小学奥数第33讲--平面图形的计算(含解题思路)
小学五年级奥数第33讲 包含与排除(容斥原理)(含答案分析)
第33讲包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。
如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。
组成集合的每个事物称为这个集合的元素。
如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。
两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。
计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。
有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。
二、精讲精练例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?练习一1、一个班的52人都在做语文和数学作业。
有32人做完了语文作业,有35人做完了数学作业。
语文、数学作业都做完的有多少人?2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。
其中语文得优的有65人,数学得优的有87人。
语文、数学都得优的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。
已知有35人懂英语,34人懂日语,两种语言都懂的有21人。
这个学校共有多少名教师?练习二1、某校的每个学生至少爱体育和文娱中的一种活动。
已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。
这个学校共有学生多少人?2、某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。
这个班共有多少人?例3:学校开展课外活动,共有250人参加。
其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。
奥数专题平面图形之圆的面积(有例题讲解和相应的练习)
平面图形面积————圆的面积专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的3.144,而在圆内的最大正方形占所在圆的面积的23.14,这些知识点都应该常记于心,并牢牢掌握!例题1。
求图中阴影部分的面积(单位:厘米)。
【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。
62×3.14×1/4=28.26(平方厘米)练习11.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
答例题2。
求图中阴影部分的面积(单位:厘米)。
【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)练习21、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
答1 2例题3。
如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相O的面积。
等。
求长方形ABO1【分析】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)练习31、如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
答2、如图所示,AB=BC=8厘米,求阴影部分的面积。
(小学奥数)基本图形的面积计算
小學數學平面圖形計算公式:1 、正方形:周長=邊長×4;面積=邊長×邊長2 、正方體:表面積=棱長×棱長×6;體積=棱長×棱長×棱長3 、長方形:周長=(長+寬)×2;面積=長×寬4 、長方體:表面積(長×寬+長×高+寬×高)×2;體積=長×寬×高5、 三角形:面積=底×高÷26 平行四邊形:面積=底×高7 梯形:面積=(上底+下底)×高÷ 2 模組一、基本公式的應用【例 1】 如圖,兩個正方形邊長分別是5釐米和4釐米,圖中陰影部分為重疊部分。
則兩個正方形的空白部分的面積相差多少平方釐米? 【考點】基本圖形的面積計算 【難度】2星 【題型】解答【關鍵字】華杯賽,五年級,決賽,第9題,10分【解析】 5×5-4×4=9(平方釐米),兩個正方形的空白部分的面積相差9平方釐米。
【答案】9平方釐米【巩固】 如圖12,邊長為4cm 的正方形將邊長為3cm 的正方形遮住了一部分,則空白部分的面積的差等於 2cm 。
例題精講知識點撥4-2-1.基本圖形的面積計算【考點】基本圖形的面積計算【難度】2星【題型】填空【關鍵字】希望杯,4年級,初賽,19題【解析】空白部分的面積差等於兩個正方形的面積差,即⨯-⨯=44337(平方釐米)。
【答案】7平方釐米【例 2】在一個正方形水池的四周,環繞著一條寬2米的路(如圖),這條路的面積是120平方米,那麼水池的面積是______ 平方米。
水池【考點】基本圖形的面積計算【難度】2星【題型】填空【關鍵字】希望杯,4年級,初賽,19題【解析】四個邊角的面積和為2×2×4=16,則水池的邊長為:104÷2÷4=13,所以水池的面積是:13×13=169平方米。
小学三年级奥数第33讲 平均数问题(二)(含答案分析)
解析:
例题4有4个数,这4个数的平均数是21,其中前两个数的平均数是15,后3个数的平均数是26。第二个数是多少?
思路导航:根据“4个数的平均数是15”可以得出4个数的总数就是21×4=84;又根据“前2个数的平均数是15,后3个数的平均数是26”可以得出它们的总数为15×2+26×3=108,其中第二个数被重复算了一次,所以总数就多出了108-84=24,这多出的24就是第二个数。
三、课后作业
1、明明、红红两人的平均体重是32千克,加上英英的体重后,他们的平均体重就上升了1千克。英英重多少千克?
2、一个同学读一本书,共10天读完,平均每天读8页。前5天他平均每天读6页,后5天这个同学平均每天读多少页?
3、有3个数的平均数是3,如果把其中一个数改为10,那么这3个数的平均数是5。这个被改动的数原来是多少?
例5:甲地到乙地相距30千米,爸爸骑自行车从甲地到乙地每小时行15千米,从乙地到甲地每小时行10千米。求爸爸往返的平均速度。
练习五
1、摩托车驾驶员以每小时20千米的速度行了60千米,返回时每小时行30千米。往返全程的平均速度是多少千米?
2、一辆汽车以每小时20千米的速度上坡,行了120千米,然后用每小时30千米的速度返回。求这辆汽车全程的平均速度。
例3:有7个数的平均数为8,如果把其中一个数改为1,这时7个数的平均数是7。这个被改动的数原来是几?
练习三
1、有5个数的平均数是5,如果把其中一个数改为2,这5个数的平均数是4。这个被改动的数原来是几?
2、期中考试中小明4门功课的平均分是94分,由于老师批改的错误,其中有一门功课的成绩被改为87分,这时4门功课的平均分是92分。这个被改动的成绩原来是多少?
摩托车驾驶员,以每小时20千米的速度行了60千米,回来时每小时行30千米先;根据时间=路程÷速度,分别求出来和回需要的时间,再根据速度=总路程÷时间即可解答.
二年级奥数(第33-34讲)《举一反三》推理计算
第33讲间隔的学问【专题简析】在实际生活中,像植树这种特殊问题应用较广。
学会了植树问题的解决方法,我们就可以把这种方法运用到实际生活中,多角度多方位地去思考面临的新问题。
解决这一组练习题,首先要应用植树问题的解题方法,两端都种树,种的棵数比间隔数多1;如果围成一个圆,棵数与间隔数相等。
如果要求种的棵数较少,应该公用的棵数越多越好;种的棵数要最多,应该没有公用的棵数。
运用这些关系,看清题意,就能算出正确结果。
【例题1】有10棵树排成一行,如果在每两棵树之间再栽一棵,想一想,一共还需要多少棵树?思路导航:10棵树排成一行,这行就有10-1=9(个)间隔。
每两棵树之间再栽一棵树,也就是每个间隔中再栽一棵树,那么一共需要1×9=9(棵)树,如图,△表示原来有的树;▲表示新栽的树。
△▲△▲△▲△▲△▲△▲△▲△▲△▲△(10棵原有的树,9棵新栽的树)解:10-1=9(个)1×9=9(棵)答:一共还需要9棵树。
练习11.在一排16名男生队伍中,每两名男生之间插一名女生,一共插进了几名女生?2.教室楼门口摆了一排红花共12盆,在每两盆红花之间插入2盆黄花,一共需要多少盆黄花?3.足球场周围共有25面红旗,如果在每两面红旗之间再插一面绿旗,一共需要多少面绿旗?【例题2】10个同学围成一圈,每两个同学之间相隔2米,这个圈的周长是多少米?思路导航:由于围成的是一个圈,首尾相连,因此同学的个数也就是这个圈共有的间隔数,即10个间隔,要求这个圈的周长是多少米,也就是求10个2是多少。
解:2×10=20(米)答:这个圈的周长是20米。
练习21.一个圆形花坛周围每隔3分米放一盆花,一共放了100盆花,这个花坛周长是多少分米?2.一个圆形鱼池,在它的四周每隔4米种一棵小树,一共种了12棵,这个鱼池的周长是多少米?3.环形跑道上每隔6米插一面红旗,共插了50面红旗,这个环形跑道长多少米?【例题3】学校操场有条200米长的环形跑道,在跑道边上每隔2米插一根小木柱,这个跑道需要插多少根小木柱?思路导航:由于这是一个环形跑道,插木柱的根数和2米长的段数是相等的。
四年级奥数学习讲义 第33讲 速算与巧算(三) 练习及答案
第33讲速算与巧算(三)一、专题简析:这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
二、精讲精练:例1:计算236×37×27练习一计算下面各题:132×37×27 315×77×13 6666×6666例2:计算333×334+999×222练习二计算下面各题:9999×2222+3333×3334 37×18+27×42例3:计算20012001×2002-20022002×2001练习三计算下面各题:192192×368-368368×192 19931993×1994-19941994×1993例4:不用笔算,请你指出下面哪个得数大。
163×167 164×166练习四1、不用笔算,比较下面每道题中两个积的大小。
(1)242×248与243×247(2)A=987654321×123456789B=987654322×123456788例5:888…88[1993个8]×999…99[1993个9]的积是多少?练习五1、666…6[2001个6]999…9[2001个9]的积是多少?2、999…9[1988个9]×999…9[1988个9]+1999…9[1988个9]的末尾有多少个0?三、课后作业:46×28+24×63 9990999×3998-59975997×6668353×363-8354×3623、999…9[1992个9]×999…9[1992个9]+1999…9[1992个9]的末尾有多少个0?第33讲速算与巧算(答案)专题简析:这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
小学英语奥数 平面图形
平面图形1.Look at the figure on right,we know the length of the four lines,and two angles is ninetydegrees.Can you work out the area of the quadrangle ABCD?2.Look at the figure on right,the length of BD,DE and EC is 2,4 and 2,F is the middle pointof line AE,the triangle ABC is 4 high,please calculate the area of triangle DEF.3.In the following diagram, we know the length of the three lines, M is the middlePoint of line DE, please calculate the area of quarangle ABMD(the shaded part ).4.As is shown in the diagram,each side of the exact square(正方形) equals 1.please calculate the area of the shaded part(阴影部分)?5.Look at the shadow of the following two parts A and B area.Can you figure out which part is bigger?(the length ofsides in rectanglar a are 3,4;and in rectangular B are 2,6 )6.The length of exact square’s side equals 1.Please calculate the area of the shaded part.7.The length of the sides in the following grass which is a rectangle are 16,10.And there is two roads in the middle,one is a rectangle one is a parallelogram,then what is the area of the shaded part?8.Seeking the following graphic area.9.In the following diagram,large square area is 10cm2 larger than the small square area.Please calculate the areaof the circle.10.Find out which of the following area of two triangles are equal?11.There is a litter square water pool.It is 5 meters long each side.There is grass around the pool everywhere.There is agoat tied to point A,the rope is 6 meters long.How many square meters of grass can the goat get at most?专题五:立体图形一、长方体和正方体面积及体积计算:二、典型例题例1:2.1 square meters=( ) square decimeters;2.14 cubic merters=( )cubic decimeters 0.05 cubic merters=( )liters=( ) milliliters.中文意思:________________________________________________________________________________________________________________________________________________答案:_______,_______,________,_______。
小升初奥数—平面图形计算
小升初奥数—平面图形计算一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。
三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。
六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
小学五年级奥数教案--第33讲-包含与排除(容斥原理)
第33讲包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。
如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。
组成集合的每个事物称为这个集合的元素。
如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。
两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。
计算集合C的元素的个数的思考方法主要是包含与排除:先把A、B的一切元素都“包含”进来加在一起,再“排除”A、B两集合的公共元素的个数,减去加了两次的元素,即:C=A+B-AB。
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。
有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。
二、精讲精练例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?练习一1、一个班的52人都在做语文和数学作业。
有32人做完了语文作业,有35人做完了数学作业。
语文、数学作业都做完的有多少人?2、五年级有122人参加语文、数学考试,每人至少有一门功课得优。
其中语文得优的有65人,数学得优的有87人。
语文、数学都得优的有多少人?例2:某校教师至少懂得英语和日语中的一种语言。
已知有35人懂英语,34人懂日语,两种语言都懂的有21人。
这个学校共有多少名教师?练习二1、某校的每个学生至少爱体育和文娱中的一种活动。
已知有900人爱好体育活动,有850人爱好文娱活动,其中260人两种活动都爱好。
这个学校共有学生多少人?2、某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。
这个班共有多少人?例3:学校开展课外活动,共有250人参加。
其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。
小学六年级奥数知识:几何初步认识(平面图形)
小学六年级奥数知识:几何初步认识(平面图形)这篇关于小学六年级奥数知识:几何初步认识(平面图形),是特地为大家整理的,希望对大家有所帮助!二、平面图形1、长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o 表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。
圆有无数条对称轴。
(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长围成圆的曲线的长叫做圆的周长。
《小学奥数》小学六年级奥数讲义之精讲精练第33讲 行程问题(一)含答案
第33讲行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
小学六年级奥数系列讲座:简单平面图形面积计算(含答案解析)
简单平面图形面积计算一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S △DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC 的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S △ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
五年级奥数平面图形的面积计算
7.如下图,梯形ABCD的面积等于72平 方厘米,AB=4厘米,DC=8厘米。求三 角形ABD的面积。
五年级奥数平面图形的面积计算
8.在下图中,阴影部分的面积是 21平方厘米,直角梯形的面积是 多少平方厘米?
五年级奥数平面图形的面积计算
ห้องสมุดไป่ตู้
单位:厘米
谢谢观赏
五年级奥数平面图形的面积计算
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
谢谢
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
求下面组合图形的面积:
单位:厘米
五年级奥数平面图形的面积计算
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
应用题:
1. 一块梯形木板面 积为9.2平方米,中 位线长2.3米,求梯 形木板的高是多少?
五年级奥数平面图形的面积计算
应用题:
2. 一个梯形的上底为6 厘米,下底为9厘米,面 积为45平方厘米,它的 高是多少厘米?
五年级奥数平面图形的面积计算
应用题:
3. 已知梯形的面积是 21平方米,高6米,下底 长4米,求上底长多少?
五年级奥数平面图形的面积计算
应用题:
4. 某梯形上底与下 底的和为100米,面积 为1500平方米,它的 高是多少米?
五年级第学1期
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
△ADE 五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
5.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍, 求:(1)三角形的DEF的面积.(2)CF的长.
小学奥数平面几何
4
又三角形AOE、DOG和四边形EFGO的面积之和为
120
1 2
1 4
30
所以四边形EFGO的面积为30-20=10.
【例 4】如图,已知CD=5,DE=7,EF=15,FG=6,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65, 那么三角形ADG的面积是多少?
A
A
CD E B
所以
SABCD 2 1 SEFGH 36 18
【例7】如图所示的四边形的面积等于多少?
【解析】题目中要求的四边形既不是正方形也不是长方形,难以 运用公式直接求面积.我们可以利用旋转的方法对图形实施变换: 把三角形OAB绕顶点O逆时针旋转,使长为13的两条边重合,此 时三角形OAB将旋转到三角形 OCD的位置.这样,通过旋转后所 得到的新图形是一个边长为12的正方形,且这个正方形的面积就 是原来四边形的面积.
AD边上任意一点,问阴影部分面积是多少?
A
H
D
A
D (H)
E
G
E
G
B
F
C
B
F
C
【解析】特殊点法.找的特殊点,把点H与点D重合,那么图形就 可变成上右图:
这样阴影部分的面积就是∆DEF的面积,根据鸟头定理,则有:
即
【例 3】如图所示,长方形ABCD内的阴 A
D
影部分的面积之和为70,AB=8, AD=15,四边形EFGO的面积为多少?
③ S的对应份数为 a b 2
Aa D S1
S2 O S4
S3
B
C
b
四、相似模型
(一)金字塔模型
A
(二) 沙漏模型
E FD
A
小学奥数:基本图形的面积计算.专项练习及答案解析
小学数学平面图形计算公式:1 、正方形:周长=边长×4;面积=边长×边长2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长3 、长方形:周长=(长+宽)×2;面积=长×宽4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高5、三角形:面积=底×高÷26 平行四边形:面积=底×高7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。
则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算【难度】2星【题型】解答【关键词】华杯赛,五年级,决赛,第9题,10分【解析】5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。
【答案】9平方厘米【巩固】如图12,边长为4cm的正方形将边长为3cm的正方形遮住了一部分,则空白部分的面积的差等于2cm。
【考点】基本图形的面积计算【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,19题【解析】空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。
【答案】7平方厘米【例 2】在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。
水池例题精讲知识点拨4-2-1.基本图形的面积计算【考点】基本图形的面积计算【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,19题【解析】四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。
六年级数学平面图形的计算中小学PPT教学课件
国际经济联系
小结:区域界线有虚有实;内部相对一 致,之间差异明显;区域具有一定特性;
区域之间相互联系、相互影响。
二 区域空间结构
1.概念:
指一个地区各种区域要素的相对位置 关系和空间分布形式。
2.影响因素:
自然地理条件、社会经济活动、人口 状况、城市化水平、区域开放程度和对外
联系等。
3.区域划分
5、下列地理事物不可能成为区域核心的是:( )
A、较大的乡村
B、较大的工业基地
C、较大的交通枢纽
D、著名的旅游地
6、在区域经济增长中起支配作用的产业称为:( )
A、基础产业 B、辅助产业 C、主导产业 D、新兴产业
7、下列产业属于第二产业的是:( )
A、旅游业 B、林业 C、建筑业
D、商业
8、传统的农业区域,或发展水平较低的区域,比重较大的产业是:
C、第三产业向第一、第二产业转移
D、第二、第三产业向第一产业转移
11、下列不同区域比较内容由大到小或由强到弱排列正确的是:
A、区位优势:西南地区-珠江三角洲-长江三峡地区
B、水热条件:南方丘陵地区-东北地区-西北干旱、半干旱地区
C、发展速度:东部地区-西部地区-中部地区
D、开发程度:东部季风区-青藏高原区-西北干旱、半干旱地区
区域对外联系不断加强。
生产力是产业空间结构发展的原动力,劳动地域 分工是形成区域产业空间结构的直接原因,区域中心 城市是区域产业结构的核心,外围地域的发展状况是 区域产业空间结构发展水平的重要标志,网络是促进 区域一体化的纽带和桥梁,条件决定区域产业空间结
构的个性。
三 、区域产业结构
1、概念:三次产业及其内部的比例关系。 2、影响因素:自然地理条件、经济发展水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33、平面图形的计算
【周长的计算】
例1有9个同样大小的小长方形,拼成一个大长方形(如图)的面积是45厘米2,求这个大长方形的周长。
(第四届《小学生数学报》邀请赛决赛试题)
讲析:设每个小长方形的长是a厘米,宽是b厘米。
于是有
a×b=45÷9=5;
又有:4a=5b。
可求得b=2,a=。
所以大长方形的周长为6a+7b=29(厘米)。
例 2 图中图(1)和图(2)是两个形状、大小完全相同的大长方形,在每个大长方形内放入四个如图(3)所示的小长方形,斜线区域是空下来的地方,已知大长方形的长比宽多6厘米,问:图(1),图(2)中画斜线的区域的周长哪个大大多少(全国第四届“华杯赛”决赛试题)
讲析:图(1)中画斜线区域的周长恰好等于大长方形的周长,图(2)中画斜线区域的周长明显比大长方形周长小。
二者相差2·AB。
从图(2)的竖直方向看,AB=a-CD
图(2)中大长方形的长是a+2b,宽是2b+CD,
所以,(a+2b)-(2b+CD)=a-CD=6(厘米)
故:图(1)中画斜线区域的周长比图(2)中画斜线区域的周长大,大12厘米。
【面积的计算】
例1如图,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是______。
(北京市第十届“迎春杯”小学数学竞赛试题)
讲析:连结AE(如图),则三角形AEC的面积是16÷2-4=4。
因为△ACF 与△AEC等高,且面积相等。
所以,CF=CE。
同理,△ABE的面积是16÷2-3=5,则BD∶BE=3∶5。
即BE=
从而,△ABC的面积是16-(3+4+)=。
例2 如图5.58,在等边三角形ABC中,AF=3FB,FH垂直于BC,已知阴影部分的面积为1平方厘米,这个等边三角形的面积是多少平方厘米
(1992年武汉市小学数学竞赛试题)
讲析:如图,连接△ABC各边中点,则△ABC被分成了大小相等的四个小三角形。
在△DBG中,再连接各边中点,得出将△DBG又分成了四个很小的三角形。
经观察,容易得出△ABC的面积为(1×2)×4×4=32(平方厘米)。
例3 三条边长分别为5厘米、12厘米、13厘米的直角三角形如图(1),将它的短直角边对折到斜边上去与斜边相重合如图(2)。
那么,图(2)中阴影部分(即未被盖住部分)的面积是______平方厘米。
(1993年全国小学数学奥林匹克总决赛第一试试题)
讲析:如图(2),设EC等于a厘米,那么DE也为a厘米。
△ABC的面积等于△ABE的面积加上△AEC的面积。
例4 如图,ABCD是一个梯形,已知三角形ABD的面积是12平方厘米,三角形AOD的面积比三角形BOC的面积少12平方厘米,那么梯形ABCD的面积是______平方厘米。
(广州市小学数学竞赛试题)
讲析:可设△AOD的面积为S1。
则,△BOC的面积为S1+12。
于是有:S△ABO=S△ABD-S△AOD=12-S1,
S△ABC=S△ABO+S△BOC=(12-S1)+(S1+12)
=24(平方厘米)。
所以,梯形ABCD的面积是24+12=36(平方厘米)。
例5 梯形ABCD被两条对角线分成了四个三角形S1、S2、S3、S4。
已知S1=2厘米2,S2=6厘米2。
求梯形ABCD的面积。
(小学数学奥林匹克通讯赛决赛试题)
讲析:三角形S1和S2都是等高三角形,它们的面积比为2∶6=1∶3;
则:DO∶OB=1∶3。
△ADB和△ADC是同底等高三角形,
所以,S1=S3=2厘米2。
三角形S4和S3也是等高三角形,其底边之比为1∶3,所以S4∶S3=1∶
所以,梯形ABCD的面积为
例6 正方形边长为20厘米(如图),已知DD′=EE′,CE=6厘米。
则阴影部分三角形的面积最大值是______平方厘米。
(海口市小学数学竞赛试题)
讲析:E′点在BE段滑动,D′点在DC段滑动。
设DD′长a厘米。
D′C=20-a,E′C=a+6。
又因为D′C+E′C=(20-a)+(a+6)=26。
运用等周长的长方形面积最大原理,两个数的和一定(等于26),要把这个和分成两个数,使这两个数的积最大,则当20-a=a+6=13时,即a=7
=(平方厘米)。
例7 图是一个正方形,图中所标数字的单位是厘米。
问:阴影部分的面积是多少平方厘米
(全国第四届“华杯赛”决赛试题)
讲析:如图,连接AC,所分成的四个小三角形分别用S1、S2、S3、S4表示。
容易看出S2和S3是关于OC为对称轴的对称图形。
所以S2=S3。
从而不难得出S1、S2、S3、S4四个小三角形面积相等,即每个小三角
例8 一个正方形(如图),被分成四个长方形,它们的面积在图中标出(单位:平方米)。
图中阴影部分是一个正方形。
那么,它的面积是______。
(1992年全国小学数学奥林匹克决赛试题)
讲析:可将四个长方形分别用A、B、C、D表示(如图),阴影部分是B中的一部分。
大正方形的面积为1平方米,所以它的边长为1米。
因为长方形C和D的宽相等,所以它们长的比等于面积比。
于是得C的
米。
例9 把大的正三角形每边8等分,组成图所示的三角形网。
如果每个小三角形面积是1,那么图中粗线围成的三角形面积是______。
(1988年北京市奥林匹克邀请赛试题)
讲析:一般地,关于格点多边形的面积,有下面的公式:
这里,格子面积等于小正方形或平行四边形面积,也就是小三角形面积的2倍。
题中,格子面积为1×2=2,内部格点数为12,边上格点数为4。
所以,粗线围成的面积是。