人教版2020七年级数学上册第二章整式的加减培优提升训练题2(附答案详解)
人教版七年级数学上册第二章整式的加减法复习试题大全(含答案) (2)
人教版七年级数学上册第二章整式的加减法习题大全(含答案)下列各组中,不是同类项的是()A.a2b3与-a3b2B.-xy与yx C.0.2m2n与1-5 m2n D.52与25【答案】A【解析】【分析】根据同类项的概念求解.所含字母相同,相同字母的指数也相同的单项式是同类项.两个常数项也是同类项.【详解】解:A、a2b3与-a3b2相同字母的指数不同,所以不是同类项,故本选项符合题意;B、-xy与yx 2所含字母相同,相同字母的指数也相同,所以是同类项,故本选项不符合题意;C、0.2m2n与1-m2n所含字母相同,相同字母的指数也相同,所以是同类项,5故本选项不符合题意;D、52与25是常数,所以是同类项,故本选项不符合题意.故选:A.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.但要注意,两个常数项也是同类项.12.若22x y是同类项,则m等于( )-与323m x yA.1 B.2 C.3 D.4【答案】C【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【详解】解:因为若22x y是同类项,-与323m x y所以m=3.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.下列计算正确的是( )A.a+a=a2B.6x3﹣5x2=x C.3a2b﹣4ba2=﹣a2bD.3x2+2x3=5x5【答案】C【解析】【分析】根据合并同类项法则对选项进行分析即可得到答案.【详解】A. a +a =2a ,故错误;B. 6x 3﹣5x 2=6x 3﹣5x 2,故错误;C. 3a 2b ﹣4ba 2=﹣a 2b ,故正确;D. 3x 2+2x 3=3x 2+2x 3,故错误;故选择C.【点睛】本题考查合并同类项,解题的关键是掌握合并同类项法则.14.下面各式中去括号错误的为( )A .()3x 2x 33x 2x 3-+=-+B .3(23)323x x x x ++=++C .3(23)323x x x x -+=--D .32(3)326x x x x -+=--【答案】A【解析】【分析】根据去括号法则,即可得到答案.【详解】解:()3x 2x 33x 2x 3-+=--,故A 错误,符合题意;BCD 选项书写正确,不符合题意;故选择:A.【点睛】本题考查了去括号法则,掌握去括号法则是解题的关键.15.计算23a a -+的正确结果为( )A .1B .aC .a -D .5a -【答案】B【解析】【分析】 根据合并同类项法则合并即可.【详解】解:()2323a a a a -+=-+=故选B【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.16.下列各组单项式,不是同类项的是( )A .3x 2y 与-2yx 2B .2ab 2与-ba 2C .3xy 与5xyD .23a 与32a【答案】B【解析】【分析】根据同类项的定义判断即可.【详解】A .字母相同且相同字母的指数也相同,是同类项,故A 不符合题意;B .相同字母的指数不同,不是同类项,故B 符合题意;C .字母相同且相同字母的指数也相同,是同类项,故C 不符合题意;D .字母相同且相同字母的指数也相同,是同类项,故D 不符合题意.【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.17.下列去括号中,正确的是( )A .2(2)22a b a b -=-B .()(23)2232x y x x y x --+-=-++-C .4(5)420n m n n m n --=--D .(3)3c a b c a b --=--【答案】B【解析】【分析】根据去括号法则即可依次判断.【详解】A. 2(2)24a b a b -=-,故错误;B. ()(23)2232x y x x y x --+-=-++-,正确;C. 4(5)420n m n n m n --=-+,故错误;D. (3)3c a b c a b --=-+,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.18.下列合并同类项中,正确的是( )A .235x x x -=B .358a b ab +=C .33332y y y -+=-D .2243a b a b -=【解析】【分析】根据合并同类项的方法即可依次判断.【详解】A. 23x x x -=-,故错误;B. 35a b +不能计算,故错误;C. 33332y y y -+=- ,正确;D. 22243a b a b a b -=,故错误.故选C.【点睛】此题主要考查整式的加减,解题的关键是熟知合并同类项的方法.19.下列各式计算正确的是( )A .(2a ﹣ab 2)﹣(2a+ab 2)=0B .x ﹣(y ﹣1)=x ﹣y ﹣1C .4m 2n 3﹣(2m 2n 3﹣1)=2m 2n 3+1D .﹣3xy+(3x ﹣2xy )=3x ﹣xy【答案】C【解析】【分析】先去括号,再合并同类项;分别计算各选项,即可得到正确结论.【详解】∵()()22222222220a ab a ab a ab a ab ab --+=---=-≠,故选项A 错误;x ﹣(y ﹣1)=x ﹣y+1≠x ﹣y ﹣1,故选项B 错误;4m 2n 3﹣(2m 2n 3﹣1)=4m 2n 3﹣2m 2n 3+1=2m 2n 3+1,故选项C 正确; ﹣3x y+(3x ﹣2x y )=﹣3x y+3x ﹣2x y=3x ﹣5x y ≠3x ﹣x y ,故选项D 错误. 故选:C.【点睛】此题主要考查整式的加减,熟练掌握,即可解题.20.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 【答案】C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.。
人教版七年级数学上册第二章整式的加减法习题大全(含答案) (2)
人教版七年级数学上册第二章整式的加减法习题大全(含答案)多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是()A.三次项B.二次项C.一次项D.常数项【答案】C【解析】【分析】把两式相加,合并同类项得5x3﹣15x2+2,结果不含一次项.【详解】解:2x3﹣10x2+4x﹣1+3x3﹣4x﹣5x2+3=5x3﹣15x2+2,则多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是一次项.故选:C.【点睛】本题主要考查整式的加法运算,涉及到多项式的定义知识点.12.已知27na b-是同类项,则2m n-的值是()-和4325ma bA.6 B.4 C.3 D.2【答案】D【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】解:∵225m a b -和437n a b -是同类项,∴2m=4,3-n=1,∴m=2,n=2故2m n -的值是:2.故选:D .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.计算:6632x x -+的结果是( )A .65x -B .65xC .6xD .6x -【答案】D【解析】【分析】根据同类项的定义合并同类项即可.【详解】解:6632x x -+=6x -故选D.【点睛】此题主要考查了合并同类项,熟练掌握同类项的定义是解题的关键.14.下列各式去括号正确的是( )A .()a b c a b c --=--B .()23565a a a a +-=+-C .()22a a b c a a b c --+=--+D .()a b c a b c +-=+- 【答案】D【解析】【分析】根据去括号法则,对每个选项进行判断即可.【详解】解:A 、()a b c a b c --=-+,故A 错误;B 、()235610a a a a +-=+-,故B 错误;C 、()22a a b c a a b c --+=-+-,故C 错误;D 、()a b c a b c +-=+-,正确; 故选择:D.【点睛】本题考查了去括号法则,熟练掌握去括号法则是解题的关键.15.下列各组整式中是同类项的是( )A .a 3与b 3B .2a 2b 与﹣a 2bC .﹣ab 2c 与﹣5b 2cD .2x 与4x【答案】B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:A 、a 3与b 3 ,字母不相同,不是同类项;B 、2a 2b 与﹣a 2b ,是同类项;C、﹣ab2c与﹣5b2c,字母不相同,不是同类项;D、2x与4x,字母的指数不相同,不是同类项;故选择:B.【点睛】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.16.下列运算中,正确的是()A.3a+2b=5a B.2a3+3a2=5a5C.﹣4a2b+3a2b=﹣a2b D.5a2﹣4a2=1【答案】C【解析】【分析】根据合并同类项的运算法则,分别进行判断即可.【详解】解:A、3a与2b不是同类项,无法合并,故A错误;B、2a3与3a2不是同类项,无法合并,故B错误;C、﹣4a2b+3a2b=﹣a2b,正确;D、5a2﹣4a2= a2,故D错误;故选择:C.【点睛】本题考查了整式的加减运算,解题的关键是熟练掌握合并同类项法则. 17.下列各对单项式是同类项的是( )A.-1x3y2与3y2x3B.-x与y C.3与3a2D.3ab2与a2b【答案】A【解析】【分析】根据同类项的定义分别进行判断即可.【详解】x3y2与3y2x3是同类项,所以A选项正确;;解:A、-12B、-x与y不是同类项,所以B选项错误;C、3与3a不是同类项,所以C选项错误D、3ab2与a2b不是同类项,所以D选项错误.故选:A.【点睛】本题考查了同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.18.计算22结果是()xy xy23A.2x y5x y D.245xy B.2xy C.24【答案】A【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可.【详解】2223xy xy +=()22235+=xy xy ;故选A.【点睛】本题考查同类项合并法则:系数相加作为系数,字母和字母的指数不变.19.下列式子中计算正确的是( )A .(3)(25)2x y x y x y -+--=--B .()22121221x x x x --+=-+-C .(2)(5)242x y z x y z x y z +--+-=---D .()()22222222424x xy y x xy y x y -+--+=+【答案】B【解析】【分析】根据去括号的法则逐项进行化简即可得出答案.【详解】A. (3)(25)32538-+--=-+-+=-+x y x y x y x y x y ,∴选项错误;B. ()2221211222221--+=-+-=-+-x x x x x x ,∴选项正确;C. (2)(5)253+--+-=+---+=-x y z x y z x y z x y z x ,∴选项错误;D. ()()222222222224224242--+=-+--+=+-x xy y x xy y x xy y x xy y x ,∴选项错误;故选B.【点睛】本题考查了去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”去括号后,括号里的各项都改变符号.运用这一法则去掉括号.20.对多项式34a b c +-进行添括号,正确的是( )A .3(4)a b c ++B .3(4)a b c -+C .34()a b c +-D .3(4)a b c --+ 【答案】D【解析】【分析】根据去括号法则即可依次化简,即可判断.【详解】A. 3(4)a b c ++=34a b c ++,故错误;B. 3(4)a b c -+=34a b c --,故错误;C. 34()a b c +-=344a b c +-,故错误;D. 3(4)a b c --+=34a b c +-,正确;故选D.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.。
完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。
人教版七年级数学上《第二章整式加减》单元测试提高卷(含答案).doc
《第二章 整式加减》单元测试提高卷一、选择题1.下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x2.若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式3.已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( ) A :-1 B :-2 C :-3 D :-44.已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A :1-B :1C :5-D :155.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy6.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( )A .-16B .-8C .8D .167.与多项式3223423a b a ab b -+-相等的是( )A.)42(33223a b a ab b +--B. )42(33223a b a ab b ++-C. )42(33223a b a ab b -+--D. )42(33223a b a ab b -+- 8.当x 分别取2和﹣2时,多项式5235-+x x 的值( )A.互为相反数B.互为倒数C.异号不等D.相9.给出下列判断:①单项式5×103x 2的系数是5;②x ﹣2xy+y 是二次三项式;③多项式﹣3a 2b+7a 2b 2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个10.如果A=﹣x 2+4x ﹣1,B=﹣x 2﹣4x+1,那么B ﹣A 等于 ( )A .﹣2x 2B .8x ﹣2C .2﹣8xD .0二、填空题11.已知a ﹣3b=3,则6b+2(4﹣a )的值是 . 12.若2m -n -4=2,则4m -2n -9=________。
人教版2020七年级数学上册第二章整式的加减能力提升训练题2(附答案详解)
人教版2020七年级数学上册第二章整式的加减能力提升训练题2(附答案详解)1.下列关于单项式的说法中,正确的是( )A .系数是,次数是2B .系数是,次数是2C .系数是,次数是D .系数是,次数是32.下列计算正确的是( )A .22523a a -=B .2222a a a -=-C .223235m m m +=D .2233a a +=3.在下列式子3ab ,-4x ,75abc -,π,2m n -,0.81,1y ,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个4.观察下列式:71=7,72=49,73=343,74=2041,75=16807,76=117649,…根据上述算式中的规律,你认为72018的末位数字是( )A .9B .7C .3D .15.在下列各式:①-3;②ab =ba ;③x ;④2m -1>0;⑤1x;⑥8(x 2+y 2)中,代数式的个数是( )A .1个B .2个C .3个D .4个 6.我们知,3的正整数次幂:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……,观察归纳,可得32007的个位数字是A .1B .3C .7D .97. 多项式ab 2+25的次数和项数分别为( )A .次数为5,项数为2B .次数为3,项数为2C .次数为5,项数为1D .次数为3,项数为38.设一列数中相邻的三个数依次为m ,n ,p ,且满足 2p m n =- ,若这列数为-1,3,-2,a ,-7,b,则b= ( ) A .118 B .128 C .178 D .1889.用一个正方形在四月份的日历上圈出4个数,这四个数字的和不可能是( ) A .104 B .24 C .108 D .2810.在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( )11.减去-3x 得236x x -+的式子为( )A .26x +B .236x x ++C .26x x -D .266x x -+ 12.若3k x -(k-2)x+1是二次三项式,则k 的值为( ) A .±3 B .-3 C .±2 D .-213.多项式52222368x y x y xy ---的次数是m ,常数项为n ,则m+n=________.14.若()42423x m x -+-是关于x 的四次二项式,则m =____________. 15.已知当x =-2时,多项式ax 3+bx +1的值为9,则当x =2时,多项式ax 3+bx +13的值为__.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.观察下列等式:21×2=21+2,32×3=32+3,43×4=43+4,…,设n 为自然数,则第n 个式子可表示为_______.18.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.19.单项式236a b -的系数是 ,次数是 .20.在公式s=12(a+b)h 中,已知a=3,b=7,s=15,则h=__________, 21.如图所示,图中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数是_________.22.代数式53xy π-的系数是_____. 23.单项式427m n -的系数是__,次数是__,多项式﹣45x 2y+23x 4y ﹣x+1最高次项是__ 24.单项式1的系数是____________.25.先化简,再求值:2222282(23)3(4)a b a b ab a b ab +---,其中2a =-,3b =.26.化简求值:(1)4x 2﹣(2x 2+x ﹣1)+(2﹣x 2﹣3x ),其中x=﹣12; (2)5(3x 2y ﹣xy 2)﹣(xy 2+3x 2y ),其中x=12,y=﹣1. 27.已知关于x 、y 的多项式x 2+ax +y -b 与bx 2-3x +6y -3 的差与字母x 无关,求代数式2(a 2-2ab -b 2)-3(3a 2-4ab -4b 2)的值。
人教版数学七年级上册第二章《整式的加减》-《多项式》能力提升练习(附答案)
第 2课时多项式能力提升1.下列说法中正确的是()A. 多项式 ax2+bx+c 是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.- ab2,-x 都是单项式 ,也都是整式D.-4a2b,3ab,5 是多项式 -4a2b+ 3ab-5 中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A. 都小于 5B. 都等于 5C.都不小于5D. 都不大于 53.一组按规律排列的多项式:a+b ,a2-b3,a3+b5,a4-b7, ,其中第10个式子是()A. a10+b 19B. a10-b19C.a10-b17D. a10-b21★4.若x n-2+x3+ 1是五次多项式,则n的值是()A.3B.5C.7D.05.下列整式2④0;⑤2,多项式:①- x ;② a+bc ;③3xy;+ 1;⑥-5a +a. 其中单项式有有.( 填序号 )6.一个关于 a 的二次三项式 ,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.-的二次项系数是.7.多项式8.老师在课堂上说:“如果一个多项式是五次多项式”老师的话还没有说完,甲同学抢着说 :“这个多项式最多只有六项.”乙同学说 : “这个多项式只能有一项的次数是 5.”丙同学说 :“这个多项式一定是五次六项式.”丁同学说 :“这个多项式最少有两项,并且最高次项的次数是 5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对 ?你能说出他们说得对或不对的理由吗?m9.如果多项式3x -(n-1)x+1 是关于 x 的二次二项式,试求 m,n 的值 .★10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁 ,丁把所得的数减 1 报出答案 ,设甲任取的一个数为 a.(1) 请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为 19,则丁报出的答案是多少 ?创新应用★11.如图所示,观察点阵图形和与之对应的等式,探究其中的规律:(1) 请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想 ,写出与第 n 个图形相对应的等式 .能力提升1.C2.D多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为 5.3.B根据多项式排列的规律 ,字母 a 的指数是按 1,2,3,的正整数排列 ,所以第 10 个式子应为 a10.字母 b 的指数是按 1,3,5,7,的奇数排列 ,所以第10 个式子应为 b19.中间的符号第 1 个式子是正 ,第 2 个式子是负 ,这样正、负相间 ,所以第10 个式子应为 a10-b19.4.C n-2= 5,n= 7.①③④②⑤⑥25.6.2a -3a-37.-=-,二次项为,所以二次项系数为 .8.解:丁同学说得对,甲、乙、丙三位同学说得都不对.理由 : 因为这个多项式是五次多项式,所以它的最高次项的次数是5,又因为它是多项式,也就是几个单项式的和 .所以这个多项式至少有两项 ,因此 ,丁同学说得对 .因为老师没有限制多项式的项数和可以包含的字母,因此它的项数不确定 ,可能只有两项 ,如 x5+ 1,也可能是六项 ,如 x5+x 4+x 3+x 2+x+ 1,还可能有更多的项,如54532;另外 ,这个多项式的最高次项的次x +y+z +a+a +a+ 1 等,因此甲和丙两位同学说得都不对数是 5,但最高次项不一定只有一项,如 x5+y 5+x 4中就有两项的次数是 5,因此 ,乙同学说得也不对 .9.分析:题中多项式是关于x 的二次二项式 ,所以次数最高项的次数为2,系数不为0,另外 ,-(n-1)x 的系数为0.解 :由题知 m= 2,且 -(n-1)= 0,即 m=2,n= 1.10.解:(1)由甲传给乙变为a+ 1;由乙传给丙变为( a+ 1)2;由丙传给丁变为(a+ 1)2-1.故丁所报出的答案为 (a+ 1)2-1.(2) 由(1) 知 ,代入 a= 19 得 399.创新应用11.解:(1)④4×3+ 1= 4×4-3⑤4×4+1= 4×5-3(2)4( n-1)+ 1= 4n-3.。
人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)
2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
人教版2020七年级数学上册第二章整式的加减能力提升训练题(附答案详解)
人教版2020七年级数学上册第二章整式的加减能力提升训练题(附答案详解) 1.设n 为正整数,用n 表示被7除余3的正整数是( ) A .73n+ B .37n + C .73n +D .()713n -+2.下列各式不是单项式的是( ) A .5abcB .25x -C .1213D .42x y- 3.下列运算正确的是( ) A .3x-x=2x B .x+y=x yC .a 2 +a 2=2a 4D .5m 2 -3m 2 =24.已知222x y 和312nm x y -是同类项,那么3m n +的值是( ) A .2B .6C .10D .45.23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是( )A .29B .31C .39D .416.若m +n =7,2n ﹣p =4,则2m +4n ﹣p 的值为( ) A .﹣11B .﹣3C .3D .187.下列计算正确的是( ) A .233a a a += B .235a b ab += C .32ab ab ab --=D .32ab ab ab -+=-8.下列图形都是由同样大小的五角星按照一定规律所组成的,其中第①个图形中一共有4个五角星,第②个图形中一共有7个五角星,第③个图形中一共有10个五角星,第④个图形中一共有13个五角星,,按此规律排列下去,第⑧个图形中五角星的个数为( )9.()a b c --去括号正确的是( ) A .a b c --B .a b c +-C .a b c -+D .a b c ++10.a 的平方与b 的差,用式子表示,正确的是( ) A .2a b -B .2a b -C .22a b -D .2()a b -11.下列各组数中是同类项的是( ) A .3x 与3yB .22xy 与2x y -C .3xy 与23x yD .23x y -与24yx12.对于多项式2231t t -+-,下列说法中不正确的是( ) A .它是关于t 的二次三项式 B .当1t =时,它的值是0 C .它的二次项系数是2D .它的常数项是1-13.观察下列等式:224115-=,225221-=,226327-=...按这样的规律,用含自然数n 的式子表示规律为___________________. 14.如图,阴影部分的面积是_________.15.写一个含有字母a 和b ,次数是3的单项式_______. 16.若单项式14m x --与2323m x -是同类项,则n =_______. 17.定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行,例如,取n =26,第三次“F 运算”的结果是11.若n =111,则第2019次“F 运算”的结果是_____.18.长方形窗户上的装饰物如图所示,它是分别以A ,B 为圆心,b 为半径作的扇形,则能射进阳光部分的面积是_________.2+22=23﹣2; 2+22+23=24﹣2; 2+22+23+24=25﹣2; 2+22+23+24+25=26﹣2; …已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m ,则220+221+222+223+224+…+238+239+240=_____(结果用含m 的代数式表示). 20.一个多项式2a 2b |m|﹣3ab+b 9﹣2m 是一个五次式,则m =_____.21.如图,将长和宽分别为a 和b 的长方形的一个角剪去一个小长方形,则剩下图形的周长是______.22.一个整式减去22a b -后所得的结果是22a b --,则这个整式是_________. 23.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.24.用18米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为x 米。
人教版2020七年级数学上册第二章整式的加减优生提升测试卷(附答案详解)
人教版2020七年级数学上册第二章整式的加减优生提升测试卷(附答案详解) 1.下列各式中,合并同类项正确的是( )A .4x 2-x 2=4B .6a 2-5a 2=a 2C .3a 2-a =2aD .3xy -3y =x2.如图,从边长为(a +3)cm 的大正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为( )A .(4a +12)cmB .(4a +8)cmC .(2a +6)cmD .(2a +4)cm3.有一列数1a , 2a , 3a , 4a ,…, n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若1a =2,则2008a 值为( )A .2B .-1C .12D .2008 4.下列代数式中整式有( )1x , 2x +y , 13a 2b , x y π-, 54yx , 0.5 , a A .4个B .5个C .6个D .7个5.单项式223x y -的系数和次数分别是( )A .﹣2,3B .﹣2,2C .﹣23,3 D .﹣23,2 6.如图,用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,……,那么搭2014个这样的三角形需要火柴棒( )A .6042根B .6043根C .4028根D .4029根7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为A .3B .2C .0D .-18.下列说法正确的是 ( )9.下列运算正确的是( ) A .x 3+x 2=x 5B .x 3﹣x 2=xC .x 3÷x 2=xD .x 3•x 2=x 610.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,… 按照上述规律,第2017个单项式是( ) A .2017x 2017B .4034x 2017C .4033x 2017D .4035x 201711.小李有 a 2 本书,小张把自己的书给了小李 m 本后,他们两人书的数量相同,则小张原来有书_____本,这是一个_________次多项式.12.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第 n 个图 案中正方形的个数是 .13.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示: 挪动珠子数(颗) 2 3 4 5 6 … 所得分数(分) 511192941…按表中规律,当所得分数为71时,则挪动的珠子数为_____颗;当挪动n 颗珠子时(n 为大于1的整数),所得分数为_______(用含n 的代数式表示)。
2020_2021学年七年级数学上册第二章整式的加减能力提升卷单元测试卷含解析新版新人教版
2
6
(2)已知 A = x2 + 4x − 7,B =− 1 x2 − 3x + 5,计算 3A − 2B.
2
答案及解析:(1)原式= 5x − {2y − 4x + [5x − 2y + 4x + 3y]},
= 5x − {2y − 4x + 5x − 2y + 4x + 3y},
= 5x − 2y + 4x − 5x + 2y − 4x − 3y,
故选 A
9. 如图 1,将一个边长为 a 的正方形纸片剪去两个小矩形,得到一个“ ”的图案,如图 2 所示,
再将剪下的两个小矩形拼成一个新的矩形,如图 3 所示,则新矩形的周长可表示为( )
A. 2a − 3b
B. 4a − 8b
C. 2a − 4b
答案:B
解析:根据题意得:2[a − b + (a − 3b)] = 4a − 8b.
C.
−
1 2
(6x
−
4y
+
3)
=−
3x
+
2y
+
3
D. x + ( − y + 2z) = x − y + 2z
答案:D
解析:A、原式= x − 2y + 1,故本选项不符合题意.B、原式= 1 + 2x + 2y,故本选项不符合题意.
2
C、原式=− 3x + 2y − 3,故本选项不符合题意.D、原式= x − y + 2z,故本选项符合题意.
+
3ab
−
2a
−
1,B
初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案
初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案第一节选择题(共10小题,每小题2分,满分20分)1. 答案:B解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
2. 答案:C解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
3. 答案:A解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
4. 答案:D解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
5. 答案:C答案。
6. 答案:A解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
7. 答案:B解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
8. 答案:D解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
9. 答案:A解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
10. 答案:C解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
第二节填空题(共5小题,每小题4分,满分20分)1. 答案:-8a答案。
2. 答案:5xy解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
3. 答案:ab解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
4. 答案:-3x解析:此题考察对整式的减法运算的理解,将同类项相减即可得出答案。
5. 答案:0解析:此题考察对整式的加法运算的理解,将同类项相加即可得出答案。
第三节解答题(共5小题,每小题10分,满分50分)1. 答案:(3a+4b)-(5a-2b)解析:此题考察对整式的减法运算的理解,将括号内的整式分别加上和减去即可得出答案。
2. 答案:(6a-7b)+(3b-4a)解析:此题考察对整式的加法运算的理解,将括号内的整式分别加上即可得出答案。
3. 答案:(2x+3y)-(4x+5y)解析:此题考察对整式的减法运算的理解,将括号内的整式分别加上和减去即可得出答案。
人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)
人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。
(完整版)人教版七年级上册数学第二章整式的加减试题及答案(精华两份),推荐文档
13、下列等式中正确的是( )
建议收藏下载本文,以便随时学习! 一、填空题(每题 3 分,共 36 分)
A、 2x 5 (5 2x)
1、单项式 3x 2 减去单项式 4x 2 y,5x 2 ,2x 2 y 的和,列算式为
,
C、- a b (a b)
B、 7a 3 7(a 3) D、 2x 5 (2x 5)
A:1 个
B:2 个
C:3 个
D:4 个
12、下列说法正确的是( )
A: 2 xyz 与 2 xy 是同类项 B: 1 和 1 x 是同类项
3
3
x2
C:0.5 x3 y 2 和 7 x 2 y 3 是同类项 D:5 m2n 与-4 nm2 是同类项
13、已知 2x6 y2 和- 1 x3m yn 是同类项,则 9m2 5mn 17 的值是 (
第二章 整式的加减 试卷
()
一、选择题
A.12a 16b
B. 6a 8b
C. 3a 8b
D. 6a 4b
建议收藏下载本文,以便随时学习! 1.在代数式: 2 ,3 m 3 , 22 , m2 , 2b2 中,单项式的个数有(
)
10.已知 x2 3x 5 的值为 7,那么代数式 3x2 9x 2 的值是(
5
6(2a
a
1 )
3
24、 2a (5b a) b
五、解答题(31、32 题各 6 分,33、34 题各 7 分,共 20 分) 31、已知: m, x, y与与 (1) 2 ( x 5) 2 5 m 0;
3 (2) 2a2b y1与 7b3a2 是同类项,求代数式: 2x2 6 y 2 m(xy 9 y 2 ) (3x2 3xy 7 y 2 ) 的 值。
(必考题)初中七年级数学上册第二章《整式的加减》提高卷(答案解析)
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 3.(0分)下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( )A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.4.(0分)如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.5.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(0分)已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.(0分)小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n + B .mn m n + C .2mn m n + D .m n n m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.8.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.(0分)一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.14.(0分)m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.17.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.20.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 三、解答题21.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.(0分)已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】 (1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.(0分)观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.24.(0分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.25.(0分)图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.26.(0分)一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.27.(0分)某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
初中数学人教版七年级上册第二章《整式的加减》测试卷解析及答案-七上2
人教版数学七年级上册第2单元《整式的加减》测试答案一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四二.填空题:本大题有6个小题,每小题4分,共24分。
11. 4 12. -1 13. -30 14 ab-ac-bc-c 215. (3n+12)cm 16. 94--3三.解答题:本大题有7个小题,共66分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分6分) 解:-3x 2y+2x 2y+3xy 2-2xy 2=(-3+2)x 2y+(3-2)xy 2 …………………………………(3分,答案错0分) = -x 2y+xy 2 …………………………………………(3分,只写答案2分) 18.(本小题满分8分) 解析:3(3a 2b-2ab 2)-(ab 2+3a 2b)=9a 2b-6ab 2-ab 2-3a 2b ………………………………(2分,答案错0分) =9a 2b-3a 2b-6ab 2-ab 2=6a 2b-7ab 2 …………………………………………(2分)当a=21,b=31时,原式=312162⨯⎪⎭⎫ ⎝⎛⨯231217⎪⎭⎫ ⎝⎛⨯⨯- ………………………………(2分,答案错0分)=9121731416⨯⨯-⨯⨯=18721-=91……………………………………………………………………(2分)19. (本小题满分8分)解:(1)2h 两船相距(单位:km ):2(60+a )+2(60-a )=120+2a+120-2a=240 ………………………(4分) (2)2h 后甲船比乙船多航行(单位:km ):2(60+a )-2(60-a )=120+2a-120+2a=4a …………………………(4分) 20. (本小题满分10分)(1)七年级总人数=a+3+a+2+a-2+a+2+a+a-1=6a+4;………………(2分) (2)七年级总人数=6×40+4=244(人), ……………………………(1分) 买跳绳的费用=244×5=1220(元), ……………………………………(1分) 八年级总人数=244×2-240=248(人),…………………………………(1分) 买羽毛球拍的费用=248÷2×18=2232(元), …………………………(1分) 九年级总人数=(244+248)÷2=246(人), …………………………(1分) 买毽球的费用=246×3=738(元), ……………………………………(1分) 购买体育器材的费用=1220+2232+738=4188(元).…………………(2分) 21.(本小题满分10分)(1)a=3 …………………………………………………………………(2分)b= -2 …………………………………………………………………(2分) (2)∵(a+b )2=a 2+2ab+b 2, ……………………………………………(4分) ∴a 2+2ab+b 2和(a+b )2相等; ……………………………………………(2分) 22. (本小题满分12分) 解:(1)阴影部分面积之和S=S △AEF +S △DCG ……………………………………………(1分)= 21(a-b )b+ 21(a-b )a ……………………………………(3分)=21(a 2-b 2); …………………………………………………(2分) (2)当a=5cm ,b=2cm 时,S=21×(52-22) …………………………………………………(2分) = 221. ………………………………………………………(2分)23. (本小题满分12分)解:(1)如图:即为原点的位置.………………………(2分)(2)点A ,B ,C ,D 所表示的数为:-7、-5、-3、3.……(2分,0.5分一个) A 点表示的数的平方最大, ……………………………………………(1分) 最大是49. …………………………………………………………(1分) (3)①-3+4.5=1.5 …………………………………………………(1分)或-3-4.5=-7.5, …………………………………………………(1分) 答:点F 表示的数为0.5或-6.5.②当点P 在点C 的左侧或C 点时,CP=BC-PB=2-3t .……………(1分) 当点P 在点C 的右侧直至到达点D 时,CP=PB-BC=3t-2.………(1分) 当点P 在点C 右侧到达点D 不动时,CP=CD=6.…………………(1分) 答:点P 、C 之间的距离CP 为:2-3t 或3t-2或6 …………(1少一个不给分)浙教版数学七上第2单元《整式的加减》测试解析一.选择题 1.【考点】单项式系数的概念【分析】单项式中的数字因数叫做这个单项式的系数 【解答】a 的系数为3 故选:A 2.【考点】单项式次数概念【分析】利用单项式次数概念求解即可【解答】解:∵代数式94a mb 3c 是七次单项式,∴m+3+1=7, 解得:m=3. 故选:C 3.【考点】合并同类项 【分析】合并同类项即可【解答】解析:3a 2+3b 2+5ab-3a 2-4b 2 =(3a 2-3a 2)+(3b 2-4b 2)+5ab =(3a 2-3a 2)+(3-4)b 2+5ab = -b 2+5ab 故选:B 4.【考点】代数式运算去括号法则 【分析】运用代数式运算去括号法则即可 【解答】略 5.【考点】代数式运算去括号法则;合并同类项【分析】运用代数式运算去括号法则即可 【解答】解析:(6a-3b )- 3(a 2-2b) =6a-3b-(3a 2-6b) =6a-3b-3a 2+6b =-3a 2+6a+3b 故选:C 6.【考点】多项式概念【分析】长方形的周长等于四边之和,由此可得出答案。
人教版初中七年级数学上册第二章《整式的加减》提高卷(含答案解析)
1.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7 B .-1C .5D .11A解析:A先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 7.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+-D .2513x x -- C【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 11.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法. 12.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 13.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46C解析:C 【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数. 【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63. 故选:C . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.4.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】 试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101.5.===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】13n +,将210n +=代入即可得出答案.【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+= 故答案为:9. 【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25. 【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解. 【详解】解:∵当x =1时,ax +b +1的值为﹣3, ∴a +b +1=﹣3, ∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25. 【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.7.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查解析:31 2【分析】设出两个正方形边长分别为a,b(a>b),表示正方形面积之差,用a、b表示四边形CDGF的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a,b(a>b)由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
人教版七年级上册数学第二章整式的加减试题卷(含答案)
第二章整式的加减试题卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分。
下列各题给出的四个选项中,只有一项符合题意)1.下列各式不是单项式的是()A.a3B.-15C.0D.3a2.(2020·湖南湘潭中考)已知2x n+1y3与13x4y3是同类项,则n的值是()A.2B.3C.4D.53.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x-2x=1D.x2y-2x2y=-x2y4.组成多项式6x2-2x+7的各项是()A.6x2-2x+7B.6x2,2x,7C.6x2-2x,7D.6x2,-2x,75.小红要购买珠子串成一条手链(如图).黑色珠子每个a元,白色珠子每个b元,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元6.将2(x+y)+3(x+y)-4(x+y)合并同类项,得()A.x+yB.-x+yC.-x-yD.x-y7.已知当x=1时,多项式12ax3-3bx+4的值是7.则当x=-1时,这个多项式的值是()A.7B.3C.1D.-78.如图①,7张长为a,宽为b(a>b)的小长方形纸片按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a,b 满足( )A.a=52b B.a=3b C.a=72bD.a=4b二、填空题(本大题共4小题,每小题4分,共16分)9.体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元,则式子500-3x-2y 表示的实际意义是 . 10.(2020·湖北十堰中考)已知x+2y=3,则1+2x+4y= .11.如图,由边长相同的小正方形组成一组有规律的图案,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形.(用含有n 的式子表示)12.如图,它是一个程序计算器,用字母及符号把它的程序表达出来 ,如果输入m=3,那么输出 .三、解答题(本大题共5小题,共52分) 13.(10分)规定|a b c d|=a-b+c-d,试计算:|xy-3x 2 -2xy-x 2-2x 2-3 -5+xy|.14.(10分)先化简,再求值:-12(xy-x 2)+3(y 2-12x 2)+2(14xy −12y 2),其中x=-2,y=12.15.(10分)已知M=2a2+3ab-2a-1,N=a2+ab-1.(1)求3(M-2N)的值;(2)若3(M-2N)的值与a的取值无关,试求b的值.16.(10分)张华在一次测验中计算一个多项式加上5xy-3yz+2xz时,不小心看成减去5xy-3yz+2xz,计算出结果为2xy+6yz-4xz,试求出原题目的正确答案.17.(12分)小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖每平方米的价格是k元,木地板每平方米的价格是2k元,那么小王一共需要花多少钱?答案一、选择题1.D2.B3.D4.D5.A6.A 可把x+y 看成一个整体进行合并.7.C 将x=1代入多项式12ax 3-3bx+4,得12a-3b+4=7,则12a-3b=3,故-12a+3b=-3.当x=-1时,12ax 3-3bx+4=-12a+3b+4=-3+4=1.8.B 设AD 的长为x+a,则S=3bx-a(x+a-4b)=3bx-ax-a 2+4ab=(3b-a)x-(a 2-4ab).因为当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,所以3b-a=0,即a=3b. 二、填空题9.体育委员小金买了3个足球、2个篮球后剩余的钱数. 10.7. 11.4n+1. 12.m 2+2m 10-1;12.三、解答题 13.解:|xy-3x 2 -2xy-x 2-2x 2-3 -5+xy|=(xy-3x 2)-(-2xy-x 2)+(-2x 2-3)-(-5+xy) =xy-3x 2+2xy+x 2-2x 2-3+5-xy =-4x 2+2xy+2.14.解:原式=-12xy+12x 2+3y 2-32x 2+12xy-y 2=-x 2+2y 2. 当x=-2,y=12时,原式=-(-2)2+2×(12)2=-4+12=-72.15.解:(1)原式=3[(2a 2+3ab-2a-1)-2(a 2+ab-1)]=6a 2+9ab-6a-3-6a 2-6ab+6=3ab-6a+3. (2)若3(M-2N)的值与a 的取值无关,则3ab-6a+3=(3b-6)a+3中必有3b-6=0,解得b=2. 16.解:2xy+6yz-4xz+2(5xy-3yz+2xz)=2xy+6yz-4xz+10xy-6yz+4xz=12xy. 17.解:(1)木地板的面积为2b(5a-3a)+3a(5b-2b-b) =2b·2a+3a·2b =4ab+6ab =10ab(平方米).地砖的面积为5a·5b-10ab=25ab-10ab=15ab(平方米).(2)15ab·k+10ab·2k=15abk+20abk=35abk(元).答:小王一共需要花35abk元钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2020七年级数学上册第二章整式的加减培优提升训练题2(附答案详解) 1.下列运算正确的是( )A .43m m -=B .33323a a a -=-C .220a b ab -=D .2yx xy xy -= 2.若323m a b --与12n b a +是同类项,则m 、n 的值分别为( )A .1,1B .5,3C .5,1D .-1,-1 3.在式子1x ,a ,25x y +,0.9,132-,2a -,23x y -,13x + 中,单项式的个数是( )A .5个B .4个C .3个D .2个 4.若代数式6a x b 6与a 5b y 是同类项,则x ﹣y 的值是( )A .11B .﹣11C .1D .﹣15.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定 6.下列式子:2a 2b ,3xy -2y 2,2a b +,4,-m ,2x yz x +,ab c π-,其中多项式有( )A .2个B .3个C .4个D .5个7.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式 8.小雨写了几个多项式,其中是五次三项式的是( )A .y 5-1B .5x 2y 2-x+yC .3a 2b 2c-ab+1D .3a 5b-b+c9.用黑白两种颜色的正六边形地砖按如图所示的规律拼成若干图案,第n 个图案中,白色地砖共( )块.A .4n+2B .5n+2C .6n ﹣2D .6n10.下列说法正确的是()A .单项式x 3yz 4系数是1,次数是7B .x 2y+1是三次二项式C .单项式232a b π-的系数是12-,次数是6D .多项式223++x xy 是四次三项式 11.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60︒的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60︒的方向运动到O 上的点4A 处;…按此规律运动到点A 2018处,则点A 2018与点0A 间的距离是( )A .4B .23C .2D .012.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:_____.13.如果x 123a b +与32y 7a b -是同类项,那么合并的结果是________.14.下列图形由正六边形、正方形和等边三角形组成,自左向右,第1个图中有6个等边三角形;第2个图中有10个等边三角形;第3个图中有14个等边三角形组成;…按照此规律,第n 个图中等边三角形的个数为_____个.15.一个只含有字母a 的二次三项式,它的二次项系数,一次项系数均为﹣3,常数项为1,则这个多项式为______16.多项式2231x y xy -+的次数是__________,常数项是__________.17.-2x 2y 的系数是_____________.18.一辆客车上原有(6a ﹣2b )人,中途下车一半人数,又上车若干人,这时车上共有(12a ﹣5b )人.则中途上车的乘客是_____人.19.若与所得的差是单项式,则m = ______ n = ______.20.一列式子:-x ,2x 2,-3x 3,…,-9x 9,10x 10,……,按照这列数排列规律,你认为第n 个数为______21.若3a 2bc m 为七次单项式,则m 的值为___.22.如图1,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为_____.(用含a ,b 的代数式表示)23.设22132A x xy y =--,22242B x xy y =--,那么,2 1.5A B -=________. 24.观察图形,解答问题(1)按下表已填写的形式填写表中的空格; 图① 图②图③三个角上三个数的积 1×(-1)×2=-2(-3)×(-4)×(-5)=-60 三个角上三个数的和 1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商 (-2)+2=-1 (2)请用你发现的规律求出图④中的数x .25.化简:(1)12x ﹣20x+10x(2)2(2a ﹣3b )﹣3(2b ﹣3a )26.先化简,再求值:5ab-a 3b 2-ab+12a 3b 2-32ab-a 3b 2+2,其中a=-1,b=2. 27.计算某个整式减去多项式238ab bc a bc ac -+++时,一个同学误认为是加上此多项式,结果得到的答案是28ab bc ac -++.请你求出原题的正确答案.28.化简:﹣2x 2﹣5x +3﹣3x 2+6x ﹣1.29.阅读材料:计算1+2+22+23+24+…+22017+22018.解:设S =1+2+22+23+24+…+22017+22018,①将等式两边同时乘2,得2S =2+22+23+24+25+…+22018+22019,②由②-①,得2S -S =22019-1,即S =22019-1,即1+2+22+23+24+…+22017+22018=22019-1.请你仿照此法回答下列问题:(1)填空:1+2+22+23=________;(2)计算:1+2+22+23+24+…+29+210;(3)计算:1+13+(13)2+(13)3+(13)4+…+(13)n (其中n 为正整数). 30.已知多项式mx 5+nx 3+px ﹣7=y ,当x=﹣2时,y=5,当x=2时,求y 的值.31.已知2220a a +-=,求代数式()()()3232241a a a a +---的值.32.化简:(1)221232x xy x xy ⎛⎫---+⎪⎝⎭ (2)()()222222132a b ab a b ab +----33.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.()1你认为图2中大正方形的边长为________;小正方形(阴影部分)的边长为________.(用含a 、b 的代数式表示)()2仔细观察图2,请你写出下列三个代数式:2()a b +,2()a b -,ab 所表示的图形面积之间的相等关系,并选取适合a 、b 的数值加以验证.()3已知7a b +=,6ab =.求代数式()a b -的值.34.(1)化简:3a 3﹣(3a 2+b 2﹣5b )+a 2﹣5b+b 2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣2 335.先化简,再求值,x2- 3(2x2- 4 y) + 2(x2-y) ,其中| x + 2 | +(5 y -1)2 = 0.参考答案1.B【解析】A. 43m m m -= ,错误;B. 33323a a a -=- ,正确;C. 22a b ab 与 不是同类项,不能合并,故错误;D. 2yx xy xy -=-,错误,故选B.2.C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值.【详解】∵323m a b --与12n b a +是同类项,∴m -3=2,2=n+1,∴m=5,n=1.故选C.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.A【解析】【分析】根据单项式的定义进行解答即可.【详解】解:0.9,a,1 32-是单独的一个数,故是单项式;2a -,23x y -是数与字母的积,故是单项式. 所以A 选项是正确的.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.4.D【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得x、y的值,进而解答即可.【详解】因为代数式6a x b6与a5b y是同类项,可得:x=5,y=6,所以x-y=5-6=-1,故选D.【点睛】本题考查了同类项,关键是根据同类项是字母相同,且相同的字母的指数也相同解答.5.A【解析】【分析】设重叠部分的面积为x,由题意可得m=7﹣x,n=3﹣x,两式相减即可.【详解】解:设重叠部分的面积为x.由题意得,m=7﹣x,n=3﹣x,∴m﹣n=(7﹣x)﹣(3﹣x)=4,故选A.【点睛】利用面积分别列出两个等量关系是本题的关键.6.B【解析】2a2是单项式,3xy−2y2是多项式,a b2+是多项式,4是单项式,−m是单项式,x yz2x+不是多项式,ab cπ-是多项式.故选:B. 7.B 【解析】【分析】本题考查多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】根据多项式的定义,多项式3x3−2x2y2+x+3有4项,最高项的指数是4,因此是四次四项式. 故答案选B.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.8.C【解析】【分析】利用多项式的系数与次数的定义解答即可.【详解】A.中的多项式是五次二项式,B.中的多项式是四次三项式,D.中的多项式是六次三项式.故选C.【点睛】本题考查了多项式的次数和系数,几个单项式的和叫做多项式,一个多项式中,次数最高的项的次数,叫做这个多项式的次数.9.A【解析】【分析】根据已知图形得出每个图形都比其前一个图形多4个白色地砖,据此可得答案.【详解】∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2(块),故选A.【点睛】此题主要考查图形的变化类问题,重点考查了学生通过特例分析从而归纳总结出一般结论的能力.10.B【解析】【分析】分别利用单项式中的数字因数叫做单项式的系数,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:A、单项式x3yz4系数是1,次数是8,错误;B、x2y+1是三次二项式,正确;C、单项式-232a bπ的系数是-2π,次数是5,错误;D、多项式2x2+xy+3是二次三项式,错误;故选B.【点睛】此题主要考查了单项式与多项式,正确把握相关定义是解题关键.11.B【解析】试题解析:解:如图.∵⊙O的半径=2,由题意得,A0A1=4,A0A2=23,A0A3=2,A0A4=23,A0A5=2,A0A6=0,A0A7=4,…∵2018÷6=336…2,∴按此规律运动到点A2018处,A2018与A2重合,∴A0A2018=A0A2=23.故选B.点睛:本题考查了图形的变化类,正确的作出图形是解题的关键.12.﹣2x3(答案不唯一).【解析】【分析】根据单项式系数、次数的定义来求解即可.【详解】单项式的次数是指单项式中所有字母因数的指数和,所以符合条件单项式可为﹣2x3,故答案为﹣2x3(答案不唯一).【点睛】本题考查了单项式的概念和单项式的次数的概念,单项式的次数是指单项式中所有字母因数的指数和.熟记概念是解题关键.13.324a b-【解析】【分析】同类项是指所含字母相同,且相同字母的指数也相同的单项式.根据定义即可求出答案.【详解】根据定义可得:1322xy+=⎧⎨=⎩,解得:21xy=⎧⎨=⎩,则323232374a b a b a b-=-.【点睛】本题主要考查的是同类项的定义以及合并同类项的法则,属于基础题型.理解同类项的定义是解决这个问题的关键.14.4n+2【解析】【分析】根据题中等边三角形的个数找出规律,进而得到结论.【详解】解:∵第1个图由6=4+2个等边三角形组成,∵第二个图由10=4×2+2等边三角形组成,∵第三个图由14=3×4+2个等边三角形组成,∴第n个等边三角形的个数之和4n+2.故答案为:4n+2.【点睛】本题考查的是图形规律的变化类题目,根据图形找出规律是解答此题的关键.15.﹣3a2﹣3a+1.【解析】解:由题意得:该多项式为:﹣3a 2﹣3a +1.故答案为:﹣3a 2﹣3a +1.点睛:此题考查的是多项式的性质,根据条件及多项式的项及次数的定义可以得出所求的多项式.16.3, 1【解析】【分析】根据多项式的系数和项的定义得出即可.【详解】多项式2231x y xy -+的次数是3,常数项是1,故答案为:3,1【点睛】本题考查了多项式,掌握多项式中最高次项的次数叫多项式的次数,不含字母的项叫多项式的常数项是解题的关键.17.-2.【解析】解:-2x 2y 的系数是-2.故答案为:-2.18.(9a ﹣4b ).【解析】【分析】先求出中途下车后车上剩余的人数,然后用最后车上的人数减去中途下车后剩余的人数就是上车的人数.【详解】解:根据题意,中途下车后车上剩余的人数为: 12×(6a-2b )=3a-b , (12a-5b )-(3a-b )=12a-5b-3a+b=9a-4b .故答案为(9a-4b ).【点睛】本题主要考查了整式的加减,求出中途下车后剩余的人数是解题的关键,计算时要注意符号的处理,这是本题容易出错的地方.19.2 4【解析】【分析】根据差是单项式,可得同类项,根据合并同类项,可得答案.【详解】由3a2b n与-5a m b4所得的差是单项式,得与,故m=2,n=4,故答案为:2,4.【点睛】本题考查了合并同类项,系数相加字母及指数不变是解题关键.-20.()1n n nx【解析】【分析】从系数、指数分别进行分析即可.【详解】解:观察系数可知,每奇数项的符号均为“-”,系数数字以及指数均同于序号数,由此可得-.第n个数为()1n n nx【点睛】本题考察了数字规律的探索.21.4.【解析】【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为:4.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.5a ﹣9b【解析】【分析】剪下的上面一个小矩形的长为a ﹣b ,下面一个小矩形的长为a ﹣2b ,宽都是()132a b -,所以这两个小矩形拼成的新矩形的长为a ﹣b+a ﹣2b ,宽为()132a b -,然后计算这个新矩形的周长.【详解】新矩形的周长为 ()()()12[23]592a b a b a b a b .-+-+-=- 故答案为5a ﹣9b .【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a 和b 表示出剪下的两个小矩形的长与宽. 23.2225x y -+-【解析】【分析】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,然后去括号合并同类项即可. 【详解】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,得 2222123 1.52422x xy y x xy y -----()() 222262363x xy y x xy y =---++222262363x xy y x xy y =---++=2225x y -+-.故答案为:2225x y -+-.本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.24.(1)5;170;10;17(2)x =-30【解析】试题分析:(1)仔细观察图形和表格中的数据变化,发现规律并利用规律分别写出即可; (2)根据发现的规律直接写成即可.试题解析:(1)图②.()()60125-÷-=图③(﹣2)×17×(﹣5)=170 (﹣2)+17+(﹣5)=101701017÷=(2)()()589360⨯-⨯-=()()58912+-+-=-()3601230÷-=-所以x=﹣30.25.(1)2x (2)13a-12b【解析】试题分下:(1)直接合并同类型即可,即把系数相加,字母和字母的指数不变; (2)先去括号,然后合并同类项,去括号时一是要注意不要漏乘括号内的项,二是注意括号前是“-”时,去掉括号和“-”后括号内各项的符号都要变号.解:(1)12x ﹣20x+10x原式=(12-20+10)x=2x(2)2(2a ﹣3b )﹣3(2b ﹣3a )原式 =4a-6b-6b+9a=13a-12b26.52ab-32a 3b 2+2,3.【分析】原式去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】原式=35--ab 2ab ab ⎛⎫ ⎪⎝⎭+3232321--2a b a b a b ⎛⎫+ ⎪⎝⎭+2 =52ab-32a 3b 2+2. 当a=-1,b=2时,原式=52×(-1)×2-32×(-1)3×22+2 =-5+6+2=3.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.4368ab bc a ac -+--.【解析】【分析】设该整式为A ,根据题意求出A 的表达式,再进行正确的计算即可.【详解】设该整式为A ,∵A+(b ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ,∴A=(﹣2ab+bc+8ac)﹣(ab ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣3ab+2bc ﹣3a ,∴A ﹣(ab ﹣2bc+3a+bc+8ac )=(﹣3ab+2bc ﹣3a)﹣(ab ﹣2bc+3a+bc+8ac)=﹣3ab+2bc ﹣3a ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣4ab+3bc ﹣6a ﹣8ac .28.252x x -++.【解析】试题分析:先找出题目中的同类项,再根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.试题解析:解:原式=(﹣2﹣3)x2+(﹣5+6)x+(3﹣1)=﹣5x2+x+2.点睛:本题主要考查合并同类项的法则.关键是掌握系数相加作为系数,字母和字母的指数不变.合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.29.(1)15;(2) 211-1;(3) 32-12×(13)n【解析】【分析】(1)分别计算出各数,然后求和即可;(2)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(3)同理即可得到所求式子的值.【详解】(1)1+2+22+23=1+2+4+8=15.故答案为15.(2)设S=1+2+22+23+24+…+29+210,①等式两边同时乘2,得2S=2+22+23+24+…+210+211,②由②-①,得S=211-1,即1+2+22+23+24+…+21032=211-1.(3)设S=1+13+(13)2+(13)3+(13)4+…+(13)n,等式两边同时乘13,得13S=13+(13)2+(13)3+(13)4+…+(13)n+1,两式相减,得23S=1-(13)n+1,则S=32-32×(13)n+1=32-12×(13)n,即1+13+(13)2+(13)3+(13)4+…+(13)n=-12×(13)n.【点睛】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.30.-19【解析】先把x =﹣2时,y =5代入,整理得25m +23n +2p =-12①,把代入mx 5+nx 3+px ﹣7=y ,得y =25m +23•n +2p ﹣7②,然后把①代入②即可.【详解】当x=﹣2时,y=m×(﹣2)5+n•(﹣2)3+p (﹣2)﹣7=5,则﹣25m ﹣23n ﹣2p ﹣7=5,﹣25m ﹣23n ﹣2p=12,25m+23n+2p=-12①,当x=2时,y=25m+23•n+2p ﹣7②,把①代入②得:y=﹣12﹣7=﹣19.【点睛】本题考查了整体代入法求代数式的值,解答本题的关键是观察题目的特点,整体代入求解. 31.-2【解析】【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并后将已知等式变形代入计算即可求出值.【详解】2220a a +-=,222a a ∴+=,则原式222948224242a a a a a =--+=+-=-=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.32.(1)2332x -;(2)2ab -. 【解析】【分析】(1)先去括号后再合并同类项即可.(2)先去括号后再合并同类项即可.(1)原式2221323 3.22x xy x xy x =--+-=- (2)原式22222222232.a b ab a b ab ab =+-+--=-【点睛】考查整式的化简,掌握去括号法则以及合并同类项法则是解题的关键.33.(1)a +b ;a -b ;(2)(a +b )2=(a -b )2+4ab (3)a -b =5【解析】【分析】()1观察图形的出图2中大小正方形的边长;()2 由()1可得大正方形的面积2()a b +,减去阴影部分的小正方形的面积2()a b -,等于4块小长方形的面积4ab ,即22()()4a b a b ab +=-+; () 3由()2可以求出222()()474625a b a b ab -=+-=-⨯=,进一步开方得出答案即可.【详解】()1大正方形的边长为+a b ;小正方形的边长(阴影部分)为-a b ;()2 22()()4a b a b ab +=-+.例如:当5a =,2b =时,22()(52)49a b +=+=,()()2245245249a b ab -+=--⨯⨯=, 22()()4a b a b ab ∴+=-+.()3 22()()4a b a b ab +=-+,222()()474625a b a b ab ∴-=+-=-⨯=,5a b ∴-=或5a b -=-,a b >,5a b ∴-=.【点睛】本题主要考查列代数式,完全平方公式的实际应用,掌握图形与代数式的关系是解题的关键.34.(1)3a3﹣2a2;(2)﹣2x+3y2,﹣8 3【解析】【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【详解】(1)原式=3a3-3a2-b2+5b+a2-5b+b2,=3a3-2a2;(2)原式=x-2x+2y2-x+y2,=-2x+3y2,当x=2,y=-23时,原式=-2×2+3×(-23)2,=-4+43,=-83.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.35.-3x2+10y,-10.【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】原式=x2-6x2+12y+2x2-2y=-3x2+10y,∵|x+2|+(5y-1)2=0,∴x=-2,y=15,则原式=-12+2=-10.【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。