482.21963.1108.134407954.6lg =+-=B P 解得KPa P A 95.237= ,KPaP B 34.101=则有600.296.3831.1011==α348.234.10195.2372==α47.2348.2600.221=⨯==ααα(2)最小回流比的求取由于是饱和液体进料,有q=1,q 线为一垂直线,故388.0==F q x x ,根据相平衡方程有610.0388.0)147.2(1388.047.2)1(1=⨯-+⨯=-+=q q q x x y αα最小回流比为60.1388.0610.0610.0966.0min =--=--=q q qD x y y x R 回流比为最小回流比的1.5倍,即4.260.15.15.1min =⨯==R R (3)精馏塔的气、液相负荷hKmol RD L /55.5473.224.2=⨯==h Kmol D R V /28.7773.22)60.21()1(=⨯+=+=h Kmol qF L L /22.11267.5755.54'=+=+=hKmol V V /28.77'==(4)操作线方程精馏段操作线方程284.0706.0160.2966.0160.260.2111+=+++=+++=+x x R x x R R y n D n n 提馏段操作线方程005.0452.11-=-+--++=+m w m m x WqF L Wx x W qF L qF L y 两操作线交点横坐标为388.0160.2388.0)160.2()1()1(=+⨯+=+-++=q R x q x R x D F F 理论板计算过程如下:气液平衡方程x x x a ax y 47.1147.2)1(1+=-+=变形有yyx 47.147.2-=由y 求的x,再将x 带入平衡方程,以此类推WF D x x y x y x y x y x y x y x y x x y x y x y x y x y x y x y x x y <=−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==<=−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==006.0013.00123.0030.0017.0041.0032.0075.0055.0126.0090.0197.0139.0480.0388.0334.0554.0385.0607.0458.0676.0556.0739.0645.0818.0756.0884.0851.0934.0920.0966.0151514141313121211111010998877665544332211相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡总理论板数为15(包括蒸馏釜),精馏段理论板数为7,第8块板为进料板。