导数复习讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习讲义 第十二章 导数及其应用
【知识图解】
【方法点拨】
导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。
1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。
2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。
3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。
4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。
5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。
6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速
直线运动的路程和变力作的功等,逐步体验微积分基本定理。
第1课 导数的概念及运算
【考点导读】
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);
2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;
3.熟记基本导数公式;
4.掌握两个函数和、差、积、商的求导法则;
5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】
1.设函数f (x )在x =x 0处可导,则0
lim →h h
x f h x f )
()(00-+与x 0,h 的关系是 仅与x 0有关而
与h 无关 。
2.已知)1()('23f x x x f +=, 则=)2('
f 0 。
3.已知),(,cos 1sin ππ-∈+=
x x x y ,则当2'=y 时,=x 3
2π
±
。 4.已知a x x a x f =)(,则=)1('
f 2ln a a a +。
5.已知两曲线ax x y +=3和c bx x y ++=2
都经过点P (1,2),且在点P 处有公切线,试求
a,b,c 值。
解:因为点P (1,2)在曲线ax x y +=3
上,1=∴a
函数ax x y +=3和c bx x y ++=2
的导数分别为a x y +='23和b x y +='2,且在点P 处有
公切数
b a +⨯=+⨯∴12132,得b=2
又由c +⨯+=12122,得1-=c 【范例导析】
例1.下列函数的导数:
①2(1)(231)y x x x =++- ②y = ③()(cos sin )x
f x e x x =⋅+
分析:利用导数的四则运算求导数。
解:①法一:13232223-++-+=x x x x x y 125223-++=x x x ∴ 26102y x x '=++
法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322
-+x x +)1(+x )34(+x
26102x x =++ ② 2
31
2
12
332-
---+-=x
x x
x y
∴ 2
522
32
12
32
33---+
-+
='x x x x y
③()f x '=e -x
(cos x +sin x )+e -x
(-sin x +cos x )=2e -x
cos x ,
点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的基本要求。
例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程. 分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率
0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。
解: 切线与直线34+=x y 平行, 斜率为4
又切线在点0x 的斜率为0
32
0(10)31x x x x y x x x =='
'
=+-=+
∵ 4132
0=+x ∴10±=x
∴⎩⎨
⎧-==8100y x 或⎩⎨⎧-=-=12
1
00y x
∴切点为(1,-8)或(-1,-12)
切线方程为)1(48-=+x y 或)1(412+=+x y 即124-=x y 或84-=x y
点评:函数导数的几何意义揭示了导数知识与平面解析几何知识的密切联系,利用导数能解决许多曲线的切线问题,其中寻找切点是很关键的地方。 变题:求曲线3
2y x x =-的过点(1,1)A 的切线方程。 答案:20,5410x y x y +-=--=
点评:本题中“过点(1,1)A 的切线”与“在点(1,1)A 的切线”的含义是不同的,后者是以A 为切点,只有一条切线,而前者不一定以A 为切点,切线也不一定只有一条,所以要先设切点,然后求出切点坐标,再解决问题。 【反馈演练】
1.一物体做直线运动的方程为2
1s t t =-+,s 的单位是,m t 的单位是s ,该物体在3秒末的
瞬时速度是5/m s 。
2.设生产x 个单位产品的总成本函数是2
()88
x C x =+,则生产8个单位产品时,边际成本是
2 。
3.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为 (1) 。
(1)f (x )=(x -1)2
+3(x -1) (2)f (x )=2(x -1)