东北大学概率论课后习题答案PPT2-3
概率论课件东北大学
2.样本空间
随机试验 所有可能结果组成的集合称为它的 样本空间,用符号Ω来表示。
样本空间的元素,即实验的每一个可能结果
称为 样本点,用符号 来表示。
样本空间可以是有限 (或无限) 多个离散点, 也可以是有限(或无限)的区间;还可以是二维 或者任意维数的集合。
如 A= { HHH,TTT } ,则 A 的对立事件的 样本点是{ HHT,HTH,HTT,THH,THT, TTH } 即三次出现的结果不全相同。
3. 随机事件的运算规则
符号 集合论含义
Ω 空间或全集
空集
元素
A
子集
A 是 A 的元素
概率论含义
样本空间或必然事件 不可能事件 样本点 随机事件
(1).事件的包含关系
如果 A 发生必然导致 B 的发生, 则称 A 包含在 B 中, 记为 A B 。
即 A 的每个样本点也都属于 B
AB
S
A = { HHH },三次都是正面, B = { H } , 第一次是正面。
特别的,对任意 A 有 A S
(2).事件的和运算
得到一个新事件,它的发生表示 这些事件中至少有一个发生,
A B A B, A BA B
例1.7 某工程队承包建造了三幢楼房,设Ai表“第
i幢楼房经验收合格”,i=1,2,3.试用A1,A2,A3表 示下列事件:
(1) 只有第一幢楼房验收合格
(2) 恰有一幢楼房验收合格
(3) 至少有一幢楼房验收合格
(4) 至多有第一幢楼房验收随机现象; 2. 教材 5 页 第 1,2,3 题。
概率论·课后答案(绝对详解)
i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。
3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。
答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。
,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。
高中数学 第二章 概率 3 条件概率与独立事件知识导航 北师大版选修2-3(2021年最新整理)
高中数学第二章概率3 条件概率与独立事件知识导航北师大版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章概率3 条件概率与独立事件知识导航北师大版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章概率3 条件概率与独立事件知识导航北师大版选修2-3的全部内容。
§3 条件概率与独立事件自主整理1。
已知__________________的条件下A 发生的概率,称为B 发生时A 发生的条件概率,记为P (A |B),当P(B)〉0时,我们有P (A|B)=_________________(其中,A∩B 也可以记成AB ). 类似地,当P (A )〉0时,A 发生时B 发生的条件概率P(B |A)=_________________.2.一般地,对两个事件A ,B ,如果P (AB )=_________________,则称A ,B 相互独立。
可以证明,如果A,B 相互独立,则A 与B ,A 与B,A 与B 也相互独立.如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )= _________________。
高手笔记1。
P(B|A)是指在事件A 发生的前提下事件B 发生的概率; P(B )是指事件B 发生的概率。
例如:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取。
①用B 表示最后一名同学抽到中奖奖券的事件,则P(B )=31.②若已经知道第1名同学没有抽到奖券(设该事件为A ),则这时最后一名同学抽到中奖奖券的概率P (B |A)=21。
东北大学19春学期《概率论》在线作业2(答案)
东北⼤学19春学期《概率论》在线作业2(答案)东⼤19春学期《概率论》在线作业2试卷总分:100 得分:100[题⽬1]、设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:A、0;B、1;C、Y的分布函数;D、Y的密度函数。
标准答案:C[题⽬2]、若P(A)=0,B为任⼀事件,则A、A为空集B、B包含AC、A,B相互独⽴D、A,B互不相容标准答案:C[题⽬3]、如果随机事件A,B相互独⽴,则有:A、AB=空集;B、P(A)=P(B);C、P(A|B)=P(A);D、AB=B。
标准答案:C[题⽬4]、从概率论的⾓度来看,你认为下列⽣活中的哪⼀种现象具有合理的成分?A、某同学认为某门课程太难,考试不可能及格,因此放弃了努⼒学习;B、某⼈总是⽤⼀个固定的号码去买彩票,她坚信总有⼀天这个号码会中奖;C、某⼈总是抢先第⼀个抽签,认为这样抽到好签的可能性最⼤;D、某⾜球教练认为⽐赛时他的⾐服颜⾊与⽐赛的结果有关,所以总穿着同⼀件“幸运服”去指挥⽐赛。
标准答案:B[题⽬5]、在某学校学⽣中任选⼀名学⽣,设事件A:选出的学⽣是男⽣”;B选出的学⽣是三年级学⽣"。
则P(A|B)的含义是:A、选出的学⽣是三年级男⽣的概率B、已知选出的学⽣是三年级的,他是男⽣的概率C、已知选出的学⽣是男⽣,他是三年级学⽣的概率D、选出的学⽣是三年级的或他是男⽣的概率标准答案:B[题⽬6]、设随机事件A发⽣的概率为0.4,B 发⽣的概率为0.3及A,B两事件⾄少有⼀件发⽣的概率为0.6,那么A发⽣且B不发⽣的概率为A、0.2B、0.3C、0.4D、0.6标准答案:B[题⽬7]、设随机变量X与Y均服从正态分布,X~N(u,42),Y~N(u,52),记p1=P{X=u-4},p2=P{u+5},那么()A、对任何实数u,都有p1=p2B、对任何实数u,都有p1p2C、只对u的个别值,才有p1=p2D、对任何实数u,都有p1p2标准答案:A[题⽬8]、n个⼈排成⼀列,已知甲总排在⼄的前⾯,求⼄恰好紧跟在甲后⾯的概率:A、2/n-1B、1/n-1C、2/nD、1/n标准答案:C第9题,随机变量X与Y的联合分布函数为F(x,y),X与Y的各⾃分布函数分别为FX(x)和FY(y),则A、FY(y)B、FX(x)C、FX(x)FY(y)D、FX(x)+FY(y)标准答案:B第10题,设表⽰10次独⽴重复射击命中次数,每次命中的概率为0.4,则E(X2)=A、18.4B、16.4C、12D、16标准答案:A第11题,如果A、B是任意两个随机事件,那么下列运算正确的是:A、(A–B)+(B–A)=空集;B、(A–B)+(B–A)=A∪B;C、(A–B)=A∪B–A;D、(A–B)=A–AB正确答案:D第12题,随机变量X表⽰某学校⼀年级同学的数学期末成绩,则⼀般认为X服从()。
概率论课后习题答案
习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。
概率论第三章部分习题解答PPT课件
(3 )E 3 Y E 3 2 X X 2 2 2 3 E 1 2 X E 2 X 2 3 1 .2 1 2 2 .1 0 6 .72 E 3 2 Y 1 4 E [X 2 (3 X )2 ] 1 4 ( 4 0 .4 3 4 0 .2) 8 0 .7 82
11的相关系数定义定理3定理5如果x不相关12十切比雪夫不等式与大数定律1切比雪夫不等式4伯努利大数定律3辛钦大数定律若方差一致有上界独立同分布在独立试验序列中事件a的频率按概率收敛于事件a一批零件有9个合格品与3个废品安装机器时从中任取一个
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x 1 x 2 x i
P p(x1) p(x2 ) p(xi )
则随机变量X 的数学期望为: EXxipxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为 EX xfxdx
.
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
0
.
17
5 设随机变量X 的概率密度为:
f x Ax2eax22 x0 (a0),求系数A及EX与D X.
0 x0
x2
解 f(x)d xA2e xa2d x1
0
令
x2 a2
t,即 xa
t,dx at1 2dt 2
x2
Ax2e a2
dx
0
A a2te tat 1 2d tA a3
1—3章概率论课后习题及答案
第一章 随机事件及其概率§1.1-2 随机试验、随机事件1. 多项选择题:⑴ 以下命题正确的是 ( ) A .()()AB AB A =; B .,A B AB A ⊂=若则;C .,A B B A ⊂⊂若则;D .,A B A B B ⊂=若则.⑵某学生做了三道题,以i A 表示“第i 题做对了的事件”)3,2,1(=i ,则该生至少做对了两道题的事件可表示为 ( ) A .123123123A A A A A A A A A ; B .122331A A A A A A ; C .122331A A A A A A ; D .123123123123A A A A A A A A A A A A .2. A 、B 、C 为三个事件,说明下述运算关系的含义:⑴ A ; ⑵ B C ; ⑶ AB C ; ⑷ A B C ; ⑸ AB C ; ⑹ABC .3. 一个工人生产了三个零件,以i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正 品、次品的事件.试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品.§1.3-4 事件的概率、古典概型1. 多项选择题:⑴ 下列命题中,正确的是 ( ) A .B B A B A =;B .B A B A =;C .C B A C B A = ;D .()∅=)(B A AB . ⑵ 若事件A 与B 相容,则有 ( ) A .()()()P AB P A P B =+; B .()()()()P A B P A P B P AB =+-;C .()1()()P A B P A P B =--;D .()1()()P A B P A P B =-.⑶ 事件A 与B 互相对立的充要条件是 ( ) A .()()()P AB P A P B = ; B .()0()1P AB P AB ==且;C .AB A B =∅=Ω且;D . AB =∅.2. 袋中有12只球,其中红球5只,白球4只,黑球3只. 从中任取9只,求其中恰好有4只红球,3只白球,2只黑球的概率.3. 求寝室里的六个同学中至少有两个同学的生日恰好同在一个月的概率.4. 10把钥匙中有三把能打开门,今任取两把,求能打开门的概率.5. 将三封信随机地放入标号为1、2、3、4的四个空邮筒中,求以下概率:(1) 恰有三个邮筒各有一封信;(2)第二个邮筒恰有两封信;(3)恰好有一个邮筒有三封信.6. 将20个足球球队随机地分成两组,每组10个队,进行比赛.求上一届分别为第一、 二名的两个队被分在同一小组的概率.§1.5 条件概率1. 多项选择题:⑴ 已知0)(>B P 且∅=21A A ,则( )成立.A .1(|)0P AB ≥; B .1212(()|)(|)(|)P A A B P A B A B =+;C .12(|)0P A A B =;D . 12(|)1P A A B =.⑵ 若0)(,0(>>B P A P )且)(|(A P B A P =),则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .,A B 相容;D .,A B 不相容.2. 已知61)|(.41)|(,31)(===B A P A B P A P ,求)(B A P3. 某种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7.求一只已用到了3000小时还未坏的灯泡还可以再用500小时的概率.4.两个箱子中装有同类型的零件,第一箱装有60只,其中15只一等品;第二箱装有40只,其中15只一等品.求在以下两种取法下恰好取到一只一等品的概率:⑴ 将两个箱子都打开,取出所有的零件混放在一堆,从中任取一只零件;⑵ 从两个箱子中任意挑出一个箱子,然后从该箱中随机地取出一只零件.5.某市男性的色盲发病率为7 %,女性的色盲发病率为0.5 % .今有一人到医院求治色盲,求此人为女性的概率.(设该市性别结构为 男:女=0.502:0.498)6.袋中有a 只黑球,b 只白球,甲、乙、丙三人依次从袋中取出一只球(取后不放回),分别求出他们各自取到白球的概率.§1.6 独立性1. 多项选择题 :⑴ 对于事件A 与B ,以下命题正确的是( ).A .若B A 、互不相容,则B A 、也互不相容;B .若B A 、相容,则B A 、也相容;C .若B A 、独立,则B A 、也独立;D .若B A 、对立,则B A 、也对立. ⑵ 若事件A 与B 独立,且0)(,0)(>>B P A P , 则( )成立.A .(|)()PB A P B =;B .(|)()P A B P A =;C .B A 、相容;D .B A 、不相容.2. 已知C B A 、、互相独立,证明C B A 、、也互相独立.3. 一射手对同一目标进行四次独立的射击,若至少射中一次的概率为8180,求此射手每次射击的命中率.*4. 设C B A 、、为互相独立的事件,求证B A AB B A -、、 都与C 独立.5. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别 是0.4、0.5、0.7.目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中三发则必定冒烟,求目标冒烟的概率.6. 甲、乙、丙三人抢答一道智力竞赛题,他们抢到答题权的概率分别为0.2、0.3、0.5 ;而他们能将题答对的概率则分别为0.9、0.4、0.4.现在这道题已经答对,问甲、乙、丙三人谁答对的可能性最大.7. 某学校五年级有两个班,一班50名学生,其中10名女生;二班30名学生,其中18名女生.在两班中任选一个班,然后从中先后挑选两名学生,求(1)先选出的是女生的概率;(2)在已知先选出的是女生的条件下,后选出的也是女生的概率.第二章 一维随机变量及其分布§2.1 离散型随机变量及其概率分布1.填空题:⑴ 当c = 时()/,(1,,)P X k c N k N ===是随机变量X 的概率分布,当c = 时()(1)/,(1,,)P Y k c N k N ==-=是随机变量Y 的概率分布; ⑵ 当a = 时)0,,1,0(!)(>===λλ k k a k Y P k是随机变量Y 的概率分布;⑶ 进行重复的独立试验,并设每次试验成功的概率都是0.6. 以X 表示直到试验获得成功时所需要的试验次数,则X 的分布律为;⑷ 某射手对某一目标进行射击,每次射击的命中率都是,p 射中了就停止射击且至多只 射击10次. 以X 表示射击的次数,则X 的分布律为;⑸ 将一枚质量均匀的硬币独立地抛掷n 次,以X 表示此n 次抛掷中落地后正面向上的次数,则X 的分布律为 .2.设在15只同类型的零件中有2只是次品,从中取3次,每次任取1只,以X 表示取出的3只中次品的只数. 分别求出在 ⑴ 每次取出后记录是否为次品,再放回去;⑵ 取后不放回,两种情形下X 的分布律.3.一只袋子中装有大小、质量相同的6只球,其中3只球上各标有1个点,2只球上各标有2个点,1只球上标有3个点.从袋子中任取3只球,以X 表示取出的3只球上点数的和. ⑴ 求X 的分布律;⑵ 求概率(46),(46),(46),(46)P X P X P X P X <≤≤<<<≤≤.4.某厂有7个顾问,假定每个顾问贡献正确意见的可能性都是6.0. 现在为某件事的可行与否个别地征求每个顾问的意见,并按多数顾问的意见作决策.求作出正确决策的概率.5.袋子中装有5只白球,3只黑球,从中任取1只,如果是黑球就不放回去,并从其它地方取来一只白球放入袋中,再从袋中取1只球. 如此继续下去,直到取到白球为止. 求直到取到白球为止时所需的取球次数X 的分布律.§2.2 连续型随机变量及其概率分布1.多项选择题:以下函数中能成为某随机变量的概率密度的是 ( )A .⎪⎩⎪⎨⎧<<=它其20,0,cos )(πx x x f ;B .⎪⎩⎪⎨⎧<<=它其πx x x f 0,0,2cos )( ; C .⎪⎩⎪⎨⎧<<-=它其22,0,cos )(ππx x x f ; D .⎩⎨⎧<<=它其10,0,)(x xe x f x . 2.设随机变量X 的概率分布律如右,求X 的分布函数及)32(),30(),2(≤≤<<≤X P X P X P .3.设一只袋中装有依次标有数字-1、2、2、2、3、3的六只球,从此袋中任取一只球,并以X 表示取得的球上所标有的数字.求X 的分布律与分布函数.4.设连续型随机变量X ⑴ 系数A ;⑵ X 的分布函数;⑶ (0.1P X << x <⎧⎪5.设连续型随机变量X 的分布函数如右,试求:⑴ 系数k ;⑵ X 的概率密度;⑶ (||0.5)P X <.6.设连续型随机变量X 的分布函数为()arctan ()F x A B x x R =+∈,试求:⑴ 系数A 与B ;⑵ X 的概率密度;⑶ X 在区间(,)a b 内取值的概率.§2.31.设离散型随机变量X 的分布律如右,求 12,22,12+=-=+=X W X V X U 的分布律 2.设随机变量X 的概率密度为,00,0,)(<≥⎩⎨⎧=-x x e x f x 求随机变量X e Y =的概率密度.3.设随机变量X 在区间(0,)π上服从均匀分布,求:⑴ 随机变量2ln Y X =-的概率密度;⑵ 随机变量sin Z X =的分布函数与概率密度.4.设连续型随机变量X 的概率密度为2/2()()x f x e x R -=∈,求||Y X =的密度. *5.设1()F x 与2()F x 分别为两个随机变量的分布函数,证明:当0,0a b ≥≥且1a b +=时,)()()(21x bF x aF x +=φ可以作为某个随机变量的分布函数.§2.4 一维随机变量的数字特征1.一批零件中有9件合格品与3件次品,往机器上安装时任取一件,若取到次品就弃置一边. 求在取到合格品之前已取到的次品数的期望、方差与均方差.2.设随机变量X 的概率密度为||()0.5,,x f x ex -=-∞<<+∞求,EX DX .3.设随机变量X 的概率密度为2(1),01(),0,x x f x -≤≤⎧=⎨⎩其它求EX 与DX . 4.某路公汽起点站每5分钟发出一辆车,每个乘客到达起点站的时刻在发车间隔的5分钟内均匀分布. 求每个乘客候车时间的期望(假定汽车到站时,所有候车的乘客都能上车).5.某工厂生产的设备的寿命X (以年计)的概率密度为/400.25,()00,x x e f x x ->⎧=⎨<⎩,工厂规定,出售的设备若在一年之内损坏可以调换. 若出售一台设备可赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望.*6.某工厂计划开发一种新产品,预计这种产品出售一件将获利500元,而积压一件将损失2000元. 而且预测到这种产品的销售量Y(件)服从指数分布(0.0001)E . 问要获得利润的数学期望最大,应生产多少件产品?第三章 多维随机变量及其分布§3.1 二维随机变量1.设随机变量),(Y X 只取下列数组中的值:)0,0(、)1,1(-、)31,1(-、)0,2(且相应的概率依次为61、31、121、125.求随机变量),(Y X 的分布律与关于X 、Y 的边缘分布律.2.一只口袋中装有四只球,球上分别标有数字1、2、2、3. 从此袋中任取一只球,取后不放回,再从袋中任取一只球.分别以X 与Y 表示第一次、第二次取到的球上标有的数字,求X 与Y 的联合分布律与关于X 、Y 的边缘分布律.3.设随机变量),(Y X 的概率密度,其它+∞≤≤+∞≤≤⎩⎨⎧=+-y x ce y x f y x 0,0,0,),()(2 试求:⑴ 常数c ;⑵ ),(Y X 的分布函数),(y x F ;⑶ }1{≤+Y X P .4.设随机变量),(Y X 的概率密度为 4.8(2),01,0(,)0,y x x y x f x y -≤≤≤≤⎧=⎨⎩,其它求关于X 、Y 的边缘概率密度.5.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴、y 轴及直线12+=x y 所围成,试求:⑴ ),(Y X 的概率密度),(y x f ;⑵ 求关于X 、Y 的边缘概率密度.*6.设某班车起点站上车的人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<乘客中途下车与否相互独立,并以Y 表示在中途下车的人数.求:⑴ 在发车时有n 个乘客的条件下,中途有m 人下车的概率;⑵ (,)X Y 的分布律.§1.设随机变量X 与Y 相互独立右表给出二维随机变量),(Y X 律及边缘分布律中的部分数值.试将其余数值填入表中的空白处.2.设随机变量),(Y X 分布律如右:⑴ a 、b 、c 时X 与Y 相互独立?⑵写出),(Y X 的分布律与边缘分布律.3.设随机变量X 在1、2、3、4四个整数中等可能地取值,而随机变量Y 在X ~1中等可能地取一个整数.求:⑴=X 2时Y ,的条件分布律;⑵=Y 1时X ,的条件分布律.4.设随机变量),(Y X 的概率密度为其它0,0,0,),()(>>⎩⎨⎧=+-y x e y x f y x . ⑴ 求)|(|x y f X Y ;⑵ 求)|(|y x f Y X ;⑶ 说明X 与Y 的独立性.*5.箱子中装有12只开关(其中2只是次品),从中取两次,每次取一只,并定义随机变量如下:0,1,X ⎧=⎨⎩若第一次取出的是正品若第一次取出的是次品; 0,1,Y ⎧=⎨⎩若第二次取出的是正品若第二次取出的是次品 ,试在放回抽样与不放回抽样的两种试验中,求关于X 与Y 的条件分布律,并说明X 与Y 的独立性.* 6.设随机变量),(Y X 的概率密度为,||,10(,)0,c y x x f x y <--<<⎧=⎨⎩,其它求参数c 与条件概率密度)|(,)|(||y x f x y f Y X X Y .§3.3 1. 设),(Y X 的分布律如右,求⑴}0|3{,}2|2{====X Y P Y X P⑵ ),max(Y X V =的分布律;⑶ ),min(Y X U =的分布律;⑷ Y X W +=的分布律.2.设X 与Y 是相互独立的随机变量,它们分别服从参数为1λ、2λ的泊松分布. 证明Y X Z +=服从参数为21λλ+的泊松分布.3.设随机变量X 与Y 相互独立,且都服从参数为0.25p =的两点分布,记随机变量Z 为 1,0,X Y Z X Y +⎧=⎨+⎩为奇数,非为奇数求X 与Z 的联合分布律与EZ .4.设随机变量X 与Y 相互独立,其概率密度分别为321100,,(),(),32000,0,y x X Y x y e e f x f y x y --⎧⎧≥≥⎪⎪==⎨⎨<<⎪⎪⎩⎩求随机变量U X Y =+的概率密度.5.某种商品一周的需求量X 是一个随机变量,其概率密度为⎩⎨⎧≤>=-00,0,)(x x xe x f x .设各周的需求量是相互独立的,试求:⑴ 两周;⑵ 三周的需求量的概率密度.6.设某种型号的电子管的寿命(以小时记)近似地服从(1160)E 分布. 随机地选取4只,将其串联在一条线路中,求此段线路的寿命超过180小时的概率。
概率论和数理统计课后习题答案解析
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。
东北大学概率论课后习题答案PPT2-2
(1) pk 0, k=1,2, …
一个函数是否是
概率分布
(2) pk 1
k
分布律也可以用表格的形式来表示:
X
x1 x2 … xn …
pk
p1 p2 … pn …
称为随机变量X的概率分布表。
也可用矩阵表示
X
~
x1 p1
x2 p2
xi pi
也可用散点图表示。
有了分布列,可以计算任意时间的概率
几何分布的无记忆性
在贝努利试验中,等待首次成功的时间服从几何分布。 现在假定已知在前m次试验中没有出现成功,那么为了达到 首次成功所再需要的等待时间′也还是服从几何分布,与 前面的失败次数m无关,形象化地说,就是把过去的经历完 全忘记了。因此无记忆性是几何分布所具有的一个有趣的 性质。但是更加有趣的是,在离散型分布中,也只有几何 分布才具有这样一种特殊的性质。
件,第i个零件为不合格品的概率为 pi 1/ i 1,i 1,2,3 ,若
以X表示三个零件中合格品的个数,问X是二项变量吗?写出 X的分布律。
例5:某人进行射击,设每次射击的命中率为0.02,独立射击 400次,试求至少击中两次的概率。
解:将一次射击看成是一次试验.设击中的次数为X,则X~ B(400,0.02)。X的分布律为 P{ X k} 4k00(0.02)k (0.98)400k , k 0,1,,400. 于是所求概率为 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
P{Y
4} 1
k
3 0
8k0(0.01)k
(0.99)80k
0.0087.
我们发现,在后一种情况尽管任务重了(每人平均
概率论与数理统计课后习题答案
概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。
本文档将提供《概率论与数理统计》课后习题的详细答案。
2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。
b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。
1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。
【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。
所以,P(A ∩ B) = 【答案】0.2。
b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。
【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。
所以,P(B) = 【答案】1.67。
第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。
b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。
东北大学《概率与数理统计》课件-第4章
(k 0,常数),求W的数学期望.
解:由上面的公式
E(W
)
kv 2
f
(v)dv
a
kv 2
1
dv
1
ka2
0a
3
例9 求数学期望E(eX),若 (1)X~P(3); (2) X~B(n,p); (3) X~N(1,4).
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
x0
N min( X1, X2 ) 的分布函数为
Fmin ( x)
1 [1
F ( x)]2
1
2x
e
x0
0
x0
于是N的概率密度为
fmin
(
x)
2
2x
e
x0
0
x0
E(N
)
xfmin
(
x)dx
0
2x
2x
e dx
2
例4.4 商店的销售策略 某商店对某种家用电器的销售采用先使用后
付款的方式 ,记使用寿命为X (以年计),规定 : X 1,一台付款1500元;1 X 2,一台付款2000元; 2 X 3,一台付款2500元; X 3,一台付款3000元.
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
/2
dy
/2
Asin( x
y)dx
1,得A
1
0
0
2
例10 设二维连续型随机变量(X ,Y)的概率密度为
概率论答案课件
21(,)()(221. T10. (1)0(,)(220(,)()()221 ,,22F A B C F A B C F A B C A B C πππππππππ⎧=+∞+∞=++⎪⎪⎪=-∞+∞=-+⎨⎪⎪=+∞-∞=+-⎪⎩===1(2)()(arctan ), ()221 (arctan 23X Y xF x F y yy ππππ=+=+-∞<<+∞,X 与Y 独立4. 2. (1){2}1{2}1{2} 1{1,1}11/87/8. (2){/1}{/2}{2,1}1/8. (3){3}1{3}1{4} T P X Y P X Y P X Y P X Y P X Y P X Y P X Y P XY P XY P XY +>=-+≤=-+==-===-=>======≤=->=-= 1{2,2}11/43/4. (4){}{1,1}{2,2} 1/81/43/8.P X Y P X Y P X Y P X Y =-===-=====+===+=).,0(),( },{},{}{)4( ).,(),( },{},{}{)3( ).,0(),(},{)2( ).,0(),( },{},{ },{)1( ).,.( .1.5+∞--+∞=+∞<<-+∞<≤=≤≤+∞-+∞=+∞<≤-+∞<≤=≤<--=≤=--=≤<-≤≤=≤≤≤c F d F Y X c P Y d X P d X c P a F b F Y X a P Y b X P b X a P y a F y a F y Y a X P y a F y b F y Y X a P y Y b X P y Y b X a P V R X T 所以有是否连续型因为不知6. T3...91,92)91(32)91()31()2()2()2,2( ),()(),( 31,131311 21验知对其它正确解得利用上式应有独立与由故有得由==+⋅=+⋅++====⇔=+=+++=∑=⋅βαααβααβαβαY X Y X i i f f f y f x f y x f Y X p0}2,3{ ,352}1,3{ ,352}0,3{ 353}2,2{ ,3512}1,2{ ,353}0,2{356}2,1{ ,356}1,1{ ,0}0,1{ 351}2,0{ ,0}1,0{ ,0}0,0{ .5.7471233471233472223471212234722234712221347221213472222============================================Y X P C C C Y X P C C C Y X P C C C Y X P C C C C Y X P C C C Y X P C C C C Y X P C C C C Y X P Y X P C C C Y X P Y X P Y X P T解 T18边缘分布:14001414014147.14 6.86{}{,} !()!! 6.86(7.14 6.86)!!()!!14 0,1,2,.!7.14 6.86{}{,}!()! m n mnnn m m nm n m nm n m n mm n m n m e p P X n P X n Y m m n m e n e n m n m n en n e p P Y m P X n Y m m n m --⋅==---=---∞∞⋅==⋅⋅======-=⋅=+-==⋅⋅======-∑∑∑∑∑1414 6.867.147.14 6.867.14 !()!!7.14 0,1,2,.!m n m m n m m e e e m n m m em m ---∞=-⋅⋅==-==∑147.146.86147.14 6.86{,}!()!(2){|}7.14{}!6.86 ,()!,1,;0,1,2,{,}{|}{}m n mm n m e P X n Y m m n m P X n Y m P Y m e m e n m n m m m eP X n Y m P Y m X n P X n ------⋅⋅==-======-=+=⋅=======147.14 6.86!()!14!!7.14 6.86 !()!1414 0.510.49, 0,1,2,,;0,1,2,.(3){|m n mn mn mm m n mn m n m e n n m n m C m n n P Y m ----⋅-⎛⎫⎛⎫=⋅ ⎪ ⎪-⎝⎭⎝⎭==== 202020}0.510.49,0,1,2,,20.mm m X C m -===.5.5116704702)1(1 )),(()1)(1(1 )120()120(1}120{}120{1 }120,120{1 }120},{max{1}120},{max{ 120. ,2)( .0,0 0,1),()( .0,0 0,1),()((1) T 11. 1.4.22.122.112001.012001.001.001.0=-=--=---=-=<<-=<<-=<-=≥⎩⎨⎧≤>-=+∞=⎩⎨⎧≤>-=+∞=---⨯-⨯---e e e y x F e e F F Y P X P Y X P Y X P Y X P y y e y F y F x x e x F x F Y X y Y x X 恰好相当于用以上的概率为小时工作且相互独立损还时才停止工作并联电路中电子元件都29..090717953 )( ))120(1))(120(1( })120{1})(120{1( }120{}120{ )( }120,120{}120},{min{ 120,)3(* 4.212001.012001.0==⋅=--=<-<-=>>=>>=≥-⨯-⨯-ee e F F Y P X P Y P X P Y X P Y X P Y X 利用边缘分布函数利用两部分独立小时以上的概率为电子部件能正常工作当为串联时.6,22,0cos 2,0sin ],0[,0cos sin 0),( )sin 1(2cos sin ),(),(1 T 12. 2.2/0πππππππ=≤≤-≥≤≤≥≥≥-===+∞+∞=⎰⎰⎰⎰∞+∞-∞+∞-c c y y c x y x y x f c ydy x dx dy y x f dx F c再由上面的结果知故上所以在上因知再由.214),(}{ .(3) ,0}{(2) 641544),(}141,21X {0(1) T 13. 3.11011014/12/1014/12/1014/12/10===<===--===⋅===<<<<⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x xydy dx dy y x f dx Y X P x y x y x y Y X P ydy xdx xydy dx dy y x f dx Y P 为所求左上方部分上的概率即矩形域内且在位于概率密度不为零的上的面积为零而为零因直线上的概率即沿着)25)(arctan 24(arctan 1),( .20 20)22)(22(20),(1 25)(arctan 24(arctan 205arctan 514arctan 41 251161251161),( T 14. 4.2222222222ππππππππππππππ++===++=+∞+∞=++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡=+⋅+=++=∞-∞-∞-∞-∞-∞-⎰⎰⎰⎰y x y x F A AA F y x A y x A dy y dx x Ady y x Adx y x F yxy xyx故分布函数得由301sin ,0sin ,05. T20. ()(,) 3220,0,X xdy x x x f x f x y dy ππ+∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它2011,03sin ,03()(,) 330,0,Y y xdx y f y f x y dx π+∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它||(,)1,0303()0: (|)320,0,(,),0sin 0,()203: (|)20,0,X Y X Y X Y f x y y y f x x f y x f x y x x x f y y f x y πππ⎧⎧≤≤≤≤⎪⎪<<==⎨⎨⎪⎪⎩⎩⎧⎧≤≤≤≤⎪⎪<<==⎨⎨⎪⎪⎩⎩其它其它其它其它.: ,01||,||11,01||,)(),()|( 11 ,0||,21,0,||,)(),()|( 10 ,01|||,|1 ,010,101,1,010,101,1,011,),()( ,010,2,010,1,010,),()( T 25. 6.||11意义其他范围内条件概率无或在注其它其它时当其它其它时当其它其它其它其它其它其它其它y x x y y x y y f y x f y x f ,y xy xx y x f y x f x y f ,x y y y y y y y dx y dx y dx y x f y f x x x dy x dy y x f x f Y Y X X X Y yy Y x x X ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<=<<-⎪⎩⎪⎨⎧<=⎪⎩⎪⎨⎧<=<<⎩⎨⎧<-=⎪⎩⎪⎨⎧<≤-<<-+=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=⎪⎩⎪⎨⎧<<-=⎩⎨⎧<<=⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<=⎰⎰⎰⎰⎰-∞+∞--∞+∞-1. T15. 设甲方、乙到达时间分别为X 、Y ,则X 与Y 相互独立,概率密度为21110,240,24(,)()()24242400X Y x y x y f x y f x f y others others⎧⎧<<⋅<<⎪⎪===⎨⎨⎪⎪⎩⎩24242424202421(1){}(,)2411 (24).224xxP X Y dx f x y dy dx dy x dx <===-=⎰⎰⎰⎰⎰(2)两船相遇在区域:{02}{01},D X Y Y X ≤-<≤-<故相遇的概率为2221{(,)}(,)24111 (2422222323)2224DDP X Y D f x y dxdy dxdy∈===-⋅⋅-⋅⋅⎰⎰⎰⎰1390.1207.1152=≈ 注:以上两问都可直接用面积计算.22232220202. T21. (){}{}(,) 0: ()00.1 01: ()2()()(4).312:()2()2()Z x y zZ x y zz z z z x z x Z xx z yZ F z P Z z P X Y z f x y dxdyz F z dxdy z F z dx x y dy x y dx z x dx z z F z dy x y dx dy x y +≤+≤--=≤=+≤=≤==<≤=+=+=-=<<=+++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1211222222202233232()()3()111 (0)(1()82324332: () 1.()()z y z z z y z y z z Z Z Z dxx y dy x y dy y dy z y dyz z z z z z z F z f z F z --=+++=+-=-+---=--≥='∴=⎰⎰⎰⎰⎰⎰220,,012,12z z z z z ⎧⎪=≤<⎨⎪-≤≤⎩其它.2)]1(2[2)]([2)( ,21 ;2/22)]([2)( ,10 ;00)( ,0 1201010:),( .),()( :59222/122/02/0z z z zz dx x z x z f z z z z zdx dx x z x z f z dx z f z x z x xx z x x x z x x z x f dx x z x f z f Y X P z z Z z z Z Z Z -=--⋅=-+=<<=⋅==-+=≤<==<⎩⎨⎧+≤≤≤⇒⎩⎨⎧≤-≤≤⇒≤-≤≤--=+⎰⎰⎰⎰⎰-∞+∞-∞+∞-时当时当时当非零范围的分布公式求的套用法),81855.0.(8185.018413.09772.01)1()2()1()2(21)2(22112121)22(212121||21)222,: ,1,( 21),(}222{ 2.8185.018413.09772.0 1)1()2()]1(1[)2( )1()2()202()2022(}222{ ),20(~ 1 T 23. 3.212222422242222)22(42222)(2222222222222可能是多录入一位书上答案为令而令法法=-+=-Φ+Φ=-Φ-Φ====⋅=+==≤≤-+∞<<-∞'=⎩⎨⎧=-=⇒⎩⎨⎧=+===<+<-=-+=-Φ+Φ=Φ--Φ=-Φ-Φ=--Φ--Φ=<+<-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-------∞+∞-+---∞+∞-+--∞+∞----+-dw e u w u d e du e duuv d e e dvdu J eu v D J v y vu x y v y x u dxe dy dxdy y xf Y X P Y X P ,N Y X w u u u v u vv u y y y x Dπππππππ)]1,0[(310 )310()031()3131()121230(}10{ )1]1,0[ ,]1,0[(10 )10()01()11()121210(}10{ 2123,2121 T 27. 4.上的均匀分布是区间的概率为落在区间故上的均匀分布是区间由方程组解得X X P X P X P X P Z P X X X P X P X P X P Y P X Z X Y +=≤≤+<≤-=≤≤-=≤+≤=≤≤∴+=≤≤+<≤-=≤≤-=≤+≤=≤≤∴+=+=.32)6(81}4{ (4) .3227)6(81),( },5.1{}5.1{ (3) .83)6(81 )6(81}3,1{ (2) 8)6(2)6(1 (1) T 24. 5.42405.10425.1321023210422024220=--=≤+=--==+∞<<=<=--=--=<<=---=--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞+∞-y dx y x dy Y X P dy y x dx dy y x f dx Y X P X P dy y x dxy x dy Y X P kdy y x k dx y x k dy解 法1 1,0,1~(0,1),~(0,1),(,)0,x y X U Y U f x y others<<⎧=⎨⎩在区域上积分 法2 由几何关系计算得614417{0}1525525P X Y <+<=-⨯⨯=解 111{0}{0,0}{0}{0}224P Z P X Y P X P Y ========⨯={1}{{1,0}{0,1}{1,1}} {1,0}{0,1}{1,1} {1}{0}{0}{1}{1}{1}3 4P Z P X Y X Y X Y P X Y P X Y P X Y P X P Y P X P Y P X P Y ===========+==+=====+==+==={max(,)0}1{max(,)0}1{0,0} {{0}{0}{0,0}} {0}{0}{0,0}4435 7777P X Y P X Y P X Y P X Y X Y P X P Y P X Y ≥=-<=-<<=≥+≥-≥≥=≥+≥-≥≥=+-=边缘分布律:0:()0;Z z F z ≤=(2)(2)22220000:()2 ()1(1)z x z xzzx y x y Z z x z zz F z dx edy edxe e dy z e ---+-+--->==-=-=-+⎰⎰⎰⎰0:()0,()0;Z Z z F z f z ≤==2222022002:()()()111(1)(1)(1)222z z z x z x y Z X Y z x z z z z F z dx f x f y dy dx e dyz e dx e e z ------<<==⋅=-=--=+-⎰⎰⎰⎰⎰1212022:()1(1)11(1)2z x y x z Z zz F z dx e dy e dxe e ----≥=⋅=-=--⎰⎰⎰20 01()(1) 0<221 22z Z zz F z e z z e e z --⎧⎪≤⎪⎪=+-<⎨⎪⎪-≥⎪⎩2 0 01()()(1) 0221 22z Z Z zz f z F z e z e e z --⎧⎪<⎪⎪'==-<<⎨⎪⎪->⎪⎩1423X X X X X =-, X 取值为00000000000011011010101010,100011011101010100,1,0,100011011111111110,1,1,00011011========-=======-=1423{(,,,)}{}{}{}{},,,,0,1P i j s t P X i P X j P X s P X t i j s t ======:概率论习题练习册-第3章48。
东北大学概率论课件及习题答案
例1:设( X ,Y )的分布律为
Y\X -2 -1
1
2
1
0
¼
¼
0
4
¼0
0
1/4
求Cov( X ,Y ).
例2:设( X ,Y )的概率密度函数为
f
(x,
y)
x
0
y
0 x 1,0 y 1 其他
求Cov( X ,Y ).
协方差的性质
(1)Cov(X ,Y ) Cov(Y , X ),特别地,Cov(X , c) 0. (2)Cov(aX ,bY ) abCov(Y , X ) (3)Cov( X1 X 2,Y ) Cov( X1,Y ) Cov( X 2,Y )
协方差性质的证明
(2)Cov(aX ,bY ) abCov(Y , X ) 证 Cov(aX ,bY ) E{[aX E(aX )][bY E(bY )]}
但此时因此是定数我们有这里均匀分布服从xyxycoscoscoscos练习一个有把钥匙的人要开他的门它随机而独立地试开若其中只有一把能开门分别讨论以下两种情形下试开次数的数学期望与方差
第三节协方差与相关系数
设( X ,Y )为二维随机变量,量E{[X E( X )][Y E(Y )]} 称为随机变量X与Y的协方差。记为Cov( X ,Y ),即
很弱.
例 1 设(X,Y)服从单位圆域x2+y2≤1
上的均匀分布,证明: =0。
证明:
1
f ( x, y)
0
(x, y) D ( x, y) D
E(X)
xdxdy
x 2 y2 1
1
1
东北大学概率论与数理统计课后习题答案
求P(B). 解 由于 P(AB)=P(A)+P(B)-P(A+B) =P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B)
所以, P(A)+P(B)-1=0
即, P(B)=1-P(A)=1-p
精选课件
13
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从中
=1, 2, 3,… ,A={1, 2, 3}
(3)把单位长度的一根细棒折成 三段, 观察各段的长度,
A表示“三段细棒能构精选成课件一个三角形”.
1
=(a, b, 1-a-b)|a, b>0且a+b<1,
=(a, b, c)|a, b, c>0且a+b+c=1,
A={(a, b, 1-a-b)|0<a, b<0.5且a+b>0.5}
(2) P=3/12=1/4=0.25
精选课件
16
6. 假设2个叫Davis的男孩, 3个叫Jones的男孩, 4个叫Smith
的男孩随意地坐在一排9座的座位上. 那么叫Davis的男孩
刚好坐在前两个座位上, 叫Jones的男孩坐在挨着的3个座
位上, 叫Smith的男孩坐在最后4个座位上的概率是多少?
任取200个, 求: (1) 恰有90个次品的概率; (2) 至少有2个
概率论答案详解
第一章 随机变量 习题一7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品”),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达下列事件.(1)没有一个产品是次品; (1) 43211A A A A B =(2)至少有一个产品是次品;(2) 432143212A A A A A A A A B =⋃⋃⋃= (3)只有一个产品是次品;(3) 43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃= (4)至少有三个产品不是次品4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=8. 设 E 、F 、G 是三个随机事件,试利用事件的运算性质化简下列各式 : (1)()()F E F E (2) ()()()E F F E (3)()()G F F E 解 :(1) 原式 ()()()()E F F F E F E E E == (2) 原式 ()()()()E F F E F F E F E F E === (3) 原式 ()()()()()G E F G F F F G E F E ==12. (1)设事件 A , B 的概率分别为 51 与 41,且 A 与 B 互 斥,则 )(B A P =51. (2).一个盒中有8只红球,3只白球,9只蓝球 ,如果随机地无放回地摸3只球 ,则取到的3 只 都 是 红 球 的 事 件 的 概 率 等 于 ___14285____。
(3) 一 袋中有4只白球,2只黑球,另一只袋中有3只白球和5只黑球,如果 从每只袋中各摸一只球 ,则摸到的一只是白球,一只是黑球的事件的概 率等于 ___1324___。
(4) .设 A1 , A2 , A3 是随机试验E 的三个相互独立的事件,已知P(A1) = α , P(A2) = β,P(A3) = γ ,则A1 , A2 , A3 至少有一个 发生的概率是 1- (1- α)(1- β)(1- γ) .(5) .一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地摸3只球,则摸到的没有一只是白球的事件的概率等于 __3457____。
2.3条件概率与独立事件 线上课程课件-北师大版高中数学选修2-3
例1 从一副不含大小王的52张扑克牌中随机取出一张,用A表示
取出的牌是Q,用B 表示取出的牌是红桃.试计算P(A),P(B),
P(AB)及P(A|B)
解 52张牌中有4张Q,13张红桃
P(A) 4 1 , P(B) 13 1
52 13
52 4
又 52张牌中既是红桃又是Q的牌只有1张
P( AB) 1 52
问题中, 等价于“第一名同学没有抽到中奖奖券”一定
会发生,所以导致可能出现的基本事件必然在事件A中,从 而影响了事件B发生的概率.
条件概率:一般地,设A,B 为两个事件,在事件A发 生的条件下,B 发生的概率,称为A发生时B 发生的 条件概率,记为:P(B|A).
问题二 100件产品中有93件产品的长度合格,90件产品的质量 合格,85件产品的长度及质量都合格.现在,任取一件产品,若已 知它的质量合格, 那么它的长度合格的概率是多少?
分析 令A=产品的长度合格, B 产品的质量合格,则 A B=产品的长度,质量都合格.
现在, 任取一件产品,已知它的质量合格(即B发生),则它的长 度合格(即A发生)的概率为 85 .
90 那么,此概率(85)与事件A及B发生的概率有什么关系呢?
90
由题目可知:P( A) 93 , P(B) 90 , P( A B) 85 ,
3
如果已经知道第一名同学没有抽到中奖奖券, 那么最后一名同学抽到中奖奖券的概率又是多少?
分析 第一名同学没有抽到中奖奖券的情况有 12a,1a2,21a,2a1. 所以最后一名同学抽到中奖奖券的概率为 1 .
2
已知第一名同学的抽奖结果为什么会影响最后一 名同学抽到中奖奖券的概率呢?
分析 若用A表示事件“第一名同学没有抽到中奖奖券”, 用B 表示事件“最后一名同学抽到中奖奖券”.此,在事件B发生的前提下,事件A发生的概率为:
东北大学概率论与数理统计ppt第三章
3. 二维随机变量的分布函数
(1) 联合分布函数 对任意两个实数 x、y ,二元函数 F (x,y) = P { X ≤ x,Y ≤ y } 称为随机向量 (X,Y) 的分布函数,或者 也称随机变量 X、Y 的联合分布函数。 联合分布函数是随机向量性质的完整刻划, 本质上是两个随机事件交事件的概率。
(3) 联合分布函数的性质 1º F (x,y) 是变量x 和y 的不减函数; 2º 0≤ F (x,y) ≤1,且 对于任意固定的x 和y 分别有, F x, 0, F , y 0,
F , 0, F , 1.
3º F (x,y) = F (x+0,y) , F (x,y) = F (x,y +0) 4º 对于任意x1<x2,y1<y2 ,下述不等式成 立, F (x2 ,y2 ) + F (x1 ,y1 ) - F (x1 ,y2 ) - F (x2 ,y1 ) ≥0.
例3.2.6 前面例题中讨论的随机取数问题 X 1 2 3 4 Y 1 2 3 4
pi •
1/4 0 1/8 1/8 1/12 1/12 1/16 1/16
0 0 0 0 1/12 0 1/16 1/16
1/4 1/4 1/4 1/4
p• j
25/48 13/48 7/48 3/48
3. 二维均匀分布
例3.2.2 如果(X,Y) 服从一个矩形内的均匀分布: f(x,y) = 1/ab ,0 <x < a 、0 <y < b 则 X、Y 仍然还服从均匀分布。 例3.2.3 如果(X,Y) 服从单位圆内的均匀分布,即 f(x,y) = 1/ , x2 + y2 < 1 则 X、Y 分别都不再服从均匀分布。
pi j、pi • 与 p • j 分别是 ( X ,Y ) 的联合分布 律以及两个边缘分布律,i 、j ≥ 1 。 如果对某个固定的 i ,有 pi • > 0,则定义 pi j p j | i = —— ,对于所有的 j ≥1 pi • 是Y 关于随机事件( X = xi )的条件分布 同理可以定义 X 关于随机事件( Y = yj )的条件分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果存在实数域上的非负函数f(x),使对于任一实数 a,b(a<b),随机变量X的取值在区间(a,b]中的概率为
P(a x b) f ( x)dx
a
b
则称X为连续型随机变量。其中,非负函数f(x)即是描述 连续型随机变量X取值规律的概率函数,称为X的概率密度 函数,记为 X ~ f ( x) ,概率密度函数简称为密度函数。 X的密度函数有时记为 f X ( x)
返回
例10 将一温度调节器放置在存储着某种液体的容器内,调节器 定在d℃,液体的温度X(以℃计)是一个随机变量,且X~ N(d,0.52)。(1)若d=90,求X<90的概率;(2)若要求保持液体 的温度至少为80的概率不低于0.99,问d至少为多少?
解 (1)所求概率为 X 90 89 90 P{ X 89} P 0.5 0.5 89 90 ( 2 ) 0.5 1 ( 2) 1 0.9772 0.0228.
1 2
e
( x )2 2 2
, x ,
其中,(>0)为常数,则X为正态变量,称其服从参数 为, 2 的正态分布或高斯(Gauss)分布,记为X~ N(,2)。
f ( x)
正态分布密度函数图示
o
x
性质:1.曲线关于x=对称。
2.当x=时取到最大值。
例2 判断函数
| x| G (1,2) (5,6) ,求 f ( x ) Ae 例3 是随机变量X的密度函数为 ,
(1)常数A;(2)P{-1<X<2}和
P( x G )
常见的连续型随机变量及其分布
均匀变量及其分布
如果随机变量X只在区间(a,b)内取值,且在(a,b) 内等长度的任意区间上取值的概率相同,那么X记为均匀 变量。 设连续型随机变量X只在区间(a,b)内取值,其概率 密度
( 2)按 题 意 需 求 d满 足 X d 80 d 0.99 P { X 80} P 0 .5 0.5 X d 80 d 80 d 1 P 1 0. 5 0.5 0. 5 80 d 即 99 1 ( 2.327) ( 2.327) 1 0。 0. 5 80 d 亦即 2.327 0.5 故 需 d 81.1635
为什么说正态分布是概率论中最重要的分布?
正态分布表现为其取值具有对称性,极大部分取值 集中在以对称点为中心的一个小区间内,只有少量取值 落在区间外。在自然现象和社会现象中,大量随机变量 都服从或近似服从正态分布。如人的身体特征指标(身 高、体重),学习成绩,产品的数量指标等等都服从正 态分布。许多较复杂的指标,只要在受到的大量因素作 用下每个因素的影响都不显著,且因素相互独立,也可 认为近似服从正态分布。又如二项分布、泊松分布在n 很大时,也以正态分布为极限分布。因此,可以说正态 分布是最重要的分布。
3.固定,改变,曲线沿Ox轴平移;固定,改变 , 越 大,曲线变得越平坦, 越小,曲线变得越陡峭。因而X落 在附近的概率越大。
4.曲线 f(x)向左右伸展时,越来越贴近x轴。即f (x)以x轴为 渐近线。
5.
x=μσ
为f (x)的两个拐点的横坐标。
标准正态分布
当=0,=1时称X服从标准正态分布,记为X~N(0,1)。 其概率密度和分布函数用(x)表示,即有
( x)
设函数
( x)
x
1 e 2
t2 2
x2 2
,
x 1 e dt (t )dt, 2
性质
(1) (0) 0.5 ( 2) ( x ) 1 ( x ) (3) ( x)是x的单调增函数 (4) () 0, () 1
P ( x G ) f ( x) dx
G
[注意} 在计算连续型随机变量落在某一区间的概率时, 可以不必区分该区间是开区间或闭区间或半闭区间。例如 有 P{a<X≤b}=P{a≤X≤b}=P{a<X<b>。 在这里,事件{X=a}并非不可能事件,但有P{X= a}=0.这就是说,若A是不可能事件,则有P(A)=0;反之, 若P(A)=0,并不一定意味着A是不可能事件。 以后当我们提到一个随机变量X的“概率分布”时, 指的是它的分布函数;或者,当X是连续型时指的是它的 概率密度,当X是离散型时指的是它的分布律。
1),计算P{ X 0},P{2, 31 X 1,25}, 例7 设X ~ N (0, P{| X | 1.54},P{1.23 X 2.15}
例8 某地区18岁女青年的血压(收缩压,以mm-Hg计), X ~ N( 110, 12 2 ) 求: (1)18岁女青年血压低于100mm-Hg或高于120mm-Hg的概 率; (2)确定x,使 P{| x - | a}
a b
例6 打一次电话所用时间(单位:分钟)服从参数为0.2的指 数分布,如果有人刚好在您之前走进公用电话亭,那么你 等待时间超过5分钟的可能性与等待时间在5-10分钟之间的 可能性各有多大?
指数分布的无记忆性
对于任意 s , t 0, 有 P { X s t X s } P { X t }.
e x , f ( x) 0,
x 0, x 0.
其中 0为常数
则X为指数变量,称其服从参数为 的指数分布。记为 X ~ E ( )
显然f ( x) 0, 且 f ( x)dx e x dx 1, 而且对任意实数
0
a, b(0 a b), 有 P(a x b) e x dx e a e b
例5 已知随机变量X的密度函数为
3 3 , 0 x 1, 1 f ( x) (1 ), 1 x 2, 2 其它. 0 ,
求常数 及p{0.5<X<1.2}
指数变量及其分布
设连续型随机变量X只在区间(0, )内取值,其概 率密度为
返回
例4 设电阻值R是一个随机变量,均匀分布在900~1100。求 R的概率密度及R落在950~1050的概率。 解 按题意,R的概率密度为
1 , f ( r ) 1100 900 0, 故有
900 r 1100, 其 它. 1 dr 0.5. 200
例1
设随机变量X具有概率密度
kx, 0 x 3, x f ( x ) 2 , 3 x 4, 2 其它. 0,
⑴确定常数k;⑵求P{1<X≤7/2}。
0.5, 1 x 0, f ( x) 0.25, 0 x 2, 是否可作为密度函数 0, 其它.
1 , f ( x) b a 0,
a x b, 其它.
则X为均匀变量,称其服从参数为a,b的均匀分布。记为 X~U(a,b).
p( x )
1 ba
o
a
b
x
均匀分布的密度函数
例4 某公交汽车站在上午7时起每隔15分钟有一班车,有一乘客 在7:00-7:30之间等可能地到达该站,为他候车时间不到五分 钟的可能性有多大?
概率密度函数的性质
(1)f(x)≥0,函数曲线位于x轴上方;
(2) f ( x)dx 1
f (x)
面积为1
o
x
反之,对于定义在(-∞, ∞)上的可积函数f(x),若 它满足性质1和性质2,则可以将它视为一个连续型随机变 量的密度函数。
连续型随机变量在任何一点的概率
(1) 对于连续性随机变量X,X取任一指定实数值a的 概率均为0,即P{X=a}=0。 (2)X在区间G中取值的概率为
证
P{ X s t X s} P{( X s t ) ( X s )} P{ X s} P{ X s t} P{ X s} e ( s t ) s e t P{ X t}. e
这一性质称为指数分布的无记忆性。事实上指数分布 是唯一具有上述性质的连续型分布。
一、正态分布
正态分布是应用最 广泛的一种连续型分布. 德莫佛(De Moivre)最早 发现了二项分布的一个近似公 式,这一公式被认为是正态分 布的首次露面. 正态分布在十九世纪前叶由 高斯(Gauss)加以推广,所以通 常称为高斯分布.
德莫佛
正态变量及其分布
设连续型随机变量X的概 X | a} X ~ N ( , ) ,求:(1) 例9 设
; (2)当 a k 时,分析正整数k的取值对(1)中所 求概率的影响。
一般的正态分布, X ~ N ( , 2 ) 时,
P(| X | ) 0.6826 P(| X | 2 ) 0.9544
P {950 R 1050}
1050
950
P(| X | 3 ) 0.9974
可以认为,X的取值几乎全部集中在 这在统计学上称作“ 3 准则” (三倍标准差原则).
[ 3 , 3 ] 区间内.
设X ~ N (0, 1),对任意给定的 (0 1),称使 P{ X z } 成立的z 为标准正态分布N (0, 1)的上分位数。 易见, ( z ) 1