大学物理电磁学例题讲解综述

合集下载

大学物理专业《电磁学》恒定磁场例题分析

大学物理专业《电磁学》恒定磁场例题分析
r R1
B 2 r 0

B 0
H I 2 r
R1 r R 2
H 2 r I
B 0rH
0rI
2 r
r R2
B 2 r 0 ( I I )

B 0
例11 一无限长的圆柱体,半径为R ,沿轴线方向的电流 I 在横截面上均匀分布,整个柱体浸没在无限大的各向同性 的均匀线性磁介质中,介质的相对磁导率为 r ,如图所 示,求导体内和介质中的磁感强度。
4 r
(cos 1 cos 2 )
(1 2 2 )
B1
0I
4 R 1
方向向外
B3
2
B2
3 0 I 16 R 1
0I
8R2
3 2
方向向里
方向向里
R1 R2
B B1 B 2 B 3
0I 2
( 8 R1

) 向外为正
例10 一无限长同轴电缆,内外分别是半径为 R 1和R 2 ( R 2 R 1 ) 的导体圆筒(其厚度均忽略不计),内外筒上的电流等值 反向,内外筒面之间充满相对磁导率为 r 的均匀、不导 电磁介质,其它均为真空。求各空间磁感强度的分布。
3
3
(D)
20M 3
另外如磁化电流、总的磁矩!!
例7 解答: 磁化电流面密度
M sin
P
把整个球面分成许多球带,通过每个球带的 的电流为 d I Rd MR sin d 设点坐标为 x 积分得
B
,因此半径为 r 的球带在 P 点产生的磁场
dB
期 末 复 习
恒定磁场例题分析
例题分析

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析

2024高考物理电磁学知识点总结与题型分析一、电磁学知识点总结1. 静电场- 库仑定律:描述静电力的大小和方向关系。

F = k * |q1 * q2| / r^2- 电场强度:在电场中某点受到的电场力的大小和方向。

E =F / q2. 电场中的电势- 电势能:带电粒子在电场力作用下所具有的能量。

U = q * V- 电势:单位正电荷在电场中所具有的电势能。

V = U / q3. 磁场- 安培环路定理:描述磁场的大小和方向关系。

B = μ * I / (2πd)- 磁感应强度:在磁场中单位定向导线上某点受到的磁场力的大小和方向。

F = B * I * l4. 电磁感应- 法拉第电磁感应定律:描述变化磁场中的感应电动势大小和方向关系。

ε = -Δφ / Δt- 感应电动势:导体中由于磁场变化而产生的电动势。

ε = B * l * v * sinθ5. 交流电- 交流电的特点:频率恒定,电流方向和大小随时间变化。

- 有效值和最大值的关系:I(有效值) = I(最大值) / √2二、题型分析1. 选择题- 静电场题型:根据静电场力的基本公式进行计算。

- 电场与电势题型:根据电场强度和电势能公式进行计算。

- 磁场与电磁感应题型:根据安培环路定理和法拉第电磁感应定律进行计算。

2. 计算题- 计算电势能:给定电荷和电场强度,计算电势能。

- 计算电场强度:给定电荷和距离,计算电场强度。

- 计算磁场强度:给定电流和距离,计算磁场强度。

- 计算感应电动势:给定磁感应强度、导线长度、速度和角度,计算感应电动势。

3. 分析题- 静电场分析:分析电场强度、电势和电势能的变化规律。

- 磁场分析:分析磁场强度和磁感应强度的变化规律。

- 电磁感应分析:分析感应电动势的大小和方向变化规律。

三、总结与展望本文对2024高考物理电磁学的知识点进行了总结,并针对不同类型的题目进行了分析。

希望通过此文章的阅读与学习,能够对物理电磁学有更加深入的理解,并在高考中取得好成绩。

高考物理(知识点总结例题精析)电磁感应专题2电磁感应中的力学问题

高考物理(知识点总结例题精析)电磁感应专题2电磁感应中的力学问题

专题二:电磁感应中的力学问题电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。

一、处理电磁感应中的力学问题的思路 ——先电后力。

1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系,求出相关部分的电流大小,以便安培力的求解。

3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力。

4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。

5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。

导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。

二、分析和运算过程中常用的几个公式:1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系.电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S tB n ⋅∆∆) E = Bl υ 、 E = 12Bl 2ω .全电路 E =I (R +r )力学对象:受力分析:是否要考虑BIL F =安 .运动分析:研究对象做什么运动 .2、可推出电量计算式 Rn t R E t I q ∆Φ=∆=∆= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具。

如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。

大学物理电磁学复习题含问题详解

大学物理电磁学复习题含问题详解

题8-12图8-12 两个无限大的平行平面匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体的电荷体密度为ρ,若在球挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= ∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO=,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同. 证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使球壳接地,此时球壳上的电荷以及外球壳上的电势的改变量.解: (1)球带电q +;球壳表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,表面电荷仍为q -.所以球壳电势由球q +与表面q -产生:0π4π42020=-=R q R q U εε(3)设此时球壳带电量为q ';则外壳表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力. 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσ Sq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质、外的场强;(2)电介质层、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则rlDSD S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q Cq U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的、外半径分别为2R =4.0cm 和3R =5.0cm ,当球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,球带电Q ,外球壳表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε =3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。

大学物理电磁学例题讲解

大学物理电磁学例题讲解

电势差
RA
VA
VB

B A
Edr

RB RA 2 0r
dr

2 0
ln
RB RA
RB

C q 2 0 L VA VB ln RB
RA
例1 如图所示,球形电容器的内、外半径 分别为R1和R2 ,所带电荷为Q.问此电容 器贮存的电场能量为多少?
-Q Q
导体球的电势 u
r
R
解 介质不存在时:
, , E0 0
导 体 球 内 ;E0

Q
4 0r 2
rR
导体球的电势:
在电介
质中:
E E0
r
从而 可得:
Q
V R E dr R 4 0 r r 2 dr
Q
Eout 4 0 r r 2
Q
4 0
q
RA ,
,
4 0r
r RA r RA
O RB
r
VB
பைடு நூலகம்

q

4
0 q
RB ,
,
4 0r
r RB r RB
V VA VB
q
q

4 0 RA

4 0 RB
,
r RA
V

q

4
0 r

q
4 0 RB

3 0
R3 r2
• 球内 ( r < R )
q内

4 3
πr 3
E r 3 0
r+
++r+

大学物理电磁学静电场经典习题详解

大学物理电磁学静电场经典习题详解

大学物理电磁学静电场经典习题详解(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--题:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10?20 m ),中子内的两个下夸克之间相距?10?15 m 。

求它们之间的斥力。

题解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。

题:质量为m ,电荷为?e 的电子以圆轨道绕氢核旋转,其动能为E k 。

证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。

题分析:根据题意将电子作为经典粒子处理。

电子、氢核的大小约为10?15 m ,轨道半径约为10?10 m ,故电子、氢核都可视作点电荷。

点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε=由此出发命题可证。

证:由上述分析可得电子的动能为r e mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题:在氯化铯晶体中,一价氯离于Cl ?与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。

为方便计算可以利用晶格的对称性求氯离子所受的合力。

解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F(2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。

人教版物理教材中的电磁学应用题解析与解题技巧分享

人教版物理教材中的电磁学应用题解析与解题技巧分享

人教版物理教材中的电磁学应用题解析与解题技巧分享电磁学是物理学中的重要分支,研究电荷与电流之间相互作用的规律。

在人教版物理教材中,电磁学是一个重点且难度较大的章节。

本文将从电磁学的应用题解析和解题技巧两个方面介绍电磁学的相关内容,帮助同学们更好地掌握电磁学的知识。

一、电磁学应用题解析电磁学应用题是对电磁学理论知识的应用和扩展,常见的题型有电磁场强度计算、电磁感应定律运用、电磁波特性分析等。

接下来,我们以其中的一道题为例,进行解析。

例题:均匀带电细棒在一个点产生的电场强度为E,离该点距离为l,若将棒剪成两段,一段长度为l₁,另一段长度为(l - l₁),将两段棒间的距离设为d,求在距离l₁的点处带电细棒剩余部分产生的电场强度F₁,以及在距离(l - l₁)的点处带电细棒剪下部分产生的电场强度F₂。

解析:首先,我们知道均匀带电细棒在其轴线上产生的电场强度与距离成正比,可以表示为E = kx,其中x为距离。

根据题意,我们将棒分为两段,分别求解。

对于距离l₁的点处,带电细棒的剩余部分长度为(l - l₁),距离为(l - l₁ - d/2)。

根据正比关系,可得:F₁ = k(l - l₁ - d/2)对于距离(l - l₁)的点处,带电细棒的剪下部分长度为l₁,距离为(l₁ + d/2)。

根据正比关系,可得:F₂ = kl₁ + kd/2通过这道题,我们可以看到,解决电磁学应用题需要我们熟练掌握电磁学的基本理论知识,灵活运用公式和关系。

在解题过程中,注意题目所给的条件,并结合公式进行计算,最终得出结果。

二、电磁学应用题解题技巧分享除了理论知识的掌握外,还有一些解题技巧可以帮助我们更好地解决电磁学应用题。

1.画图辅助:在解决电磁学应用题时,可以尝试将题目中的情境进行图示。

通过画图可以更直观地看清题目所给的条件和要求,有助于我们分析问题和解题思路。

2.理清逻辑:在解题过程中,要理清思路和逻辑关系。

将题目中的条件、公式和要求进行分析,找到关联和对应的关系,并根据题目的要求进行推导和计算。

电磁学部分题解-大学物理第三版

电磁学部分题解-大学物理第三版

εi = εL +εbcao = 0
∴ εbcao 1 5 2 = ε L = BωL = BωR2 2 2
O点电势高
《精选》P137页第22题 精选》P137页第 题 页第22
如图,两导线电流方向相反,求直导线 如图,两导线电流方向相反, CD中的动生电动势 εi CD中的动生电动势 建立坐标如图
+ + + +
d
《精选》P114页第10题 精选》P114页第 题 页第10 (1)B板不接地时,VAB = ? ) 板不接地时 板不接地时, (2)B板接地时, VAB = ? 板接地时, ′ 板接地时 解:(1)B板不接地时 ) 板不接地时 σ 而 EAB = 2 V = E ⋅d
AB AB
A
µ0ih B= 2πR
4、关于电荷作机械运动形成电流产生磁场或磁矩的计算 《精选》P126页第30题 精选》P126页第30题 页第30 表面均匀带电的圆筒绕中心轴线 旋转, 旋转,求圆筒内部的 B 该带电圆筒绕轴线旋转,等效一个长直螺线管 该带电圆筒绕轴线旋转, 圆筒表面(轴线方向) 圆筒表面(轴线方向)单位长度带电量 圆筒以 旋转,单位长度的等效电流(电流密度) ω 旋转,单位长度的等效电流(电流密度) ω j= q′ = ωRσ 2π
《精选》P134页第10题 精选》P134页第10题 页第10 半径为L的圆盘在均匀磁场中匀速转动, 半径为L的圆盘在均匀磁场中匀速转动,则
a
ω
c o d a
b
1 Va −Vo = − BωL2 即 o 端电势高 2 Va −Vb = 0 因不切割磁力线
Va −Vc =Vao +Voc
1 1 1 2 2 = − BωL + Bω(d − L) = − Bωd(2L − d) 2 2 2

电磁学例题及解答

电磁学例题及解答

大学物理学业竞赛讲座电磁学例题及解答例 1 一均匀带电线由一半圆和两段直线组成,各尺寸如图所示。

设带电直线单位长度所带的电量为λ,求圆心O 点的电场强度和电势。

解: (1)20044dq d dE R Rλθπεπε== 00cos sin ,44x y d d dE dE R Rλθθλθθπεπε==0000cos sin 0,442x y d d E E R R Rππλθθλθθλπεπεπε====⎰⎰(2)10000444dq d U Rπλθλπεπεε===⎰⎰2200022l n 2442R R d q d x U x x λλπεπεπε===⎰⎰1200ln 224U U U λλπεε=+=+ 例 2 如图一带电球面,电荷面密度分布为σ=σ0cos θ,式中σ0为常数,θ为任一半径与z 轴的夹角,求球心O 的电场强度和电势。

解: (1)223/204()dqxdE x r πε=+θcos R x =,θsin R r =,2022cos sin dq r Rd R d σπθπσθθθ=⋅⋅=20cos sin 2dE d σθθθε= 200000cos sin 23E d πσσθθθεε==⎰(2)001044dq U dq RRπεπε===⎰⎰REyEx例3 一带电球体,半径为R ,电荷体密度与球半径成反比,即ρ=K /r 。

K 为比例常数,求空间的电场和电势的分布。

解:(1)24SE dS r E π⋅=⎰r R >22int42RKqr dr KR r ππ''=⋅='∑⎰r R ≤22int 042rKq r dr Kr r ππ''=⋅='∑⎰22202()42()KR r R r E Kr r R πεππε⎧>⎪⎪=⎨⎪≤⎪⎩ 22()2()2KR r R r E K r R εε⎧>⎪⎪=⎨⎪≤⎪⎩ (2)r R >: 2220022rKR KR U dr r r εε∞'=='⎰r R ≤ 22000(2)222R rR K KR KU dr dr R r r εεε∞''=+=-'⎰⎰例4 两块大导体平板,面积为S ,分别带电q 1和 q 2,两板间距远小于板的线度。

大学物理第五版(马文蔚)电磁学习题问题详解

大学物理第五版(马文蔚)电磁学习题问题详解

第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说确的是( )(A)闭合曲面上各点电场强度都为零时,曲面一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3下列说确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域为常量,则电场强度在该区域必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 围时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r-x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+iEF2π2rελλ-=-=+-显然有F+=F-,相互作用力大小相等,方向相反,两导线相互吸引.5 -13如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z的一点P的电场强度(假设z>>d).分析根据点电荷电场的叠加求P点的电场强度.解由点电荷电场公式,得()()kkkE222π41π412π41dzqεdzqεzqε++-+=考虑到z>>d,简化上式得()()kkkE42222222226π4...321...32112π4/11/1112π4zqdεqzdzdzdzdzzεqzdzdzzεq=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=通常将Q=2qd2称作电四极矩,代入得P 点的电场强度kE43π41zQε=5 -14设匀强电场的电场强度E与半径为R的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=E RθθERθθERSS2ππ2222πdsindsinddsinsind===⋅=⎰⎰⎰⎰SEΦ5 -15边长为a的立方体如图所示,其表面分别平行于Oxy、Oyz和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E+E=i+j(k,E1,E2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解如图所示,由题意E与Oxy面平行,所以任何相对Oxy面平行的立方体表面,电场强度的通量为零,即0==DEFGOABCΦΦ.而()[]()2221ABGFd aEdSEkxE=⋅++=⋅=⎰⎰jjiSEΦ考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布相同,故有22aEABGFCDEO-=-=ΦΦ同理()[]()2121AOEFd aEdSEE-=-⋅+=⋅=⎰⎰ijiSEΦ()[]()()2121BCDGd akaEdSEkaEΦ+=⋅++=⋅=⎰⎰ijiSE因此,整个立方体表面的电场强度通量3ka==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理 ∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳激发的电场0d =E ,而在球壳外激发的电场r r εq e E 20π4d d = 由电场叠加可解得带电球体外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体(0≤r ≤R ) ()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰()r εkR r eE 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εσe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εσx r εσe e E 02202/112≈+= 上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体部一点的电场强度为r E 03ερ= 所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 根据几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面电荷为Q 1 +Q 2 ,故20214π4rεQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量0230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层外的电场强度也是连续变化的,本题中带电球壳外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r rελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4rεθp r εq r εq V V V =-+=+=-+-+ (1) 若o0=θ V 1023.2π4320P -⨯==rεpV (2) 若o45=θ V 1058.1π445cos 320oP -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==rεp V 5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V lE d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ RεQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -28 一半径为R 的无限长带电细棒,其部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布. 解 (1) 带电圆环激发的电势220d π2π41d x r rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的。

大学物理下 电磁感应习题册讲解PPT课件

大学物理下 电磁感应习题册讲解PPT课件

dR
2 r 2
故金属圆盘中的总涡流为
i i di 1 kb a rdr 1 kba2
0
2
0
4
第17页/共24页
5.一个n匝圆形细线圈,半径为b,电阻为R,以匀角 速绕其某一直径为轴而转动,该转轴与均匀磁场 B
垂直。假定有一个面积为A(很小)的小铜环固定在该转
动线圈的圆心上,环面与磁场垂直,如图所示,求在小铜
第2页/共24页
4.在圆柱形空间内有一磁感应强度为 B 的均匀磁场, 先B 后的放大在小磁以场速的率两dB个/ d不t 变同化位。置有1(一a长b)度和为2l0(的a金b属)棒,
则金属棒在这两个位置时棒内的感应电动势的大小 关系为
(A) ab ab (B)ab ab (C)ab ab 0 (D) ab ab 0
的恒定速率减小。当电子分别位于磁场中a点、b点与
c点时,假定a,c的r = 0.5m,求电子获得的瞬时加速
度的大小和方向。
答案:(1)aa 4.4 104 (ms2 ) 方向水平向左
(2) (3)
ab 0
ac 4 4 104 (ms2 )
a
r b R
B r
c
方向水平向右。
图5-10
d dvta I b (r d vt)dr
d vt 2 r a
Ib Ib (d vt) ln d vt a
2 2 a
d vt
d Ibv (ln d a a )
dt t0 2a
d da
方向顺时针
第21页/共24页
例 一截面为长方形的螺绕环,尺寸如图,共有N 匝,求其自感系数。
(2)PQ边: 1 0
P
S
PS边:2

大学物理习题电磁学习题解答(很全)

大学物理习题电磁学习题解答(很全)

1.6 1019 (0.529 1010)2
5.141011伏 / 米或牛顿/ 库仑
5. 两个点电荷,q1 =+8.0微库仑,q2= - 16.0微库仑(1微 库仑=10-6库仑),相距20厘米。求离它们都是20厘米处的 电场强度E。
解:依题意,作如图所示:
E1

q1
4 0r12
1.6301019 (库仑)
4. 根据经典理论,在正常状态下,氢原子绕核作圆周运动, 其轨道半径为5.29 10-11米。已知质子电荷为e=1.60 10-19库, 求电子所在处原子核(即质子)的电场强度。
解:电子所在处的原子核(即质子)的电场由:
E

q
4 0r 2
9.0 109
1.17 10 29 (m / s2 )
6. 铁原子核里两质子间相距4.0 10-15米,每个质子带电 e=1.60 10-19库,(1)求它们之间的库仑力;(2)比较 这力与每个质子所受重力的大小。
解:(1)它们之间的库仑力大小为:
F

e2
4 0r2

9.0
109

(1.61019 )2 (4.091015 )2
解:(1) 从上题中得知: α粒子受的万有引力可以忽略, 它受的库仑力为:
F
(42q)1q02rα2粒 子9.0的1加09速度(7为9 :1.6
1019 ) (2 1.6 (6.9 1015 )2
1019
)
2

7.84 102 ( N )
a
F m

7.84 10 2 6.68 10 27
解:设油滴带电量为q,有电场力格重力平衡条件:qE=mg
得:

大学物理第14章电磁感应题解

大学物理第14章电磁感应题解
长的长方形狭条的磁通量为dxdxdidxdtdt143如附图所示把一半径为的半圆形导线置于磁感应强度为的均匀磁场中当导线以速率v水平向右平动时求导线中感应电动势opbrv半圆方向由v点电势高
第 14 章
电磁感应
14-1 如附图所示,一根无限长平行直导线载有电流 I ,一矩形线圈位于导线平面内沿垂直 于载流导线方向以恒定速率运动,则线圈中感应电流方向如何? 答: 当以 v 运动远离直导线,通过线圈的磁通量减少, 由楞次定律,感应电流所产生的电场将反抗这种变化,故 感应电流为顺时针。
解:建立如图示直角坐标系,任意时刻B点与长直导线之间的 距离为r。任意时刻矩形ABCD中的磁通量为:

r b r
μ0 I μ Ia r b adx 0 ln 2 πx 2π r
所以,矩形形线圈ABCD内的感应电动势的大小为:

d d dr dt dr dt

r d
μ0 I vab 2πd d b
2 R μ I μ I2 Wm dWm 02 4 r 2 2 πrdr 0 0 8π R 16 π 上述结果仅为单位长度载流导线内所具有的磁场能量,它是总磁场能量的一部分,总能量还 应包括导线外磁场所储存的磁能。
R ×
×
O

×
B
F
I ×
×
×
v
此时
I=

×
R

Blv R
M
x
B 2l 2 v MN 所受安培力为 F BIl R
由牛二定律
dv B 2l 2 v F ma m dt R
2 2 t B l dv v0 v 0 mR dt v B 2l 2 ln t v0 mR v

电磁学-典型例题及习题课件

电磁学-典型例题及习题课件

0 R1
Q
4 0 R22
R2
r
应用高斯定理求场强:
适用对象:有球、轴、平面对称的某些电荷分布。
用 高 斯
1. 分析待求E的大小和方向规律(对称性分析)
2. 选取合适的Gauss面 使 S E dS 容易计算

①通过待求场点
理 求
②Gauss面的构造

✓ E大小相等,和ds方向相同的面(Φe=ES)
例1:载流长直导线的磁场
z
解: 根据B-S定律:
D 2
dB 0 Idl sin 4 r2
方向:
Idl ro
Iz r
a
∵所有dB方向相同
O
Py
B dB 0 Idz sin x C 1
4 CD r 2
z actg , r a / sin
dl=dz=ad/sin2
z D 2
Idz
B 0I 2 sind
思 路
电源保持联接,
电压U不变。
C1
插入电介质板,
C1 变大。Q=C1U,
Q必定变大。
ε C2
例题5. 面积为S的空气平行板电容器,极板上分 别带电量 ± q ,若不考虑边缘效应,则两极板 间的相互作用力为
q2
(A)
S 0
q2
(B)
√ 2 0 S
q2
(C)
(D) q2
2 0 S 2
0S2
例10: 1、如图:一不带电的金属球旁( 距o点为r )有 一点电荷+q。求金属球上的感应电荷在球心产生的 E
4a 1
B
0I 4a
(cos1
cos2
)
Iz r a
O

大学物理专业《电磁学》静电场部分例题分析

大学物理专业《电磁学》静电场部分例题分析
E

2 0
Q
A
d

Q 2 0 S
F A QE Q
Q 2 0 S

Q
2
Q
B
2 0 S
E
同理
FB
Q
2
2 0 S
1 2
0

Q
0S
2
(2)
W e W 2 W1
0E V
2
We
1 Q d 2 0S
例15 如图所示,无限长均匀带电细直线,其带电线密度 为 。在距离无限长带电直线为 d 处有一带电荷为 q , 长为 L 的细线。求带电细线所受的电场力大小和方向 1 高斯定理 E dS qi
E
x
2 0
(
1 x
2
1
1 x R
2 2 0
)


2 0
(1
讨论
1 R
)
2 0
x
2
x R 0
E

2 0
q
2
无限大均匀带电 平面的电场强度 (点电荷电场强度)
R0 x
2
x R 0 E
(1 R0 x
2 1 2
4π 0 x
1 1 2
2
)

2

例9 一平板空气电容器的两极板都是半径为 r 的圆形导 体板,在充电时,板间电场强度的变化率为 dE dt ,若 略去边缘效应,则两极板间的位移电流为( ) (A)
(D)
P 3 0
例8 如图所示,有一半径为 R 的均匀电介质球,沿直径 方向被均匀极化,极化强度 P 为恒量,那么该介质球体 en 内的电场强度为( ) 解答:如图所示

大学物理专业《电磁学》恒定磁场例题分析共20页文档

大学物理专业《电磁学》恒定磁场例题分析共20页文档
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问ห้องสมุดไป่ตู้哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
大学物理专业《电磁学》 恒定磁场例题分析
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

大学物理电磁学中的方向问题

大学物理电磁学中的方向问题

大学物理电磁学中的方向问题【摘要】在大学物理电磁学部分的学习中,有些物理量除了计算出其大小以外,还要指出其方向。

初学者由于受中学阶段学习的影响,进入大学后不习惯用大学里所学的方法来判断方向,或者是不会利用某些公式求解物理量的方向,成为他们学习电磁学感到困难的原因之一。

【关键词】电磁学;物理量;判断方向大学物理电磁学中通常要求到这样的一些物理量,如库仑力、电场强度、电势等,在计算时要求除了求出这些物理量的大小外,还要指明其方向。

初学者由于受中学阶段所学方法的深刻影响,进入大学后很难适应大学的方法来判断这些物理量的方向。

本文就电磁学学习中的一些物理量的方向的判断进行了总结。

一、电学部分物理量的方向的判断在大学物理电学部分的内容中需要判断方向的物理量主要有:库仑力、电场强度、电势梯度,它们都是矢量,因此在计算这些物理量的大小时,还需指明其方向。

下面分别介绍如何判断这几个物理量的方向。

1.库仑力和电场强度方向的判断库仑定律告诉我们,在真空中两个静止点电荷之间的作用力大小与其电量的乘积成正比,与它们之间距离的平方成反比。

作用力的方向沿着两个点电荷的连线方向。

即:(1)在判断两个点电荷的受力方向时,首先要确定施力电荷与受力电荷,式中的r0表示由施力电荷指向受力电荷的单位矢量,单位矢量的方向确定后,再进行力F的方向的判断,分两种情况来判断,如图1所示,图中矢量r为q1、q2之间的位矢,单位矢量r0的方向就代表位矢r的方向。

力F的方向沿着两个点电荷q1和q2的连线,设定q1为施力电荷,q2为受力电荷。

当两点电荷q1、q2极性同号时,F表现为斥力,其方向与单位矢量r0的方向相同;当两点电荷q1、q2极性相异时,F为吸力,其方向与单位矢量r0的方向相反。

图1 点电荷q1对点电荷q2的作用力图2 点电荷的电场强度的方向由于电场强度是根据库仑力来进行定义的,故其方向的判断与库仑力类似。

判断点电荷所产生的电场强度的方向,同样先确定单位矢量r0的方向,这里规定是由场源指向场点(这一点实际上与库仑力方向的判断中r0的规定是一样的,由电场强度的定义,是在所求点P点放置一单位正点电荷q0,q0在P点所受的力即为该点的电场强度,即r0的方向由施力电荷Q指向受力电荷q0,也就是由场源指向场点),场源指产生电场强度的源,即点电荷或带电体,场点指所求点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
L
dx
例1 均匀带电球面,电量Q,半径R 。 求 电场强度分布。
E dS E dS
dS
E
解 E 沿球面法线方向。取过P点的
同心球面为高斯面,电通量为
+
R
+
O
+ P rr +
E dS EdS E dS
+
+
E
E 4πr 2
由高斯定理 E 4πr
2) Ra r Rb
VP 2 E dl
2
q

0
E 0
O R
1 E 2 r
• P点在球外 ( r > R )
q

Q
Q E 4 π 0 r 2
r
• P点在球内 ( r < R )
q

0
E 0
讨论
均匀带电球体
r + +r + + + + + R + +
E 沿球面法线方向。 取同心
球面为高斯面,电通量为
dS
r
解 电场分布具有轴对称性 ,以高为l 的同轴圆柱面为高斯面,电通量 E e E dS
S
E
l
E dS

上底
E dS
下底
E dS
dS
EdS E dS E 2πrl
侧 侧
根据高斯定理 E 2πrl l / 0
dl
dq

VP E dl
P

r
R
O

E
V P


qx 40 ( R x )
2 2 3 2
P
x
i

x

qx dx 2 2 3/ 2 4 0 ( R x )
q
2 2
40 R x

2R 40 R 2 x 2
例3、已知球面电荷为q,球半径为R,求其激发场的电势
x E 0
d
讨论
无限大均匀带电板
E
E 垂直带电平面 ,取关于平
板对称的圆柱面为高斯面。
x
Sd 板外: e 2 ES 0
E
o
x
d 2 0
S 2 x 0
S
板内: e 2 ES
x E 0
d
例1 已知:q , r
1)Vo ?
求:
q o r q
q
2)已知q0 , 功Ao ?
解: 3)q0的电势能改变量E p ?
1 )V1
q 40 r
q
, 且V1 V2 V3 V4
V0 4V1
2) Ao
q
0 r
q0 q q0 (V V0 ) q0V0 0 r
q0 q 3)Wp Wp 0 Wp q0Vo 0 r
r
P
VP E dl
P

O
R
rR
VP E dl E dl
r R
rR
VP
r
q 40 r
2
U
0

dr
q 4 0 r
2
dr
R

q 4 0 R
r

q 4 0 r
0
R
例4 无限长带电直导线的电势,已知电荷线密度为
例2 均匀带电圆环半径为R,电荷线密度为。 求:圆环轴线上一点的电势 解 建立如图坐标系,选取电荷元 dq
dq dl
dq dl dV p 4 0 r 4 0 R 2 x 2
dq r
R O P x
2R Vp 2 2 l 4 0 R x 4 0 R 2 x 2
第十章
q
例题 求放在正方形中心的点 电荷q0所受的库仑力。 解
q
a
q0
基本原理+叠加原理
F
q1q2 ˆ e 2 4 0 r
1 qq0 F 40 a 2
q
F0 4F cos45
方向竖直向下
F0
q
2 qq0 F0 20 a 2
思考:若将下边的两个负电荷换成等量 的正电荷,结果如何?
右底
0 E1S E2 S
根据高斯定理
两个底面对称
E1 E2 E
e S / 0
E 2 0
讨论
无限大均匀带电板

E 垂直带电平面 ,取关于平
板对称的圆柱面为高斯面。 S d
Sd 板外: e 2 ES 0
E
d 2 0
S
x
S 2 x 板内: e 2 ES 0
★ 课堂练习: 求均匀带电细杆延长线上一点的场强
已知 q ,L,a
1 dq dE r 2 40 r
O
x
L
dx
P
a
dE
X
dq dE 2 4 0 ( L a x )
2 4 ( L a x ) 0 0 1 1 qL q ( ) 4 0 a L a 4 0aL( L a ) 4 0a( L a )
E 2π 0 r
例3 “无限大”均匀带电平面,电荷面密度为
求 电场强度分布。 解
选取垂直带电面的关于带电平 面对称圆柱形高斯面 e E dS E dS E dS
侧 左底

S
右底
E dS
0
左底
E dS E dS
2 E 4 π r E dS
• 球外( r > R )
q
0

4 3 q内 3 πR
• 球内 ( r < R ) 4 3 q内 3 πr
R E 3 0 r 2
3
E
E
R
1 r2
E r 3 0
O
r
例2 “无限长” 均匀带电直线,电荷线密度为+ 求 电场强度分布。
y 解:p0为零参考点
r0
p0 r
p r
0
E er 20 r

U P E d r
r
r0

r0
r
r0 dr ln 20 r 20 r
Rb R a p1 p2 p3
练习:有一等量异号的同心带电球面,已知每个球
面的带电量为q, 求其电势分布? 由高斯定理可以求得: 0 r RA r RB
E
q
40 r 2
RA r RB
由电势定义
VP

P

E dl
1) r Ra
VP1 Rb E dl E dl
r Ra Ra Rb
E dl
Rb
Ra
4
q
0
r
2
dr

q 40 Ra

q 40 Rb
相关文档
最新文档