数集、确界理解篇
1.1实数,1.2数集.确界原理
例1 证明数集 S {2n | n N } 无上界, 有下界. 证 取 L = 1, 则 x 2n S, x L, 故 S 有下界.
M R, 若 M 1, 取 x0 21 M;若 M 1,
取 x0 2[M ]1 [M ] 1 M , 因此 S 无上界.
数学分析研究的对象是实 数集上 定义的函数, 因此我们首先要掌握实 数的基本概念与性质.
记号与术语
R : 实数集 R+ : 正实数集 R :负实数集 Q : 有理数集 Z : 整数集
N :自然数集(包含0)
N+ : 正整数集 : 任意 : 存在
一、实数的十进制小数表示
1. 任何一个实数都可以用十进制小数表示. 若 x R+ , 则 x a0 .a1a2 an ; x R , 则 x a0 .a1a2 an . 其中 a0 N, an {0, 1, 2, , 9}, n 1, 2,.
满足 x r y.
证明 因为 x y,由命题存在非负整数 n 使得,
xn yn,显然 xn,yn 均为有理数,令
r
1
2
xn
yn ,
则 r 是有理数,且
x
xn
1 2
xn
yn
r
yn
y.
即 x y.
四、实数的四则运算
有理数集 Q 对加、减、乘、除(除数不为 0)是 封闭的. 实数集 R 对加、减、乘、除(除数不为 0)亦是 封闭的. 实数的四则运算与大小关系, 还满足:
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S,使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S,使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S, 使得 | x0 | M .
数集确界原理
数集确界原理数集确界原理是数学中一个非常重要的概念,它在实际问题中具有广泛的应用。
在数学分析中,确界原理是指对于有上(下)界的非空实数集合必存在最小(大)上(下)确界。
这一原理在实际问题中有着重要的意义,下面我们将深入探讨数集确界原理及其应用。
首先,我们来了解一下数集的上确界和下确界。
对于一个实数集合A,如果存在一个实数M,使得对于A中的任意元素x,都有x≤M,那么M就是A的上确界,记作supA。
类似地,如果存在一个实数m,使得对于A中的任意元素x,都有x≥m,那么m就是A的下确界,记作infA。
上确界和下确界是数学分析中非常重要的概念,它们在实际问题中的应用非常广泛。
数集确界原理指出,对于有上(下)界的非空实数集合,必存在最小(大)上(下)确界。
这一原理在实际问题中有着广泛的应用。
例如,在经济学中,对于某种商品的价格集合,我们可以通过确界原理得到最低价和最高价,这对于市场分析和决策具有重要意义。
在工程学中,对于某种材料的强度集合,我们可以通过确界原理得到最小强度和最大强度,这对于设计和生产具有重要意义。
在物理学中,对于某种物理量的测量结果集合,我们可以通过确界原理得到最小值和最大值,这对于实验结果的分析具有重要意义。
除了在实际问题中的应用,数集确界原理在数学分析中也有着重要的理论意义。
它为实数集合的性质和运算提供了重要的基础。
通过确界原理,我们可以证明实数集合的某些性质,例如实数集合的稠密性、实数集合的有界性等。
这些性质对于实数集合的理论研究和应用具有重要意义。
总之,数集确界原理是数学分析中一个非常重要的概念,它在实际问题中具有广泛的应用,并且为实数集合的性质和运算提供了重要的基础。
通过对数集确界原理的深入理解和应用,我们可以更好地理解和运用实数集合的性质,为实际问题的分析和解决提供重要的理论支持。
希望本文对读者对数集确界原理有所帮助,谢谢阅读。
1-02-数集与确界原理
( −∞ , b ) = { x x < b}
无限区间
x o
b
x
区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 设a与δ是两个实数 , 且δ > 0. .邻域:
数集{ x x − a < δ }称为点a的δ邻域 ,
中的一个数集, 满足: 定义 2 设 S 是 R 中的一个数集,若数ξ 满足: 的下界) (1)对一切 x ∈ S , 有 x ≥ ξ (即ξ 是 S 的下界) ) ; 存在 (2) ) 对任何β>ξ ,存在 x0 ∈ S , 使得 x0 < β (即ξ 是 S 的下界中最大的一个)则称数 ξ 为数集 S 的下 的下界中最大的一个) , 确界, 确界,记作 ξ = inf S .
∴sup S ≤ max{sup A,sup B} ; 同理又有sup B ≤ sup S. ∴sup S ≥ max{sup A,sup B} ; ∴sup S = max{sup A,sup B} . 从而有x ≤ max{sup A,sup B} , 又: ∀x ∈ A, x ∈ S ⇒ x ≤ sup S ⇒sup A ≤ sup S,
数集S有上界 数集 有上界 ⇔ ∃M ∈ R, ∀x ∈ S有x ≤ M. 数集S无上界 数集 无上界 ⇔ ∀M ∈ R, ∃x0 ∈ S有x0 > M. 数集S有下界 数集 有下界 数集S无下界 数集 无下界
[ a , b ] , ( a , b ),(a , b 为有限数)是有界数集 为有限数)是有界数集;
+
Β为非空数集 满足: 为非空数集, 例4 设 Α, Β为非空数集,满足: ∀x ∈ A, ∀y ∈ B有 ≤ y x 证明: 有上确界, 有下确界,且 证明:数集 A有上确界 数集 有下确界 且sup A ≤ inf B 有上确界 数集B有下确界 由假设,数集 数集B中任一数 都是数集A的上界 的上界, 证: 由假设 数集 中任一数 y 都是数集 的上界 A中任一数 x 都是 的下界 中任一数 都是B的下界 的下界, 故由确界原理知,数集A有上确界 数集 有下确界 有上确界,数集 有下确界. 故由确界原理知 数集 有上确界 数集B有下确界 确界原理 是数集A的一个上界 的一个上界,而由上确界的定义知 ∀y∈B, y是数集 的一个上界 而由上确界的定义知 是数集A的最小上界, supA 是数集 的最小上界, 故有 supA ≤ y 是数集Β的一个下界, 而此式又表明数 supA 是数集Β的一个下界, 故由下确界的定义证得
数集,确界原理
a
x
(, b) { x x b}
o
b
x
(, ) { x x < }
x
2、邻域
定义1 设a与 是两个实数 , 且 0. 数集
{ x x a }称为点a 的δ邻域 , 点 a 叫做这邻
域中心, 叫做这邻域的半径 . 记作
U (a, ) { x a x a }.
存在某个正整数n0 N+ , 使得n0 M .
事实上,对任何正数M,取 n0 M 1,
则n0 N , 且n0 M , 这就证明了N 无上界.
1 例 2 证明集合E y / y , x (0, 1) 是无界集. x
证明
对任何M 0,
0
a
a
a
x
点
a 的 左邻域 和 点 a 的空心 左邻域
U (a, ) { x a x a } (a , a]
U (a, ) { x a x a } (a , a)
0
邻域
U ( ) x | x | M , U ( ) x x M , U ( ) x x M
即 又是S 的最大下界, 则 称 数 为数集 S 的
下确界, 记为 inf S .
x0
S
(ii) 对任意 0, 存在x0 S , 使得x0 即 是 S 的最大下界.
的确界. 例3 讨论数集 S {x | x为(0, 1)中的有理数}
supS = 1
上确界, 记为 sup S . S
【免费下载】数集确界定理
§1.2 数集.确界定理§2 数集.确界定理Ⅰ. 教学目的与要求1.理解区间及邻域的概念,2.掌握有界集和上、下确界的概念;3.理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅱ. 教学重点与难点:重点: 实数确界的定义及确界原理.难点: 实数确界的定义及确界原理的应用.Ⅲ. 讲授内容 一 区间与邻域设、 R ,且.我们称数集引为开区间,记作();数集a b ∈b a <}|{b x a x <<b a ,称为闭区间,记作[];数集{}和{}都称为半}|{b x a x ≤≤b a ,b x a x ≤≤|b x a x ≤<|开半闭区间,分别记作[)和(.以上这几类区间统称为有限区间. b a ,],b a 无限区间:[) ,+∞,a {}a x x ≥=},|{),(},|{],(a x x a a x x a >=+∞≤=-∞,都称为无限区间.}|{],(a x x a <=-∞R x x =+∞<<-∞=+∞-∞}|{),( 有限区间和无限区间统称为区间.设R a ∈,0>δ.集合称为点的邻).,(}|{);(δδδδ+-=<-=a a a x x a U a δ域,记作,或简单地写作U.);(δa U )(a 点的空心邻域定义为或简单地记作 ,a δ},0|{);(δδ<-<=a x x a U )(a U注意的差别在于: 不包含点.);();(δδa U a U 与 }0|{);(δδ<-<=a x x a U a 此外,我们还常用到以下几种邻域: 点的右邻域,简记为a δ),[);(δδ+=+a a a U );(a U + 点的左邻域,简记为a δ],();(a a a U δδ-=-);(a U -去除点后,分别为点的空心左、右领域,简记为)()((a U a U +-与a a δ.))()(a U a U +- 与 邻域,其中M 为充分大的正数(下同);∞}|{)(M x x U >=∞ 邻域,领域.∞+}|{)(M x x U -<=+∞∞-}|{)(M x x U -<=-∞§1.2 数集.确界定理 二 有界集.确界原理 定义1 设为R 中的一个数集.若存在数M(L),使得对一切,都有M(S S x ∈x ≤x L),则称S 为有上界(下界)的数集,数M(L)称为S 的一个上界(下界).≥若数集既有上界又有下界,则称为有界集.若不是有界集,则称为无界集.S S S S 例1 证明数集为正整数}有下界而无上界.n n N |{=+ 证 显然,任何一个不大于1的实数都是的下界,故为有下界的数集.+N +N 为证N+无上界,按照定义只须证明:对于无论多么大的数M ,总存在某个正整数,使得事实上,对任何正数(无论多么大),取,则)(+∈N n o M n o >M =0n []1+M on ,且.这就证明了无上界. +∈N M n o >+N 同样可以证明:任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集. 定义2 设是R 中的一个数集.若数满足:S η (i )对一切,有,即是的上界;S x ∈η≤x ηS (ii )对任何存在,使得即又是的最小上界ηα<S x o ∈α>o x ηS 则称数为数集的上确界,记作ηS S sup =η 定义3 设是R 中的一个数集.若数满足:S ξ (i )对一切,有,即是的下界S x ∈ξ≥x ξS (ii )对任何,存在,使得即又是的最大下界,则称数为数ξβ>S x o ∈,β<o x ξS ξ集的下确界,记作 S S inf =ξ 上确界与下确界统称为确界. 例2 设为区间中的有理数}.试按上、下确界的定义验证:x x S |{=)1,0( .0inf ,1sup ==S S 解 先验证:1sup =S (i )对一切,显然有即是的上界.S x ∈1≤x 1S ii 对任何,若,则任取都有;若,则由有理数集()1<α0≤αS x o ∈α>o x 0>α在实数集中的稠密性,在中必有有理数即存在,使得.)1,(αo x S x o ∈α>o x 类似地可验证 0inf =S 注1 由上(下)确界的定义可见,若数集存在上(下)确界,则一定是唯一的.又若数S§1.2 数集.确界定理集存在上、下确界,则有.S S S sup inf ≤ 注2 数集S 的确界可能属于,也可能不属于.S S 例 设数集有上确界.证明:3S S S S max sup =⇔∈=ηη 证 设,则对一切有,而,故是数集中最大)⇒S S ∈=sup ηs x ∈η≤x S ∈ηηS 的数,即,. S max =η ,则;下面验证.)⇐S max =ηS ∈ηS sup =η (i )对一切,有,即可是的上界;S x ∈η≤x ηS (ii )对任何,只须取,则从而满足的定义. ηα<S x o ∈=ηα>o x S sup =η 定理1.1(确界原理) 设为非空数集.若有上界,则S 必有上确界;若有下界,S S S 则必有下确界.S 证 我们只证明关于上确界的结论,后一结论可类似地证明. 为叙述的方便起见,不妨设含有非负数.由于有上界,故可找到非负整数,使S S n 得 对于任何有;)1S x ∈1+<n x 存在,使.)2S a ∈0n a ≥0 对半开区间作等分,分点为,则存在中的一个数[)1,+n n 109.,,2.,1.n n n ,2,1,09, ,使得1n 对于任何有;)1S x ∈101.1+<n n x 存在,使.)2S a ∈111.n n a ≥ 再对半开区间作等分,则存在中的一个数使得)101.,.[11+n n n n 109,2,1,0 2n 对于任何有)1S x ∈<x 221101.+n n n 存在,使)2S a ∈2..212n n n a ≥ 继续不断地等分在前一步骤中所得到的半开区间,可知对任何存在中的109,2,1,0 —个数k n ,使得§1.2 数集.确界定理 对于任何有)1S x ∈k k n n n n x 101.21+< 存在,使 )2S a k ∈..21k k n n n n a ≥ 将上述步骤无限地进行下去,得到实数.以下证明.为..21 k n n n n =η=ηS sup 此只需证明: (i )对一切有;(ii )对任何,存在使.S x ∈η≤x ηα<S ∈'α'a <α 倘若结论(i )不成立,即存在使,则可找到的位不足近似,使S x ∈η>x x k k x ,=>k k x η+k n n n n 21.k 101从而得,k k n n n n x 101.21+> 但这与不等式相矛盾.于是(i )得证.)1( 现设ηα<,则存在使的位不足近似,即k ηk k k αη>,k k n n n n α> 21.根据数的构造,存在使,从而有ηS a ∈'k a η≥',k a η≥'αα≥>k 即得到,.这说明(ii )成立.'a <α例4 设为非空数集,满足:对一切和有.证明:数集有B A ,A x ∈B y ∈y x ≤A 上确界,数集下确界,且B B A inf sup ≤()2 证 由假设,数集中任一数都是数集的上界,中任一数都是B y A A x B 的下界,故由确界原理推知数集有上确界,数集有下确界.A B 现证不等式对任何,是数集的一个上界,而由上确界的定义)2(B y ∈y A 知,是数集的最小上界,故有.而此式又表明数是数集A sup A y A ≤sup A sup 的一个下界,故由下确界定义证得. B B A inf sup ≤ 例5 设为非空有界数集,.证明:B A , A S =B (i );}sup ,max{sup sup B A S =§1.2 数集.确界定理 (ii ).}inf min{inf,inf B S =证 由于显然也是非空有界数集,因此的上、下确界都存在.B A S =S (i )对任何,有或或,从而有∈x S ∈x A B x ∈A s sup ≤⇒B x sup ≤≤x ,故得.}{B A sup ,sup max }{B A S sup ,sup max sup ≤ 另一方面,对任何,有;同理又有A x ∈;sup sup sup S A S x S x ≤⇒≤⇒∈.所以.SB sup sup ≤}{B A S sup ,sup max sup ≥ 综上,即证得.}{B A S sup ,sup max sup =(ii)可类似地证明. 若把和补充到实数集中,并规定任一实数与、的大小关系为:∞+∞-a ∞+∞-,,,则确界概念可扩充为:若数集无上界,则定义为+∞<a -∞>a +∞<∞-S ∞+的非正常上确界,记作;若无下界,则定义为的非正常下确界,S +∞=S sup S ∞-S 记作.相应地,前面定义和定义中所定义的确界分别称为正常上、下确-∞=S inf 23界.推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的).Ⅳ 小结与提问:本节要求学生掌握邻域的概念, 理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅴ 课外作业:P 2、3、4、5、6、7、8.9。
第一章2数集 确界原理
1 2
正无穷大 负无穷大
王利梅 数学分析
设 a ∈ R, δ > 0, 满足绝对值不等式 |x − a| < δ 的全体 x 的集合 称为点 a 的 δ 领域, 记为 U (a, δ ), 或简记为 U (a), 即有 U (a, δ ) = {x | |x − a| < δ } = (a − δ, a + δ ). 点 a 的空心 δ 领域定义为 U 0 (a, δ ) = {x | 0 < |x − a| < δ } = (a − δ, a + δ ) \ {a} = U 0 (a). 点 a 的 δ 右领域为 U+ (a, δ ) = [a, a + δ ) = U+ (a). 点 a 的 δ 左领域定义为 U− (a, δ ) = (a − δ, a] = U− (a). 点 a = {x | x 为区间(0, 1)内的有理数},试按上, 下确界的定义验 证 sup S = 1, inf S = 0. . 证明. 先证明 sup S = 1. (i) 对 ∀ x ∈ S , 显然有 x ≤ 1. 即 1 是 S 的上界. (ii) 对 ∀ α < 1, 若 α ≤ 0, 则任取 x0 ∈ S , 有 x0 > α; 若 α > 0, 则 由有理数在实数中的稠密性知, 在 (α, 1) 内必有有理数 x0 , 即 ∃ x0 ∈ S 使得 x0 > α. 即 η 是 S 的最小上界. 类似地可验证 inf S = 0. 例:闭区间 [0, 1] 的上, 下确界分别为 1 和 0. 开区间 (0, 1) 的上, 下确界分别为 1 和 0. 正整数集有下确界 1, 而没有上确界.
王利梅
数学分析
王利梅
数集确界原理
作业 :
P9: 1, 2, 3, 4, 5.
§2 数集.确界原理
1.区间和邻域 有限区间 数集{x|a<x<b}称为开区间, 记为(a, b), 即 (a, b){x|a<x<b}. [a, b]{x|axb}——闭区间.
[a, b){x|ax<b}——半开区间, (a, b]{x|a<xb}——半开区间. 上述区间都是有限区间, 其中 a和b称为区间的端点, b-a 称为区 间的长度.
S
确界原理 设S为非空数集,若S有上界,则S必有上确界;若S有下界, 则S必有下确界. 例3 设 A, B为非空数集,满足: x A, y B有x y. 证明数集 A有上确界, 数集B有下确界,且
sup A inf B.
证: 由假设,数集B中任一数 y 都是数集A的上界, A中任一数 x 都是B的下界, 故有确界原理知,数集A有上确界,数集B有下确界.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b, 则e为正数且 a b e , 这与假设 a < b e矛盾.从而必有 a b.
3.小结 (1), 两个实数的大小关系; (2), 实数的性质; (3), 区间和邻域的概念; (4), 确界原理.
直积(笛卡儿乘积) 设A、B是任意两个集合, 则有序对集合 AB{(x, y)|xA且yB} 称为集合A与集合B的直积. 例如, RR{(x, y)| xR且yR }即为xOy面上全体点 的集合, RR常记作R2.
3.实数集 两个实数的大小关系 • 定义1
给定两个非负实数 x a0 .a1a2 L an L, y b0 .b1b2 Lbn L, 其中a0 , b0为非负整数, ak , bk (k 1,2,L)为整数, 0 ak 9,0 bk 9. 若有ak bk , k 1,2,L, 则称x与y相等,记为x y; 若a0 > b0或存在非负整数l , 使得ak bk (k 1,2Ll )而al 1 > bl 1 则称x大于y或y小于x,分别记为x > y或y < x.
数集确界原理
一般地用归纳法可证明存在 nk ∈ N 及
S k = { x | x ∈ S + , x = n0 .n1 L nk ak +1 L},
则 Sk ≠ ∅ , ∃ xk ∈ S k , xk > n0 .n1 L nk ; ∀x ∈ S ,
1 x < n0 .n1 L nk + k . 10 LL
∀n, ∃ x = a0 .a1 L an bn+1 L ∈ S + , 由 于 x 由 正 规 小 数 表示, 必有 k > 0, 使 bn+ k > 0. 由于
xn+ k = a0 .a1 Lanan+1 Lan+ k ≥ a0 .a1 Lanbn+1 Lbn+ k ,
前页 后页 返回
因此 an+1 , an+ 2 ,L an+ k 不全为 0, 即η = a0 .a1a2 L
∃ k , 使 a0 .a1a2 L ak = n0 .n1n2 L nk , 而 ak +1 > nk +1 ,
1 此与 ∀x ∈ S ,x < n0 .n1 L nk + k 矛盾. 10
(ii) ∀α < η , 设 α = α 0 .α1 Lα k L . 则 ∃ k , 使 α 0 .α1 Lα k = n0 .n1 L nk, α k +1 < nk +1 . 而
前页 后页 返回
由定义∃ xk +1 ∈ Sk +1 , xk +1 > n0 .n1 L nk +1 . 则
xk +1 > n0 .n1 L nk +1 ≥ α 0 .α1 Lα k +1 L = α .
1.实数、数集、确界
《数学分析》研究的基本对象是定义在“实数集”上的函数,为此,我们要先学习一些实数理论,然后学习函数论,最后学习极限论!第一节 实数、数集、确界 一. 实数及其性质:1. (,0)p p q q q⎧⎧≠⎨⎪⎨⎩⎪⎩正分数有理数:为整数且或有限十进小数和无限十进循环小数实数负分数无理数:无限十进不循环小数[问题] 有理数,无理数的表示不统一,对统一讨论实数是不利的,为了讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:在此规定下,任何实数都可用一个确定的无限小数来表示,并且衍生出两个概念:对于正实数012n x a a a a = ,有理数012n n x a a a a = 称为实数x 的n 位不足近似;而有理数01211(1)10n n n n n x a a a a a x -=+=+称为实数x 的n 位过剩近似 对于负实数012n x a a a a =- ,有理数01201211(1)10n n n n n x a a a a a a a a a -=--=-+ 称为实数x 的n 位不足近似;而有理数01n n x a a a =- 称为实数x 的n 位过剩近似 规定:零的n 位不足近似为110n -,零的n 位过剩近似为110n 从而: 实数x 的n 位不足近似n x 单调增加:012n x x x x x ≤≤≤≤< ⇒n x 收敛于x实数x 的n 位过剩近似n x 单调减少:012n x x x x x ≥≥≥≥> ⇒n x 收敛于x2. 实数大小的比较:首先规定:正实数>零>负实数无限小数法比较:设01n x a a a = 、01n y b b b = 均为正实数,其中00,a b 为非负整数,k a ,k b (1,2,)k = 为整数且09,09k k a b ≤≤≤≤,若有,0,1,2,k k a b k == ,则称x 与y 相等,记为:x y =;若00a b <或存在非负整数l ,使得,0,1,2,,k k a b k l == 且11l l a b ++<,则称x 小于y ,记为:x y <;对于负实数x 、y ,按上述规定分别比较,x y --即可有限小数法比较:设01n x a a a = 、01n y b b b = 为两个实数,则:x y <⇔存在非负整数n ,使得n n x y <,其中n x 为x 的n 位过剩近似,n y 为y 的n 位不足近似例:设,x y为实x y <,求证:存在有理数r ,满足x r y <<3. 实数集{}|R x x =为实数的性质:封闭性:任意两个实数的和、差、积、商(除数不为零)仍然是实数 有序性:任意两个实数a b ,必满足a b a b a b <=>,,之一 传递性:若a b b c <<,,则a c <阿基米德性:,a b R ∀∈且0b a >>,则必n N +∃∈使得na b >稠密性:任意两个不相等的实数之间总有另一个实数,且既有有理数也有无理数 对应性:实数集R 与数轴上的点有着一一对应关系二. 绝对值:分析论证的基本工具1. 绝对值的定义:实数a 的绝对值,0||0a a a a a ≥⎧=⎨-<⎩2. 绝对值的几何意义:数a 的绝对值||a 就是点a 到原点的距离,从而||x a - 表示点x 与点a 的距离3. 绝对值的性质:0a b R δ∀∈>,,,则有:||||0a a =-≥,并且||00a a =⇔=||||a a a -≤≤;||||||ab a b =⋅;||||a ab b =(0b ≠) ||a a δδδ<⇔-<<;||a a δδδ≤⇔-≤≤ ||a a δδ>⇔>或a δ<-;||a a δδ≥⇔≥或a δ≤-||||||||||a b a b a b -≤±≤+{}max ,22a b a b a b -+=+ {}min ,22a ba b a b -+=- 三. 区间与邻域:1. 区间、闭区间套、分割以及分割的模:✧ {}{}{}{}{}{}{}{}{}(,)|[,]|[,)|(,]|[,)|(,]|(,)|(,)|(,)|a b x a x b x R a b x a x b x R a b x a x b x R a b x a x b x R a x x a x R a x x a x R a x x a x Ra x x a x R x x R ⎧⎧⎪=<<∈⎪⎪=≤≤∈⎨⎪=≤<∈⎧⎪⎪⎨⎪=<≤∈⎪⎩⎩⎨+∞=≥∈⎧⎪-∞=≤∈⎪⎪+∞=>∈⎨⎪-∞=<∈⎪⎪-∞+∞=∈⎩开区间,有限区间闭区间,闭开区间,半开半闭区间开闭区间,区间,,无限区间,,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩,,a b R ∈且a b <✧ 闭区间套:如果闭区间列{}[,],1,2,3,n n a b n = 满足:1) 1122[,][,][,]n n a b a b a b ⊃⊃⊃⊃ 亦即123321n n a a a a b b b b ≤≤≤≤≤≤≤≤≤≤ 2)lim()0n n n b a →∞-=亦即当∞→n 时区间[,]n n a b 的长度趋于零则称闭区间列{}[,],1,2,3,n n a b n = 是一个递缩闭区间套,简称为闭区间套。
数集确界原理
数集确界原理
数集确界原理是数学中一个非常重要的概念,它在实际问题中有着广泛的应用。
在数学分析中,确界原理是指有界数集必有上确界和下确界。
下面我们将详细介绍数集确界原理及其应用。
首先,我们来解释一下什么是数集的上确界和下确界。
对于一个有限的数集,
如果存在一个实数M,使得数集中的所有元素都小于等于M,那么M就是这个数
集的上确界。
同理,如果存在一个实数m,使得数集中的所有元素都大于等于m,那么m就是这个数集的下确界。
接下来,我们来讨论数集确界原理的应用。
首先,确界原理常常用于证明数列
的收敛性。
通过找到数列的上确界和下确界,我们可以判断数列是否有极限,从而得出数列的收敛性。
其次,确界原理也常用于解决最优化问题。
在最优化问题中,我们常常需要找到一个数集的上确界或下确界,从而得出最优解。
此外,确界原理还在实数的连续性和完备性证明中有着重要的应用。
在实际问题中,数集确界原理也有着广泛的应用。
比如在金融领域,确界原理
常用于证明利率的收敛性和最优投资组合的选择;在工程领域,确界原理常用于优化设计和资源分配等问题;在物理学中,确界原理也有着重要的应用,比如在能量的最优分配和系统的稳定性分析等方面。
总之,数集确界原理是数学中一个非常重要的概念,它不仅在理论研究中有着
重要的地位,而且在实际问题中也有着广泛的应用。
通过深入理解数集确界原理,我们可以更好地理解数学中的各种问题,并且能够更好地应用数学知识解决实际问题。
希望本文对读者能够有所帮助,谢谢阅读!。
第二节 数集 确界原理
点a叫做这邻域的中心, 叫做这邻域的半径 .
U(a; ) {x | x a } (a ,a )
a
a
a x
点a的去心的邻域 :
Uo(a; ) { x | 0 x a }
右邻域: U (a; ) [a,a )
左邻域: U (a; ) (a ,a]
U
o
(a;
)
设p=2k,得q2=2k2,
于是q也是偶数,这与p/q是既约分数矛盾。
第二节 数集 确界原理
一、区间与邻域
(a,b), [a,b], (a,b], [a,b)
(, a), (, a], (a,),[a,), (,)
邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
确界,并证明上确界不属于有理数集.
证: 首先证明inf A 0,sup A 2.
先证 infA=0.
(1)x A, 则x 0.
0 x0
a
(2)若a>0, 分两种情况考虑。
()若a 2, 则x A,有x a.
()若0 a 2, 取x0为大于0小于a的有理数, 则x02 a2 2, 即x0 A,但x0 a. 故infA=0.
(1)x
S , 有x
n.n1n2
nk
1 10k
;
(2) ak S,使 ak n.n1n2 nk .
无限进行下去,得到实数 n.n1n2 nk .
现在证明 = supS. 为此要证:
()x S,有x ;
() ,x S,使 x.
若()不成立,即x S,有x ,
则可以找到x的k位不足近似xk ,使
;
(2) a1 S,使 a1 n.n1 .
§2.数集.确界原理.
例5(P8) 设A, B为非空有界数集 , S A B.证明 : (i) sup S maxsup A, sup B; (ii) inf S mininf A, inf B.
U a; : x R x a a , a ;
(2)a的空心 邻域 : 点a的邻域去掉中心 " a" 后所得到的集合 , 记为 U 0 a; , 即
U 0 a; : x R 0 x a a , a a, a .
[思考题 ](P21/1 )设a, b R.证明 : 1 (1) maxa, b a b a b ; 2 1 (2) mina, b a b a b . 2
17
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
例3(P7) 设数集 S有上确界 .证明 :
14
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界;
[问题]如何用正面的语言定义 ( )不是数集 S的上(下)确界 ?
15
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界; (2)(P7)由上(下)确界的定义可知 , 若数集 S存在上 (下)确界, 则必唯一 ; (3)(P7)若数集 S存在上 , 下确界 , 则有 inf S sup S ; (4)(P7)数集S的上(下)确界可能属于 S , 也可能不属于 S;
1-2数集 确界原理
定义3 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集, η 满足: 若数 满足: (1) x ∈ S , 有x ≥ η ,即 η 是S的一 ) 的一 ∀ 个下界, 个下界, (2) a >η, ∃x0 ∈S, 使 x0 < a ,即η ) ∀ 是S的最大下界, 的最大下界, 记作infS. 则称η 是S的下确界 记作 的下确界,记作
有上( 若S有上(下)界,则一定有无限多个 有上 上(下)界。
任意的数 , 若对于任意的 若对于任意的数M,都存在一个 x 0∈S,使得 x 0 >M, 则称 是一个无上 则称S是一个无上 使得 界的数集。 界的数集。
如:S1 = { x | x = n!, n ∈ N + } 有下界(可取 ),无上界。 ),无上界 有下界(可取1),无上界。
定义2 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集,
若存在数L,使得对一切的x 若存在数 ,使得对一切的 ∈S, 都有 一切的 x ≥ L,则称 为有下界的数集,称L为S的一个 则称S为有下界的数集 则称 为有下界的数集, 为 的一个 下界。 下界。 若S为既有上界、又有下界的数集,则称S 为 有上界、 有下界的数集,则称 为有界集。 为有界集。 若S没有上界或没有下界,则称S为无界集。 没有上界或没有下界,则称 为无界集。 没有上界 为无界集
1 S2 = { x | x = 1 − n , n ∈ N + } 2
下界可取1/2,上界可取1。 下界可取 ,上界可取 。
S 3 = { x | x = sin t , −
π
≤t≤ } 2 2
π
下界可取-1,上界可取 。 下界可取 ,上界可取1。
实数集与函数数集确界原理
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其
中最小的一个具有重要的作用. 最小的上界称为
上确界. 同样, 若S 有下界, 则最大的下界称为下 确界. 定义2 设 S R, S . 若 R满足 :
(i ) x S , x ; (ii) , x0 S , 使得 x0 ,
x0
点击上图动画演示
x
前页 后页 返回
定义3 设 S R, S . 若 R 满足 :
(i) x S , x ;
(ii) , x0 S , x0 ; 则称 是 S 的下确界, 记为 inf S .
注1 由定义,下确界是最大的下界.
(3) 若 S 既有上界又有下界, 则称 S 为有界集.
其充要条件为 : M 0, 使 x S , 有 | x | M .
前页 后页 返回
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 使得 | x0 | M .
§2 数集 · 确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点. 一、有界集 二、确界 三、确界的存在性定理
四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域
U (a; ) { x | 0 | x a | }: 点 a 的 空心邻域
数学分析1.2数集与确界原理
第一章实数集与函数2 数集·确界原理一、区间与邻域设a、b∈R,且a<b,我们称数集{x|a<x<b}为开区间,记作(a,b);数集{x|a≤x≤b}称为闭区间,记作[a,b];数集{x|a≤x<b}和{x|a<x≤b}称为半开半闭区间,记作[a,b)和(a,b],它们统称为有限区间。
(−∞,a]={x|x≤a},[a,+∞)={x|x≥a},(−∞,a)={x|x<a},(a,+∞)={x|x>a},(−∞, +∞) ={x|−∞<x<+∞}=R;它们统称为无限区间。
设a∈R,δ>0。
满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a;δ),或简单地写作U(a),即有U(a;δ)={ x||x-a|<δ}=(a-δ,a+δ)点a的空心δ邻域定义为U⁰(a;δ)={ x|0<|x-a|<δ}也简单地记作U⁰ (a).点a的δ右邻域U+(a;δ)=[a, a+δ),简记为U+(a);点a的δ左邻域U-(a;δ)= (a-δ, a],简记为U-(a);去除点a后的点a的空心δ左、右邻域分别简记为U⁰+(a)和U⁰-(a).∞邻域U(∞)= { x||x|>M},其中M为充分大的正数(下同);+∞邻域U(+∞)= { x|x>M},-∞邻域U(-∞)= { x|x<-M}.二、有界集·确界原理定义1:设S为R中的一个数集。
若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。
若数集S既有上界又有下界,则称S为有界集。
若S不是有界集,则称S为无界集。
例1:证明数集N+={n|n为正整数}有下界而无上界。
证:显然,任何一个不大于1的实数都是的N+下界,故N+为有下界的数集;∀M>0,取n0=[M]+1,则n0∈N+,且n0> M,故N+为无上界的数集。
数集确界定理
§1.2 数集.确界定理§2 数集.确界定理Ⅰ. 教学目的与要求1.理解区间及邻域的概念,2.掌握有界集和上、下确界的概念;3.理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅱ. 教学重点与难点:重点: 实数确界的定义及确界原理.难点: 实数确界的定义及确界原理的应用.Ⅲ. 讲授内容一 区间与邻域设、 R ,且.我们称数集引为开区间,记作();数集a b ∈b a <}|{b x a x <<b a ,称为闭区间,记作[];数集{}和{}都称为半}|{b x a x ≤≤b a ,b x a x ≤≤|b x a x ≤<|开半闭区间,分别记作[)和(.以上这几类区间统称为有限区间.b a ,],b a 无限区间:[) ,+∞,a {}a x x ≥=},|{),(},|{],(a x x a a x x a >=+∞≤=-∞,都称为无限区间.}|{],(a x x a <=-∞R x x =+∞<<-∞=+∞-∞}|{),(有限区间和无限区间统称为区间.设R a ∈,0>δ.集合称为点的邻).,(}|{);(δδδδ+-=<-=a a a x x a U a δ域,记作,或简单地写作U.);(δa U )(a 点的空心邻域定义为或简单地记作,a δ},0|{);(δδ<-<=a x x a U)(a U注意的差别在于: 不包含点.);();(δδa U a U 与}0|{);(δδ<-<=a x x a Ua此外,我们还常用到以下几种邻域:点的右邻域,简记为a δ),[);(δδ+=+a a a U );(a U + 点的左邻域,简记为a δ],();(a a a U δδ-=-);(a U -去除点后,分别为点的空心左、右领域,简记为)()((a U a U +-与a a δ.))()(a U a U +- 与邻域,其中M 为充分大的正数(下同);∞}|{)(M x x U >=∞邻域,领域.∞+}|{)(M x x U -<=+∞∞-}|{)(M x x U -<=-∞连接管口处理高中资料试卷弯扁度固保护进行整核对定值,审核与校对图卷破坏范围,或者对某些异常高中资§1.2 数集.确界定理二 有界集.确界原理定义1 设为R 中的一个数集.若存在数M(L),使得对一切,都有M(S S x ∈x ≤x L),则称S 为有上界(下界)的数集,数M(L)称为S 的一个上界(下界).≥若数集既有上界又有下界,则称为有界集.若不是有界集,则称为无界集.S S S S例1 证明数集为正整数}有下界而无上界.n n N |{=+ 证 显然,任何一个不大于1的实数都是的下界,故为有下界的数集.+N +N为证N+无上界,按照定义只须证明:对于无论多么大的数M ,总存在某个正整数,使得事实上,对任何正数(无论多么大),取,则)(+∈N n o M n o >M =0n []1+M on ,且.这就证明了无上界.+∈N M n o >+N 同样可以证明:任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集.定义2 设是R 中的一个数集.若数满足:S η (i )对一切,有,即是的上界;S x ∈η≤x ηS (ii )对任何存在,使得即又是的最小上界ηα<S x o ∈α>o x ηS 则称数为数集的上确界,记作ηS Ssup =η 定义3 设是R 中的一个数集.若数满足:S ξ(i )对一切,有,即是的下界S x ∈ξ≥x ξS(ii )对任何,存在,使得即又是的最大下界,则称数为数ξβ>S x o ∈,β<o x ξS ξ集的下确界,记作 S Sinf =ξ上确界与下确界统称为确界.例2设为区间中的有理数}.试按上、下确界的定义验证:x x S |{=)1,0(.0inf ,1sup ==S S解 先验证:1sup =S (i )对一切,显然有即是的上界.S x ∈1≤x 1S ii 对任何,若,则任取都有;若,则由有理数集()1<α0≤αS x o ∈α>o x 0>α在实数集中的稠密性,在中必有有理数即存在,使得.)1,(αo x S x o ∈α>o x 类似地可验证0inf =S注1 由上(下)确界的定义可见,若数集存在上(下)确界,则一定是唯一的.又若数S§1.2 数集.确界定理集存在上、下确界,则有.S S S sup inf ≤注2 数集S 的确界可能属于,也可能不属于.S S例 设数集有上确界.证明:3S SS S max sup =⇔∈=ηη 证 设,则对一切有,而,故是数集中最大)⇒S S ∈=sup ηs x ∈η≤x S ∈ηηS 的数,即,.S max =η,则;下面验证.)⇐S max =ηS ∈ηS sup =η(i )对一切,有,即可是的上界;S x ∈η≤x ηS(ii )对任何,只须取,则从而满足的定义.ηα<S x o ∈=ηα>o x S sup =η 定理1.1(确界原理) 设为非空数集.若有上界,则S 必有上确界;若有下界,S S S 则必有下确界.S 证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设含有非负数.由于有上界,故可找到非负整数,使S S n 得对于任何有;)1S x ∈1+<n x存在,使.)2S a ∈0n a ≥0对半开区间作等分,分点为,则存在中的一个数[)1,+n n 109.,,2.,1.n n n ,2,1,09, ,使得1n对于任何有;)1S x ∈101.1+<n n x存在,使.)2S a ∈111.n n a ≥再对半开区间作等分,则存在中的一个数使得)101.,.[11+n n n n 109,2,1,0 2n对于任何有)1S x ∈<x 221101.+n n n 存在,使)2S a ∈2..212n n n a ≥继续不断地等分在前一步骤中所得到的半开区间,可知对任何存在中的109,2,1,0 —个数k n ,使得§1.2 数集.确界定理对于任何有)1S x ∈kk n n n n x 101.21+< 存在,使)2S a k ∈..21k k n n n n a ≥ 将上述步骤无限地进行下去,得到实数.以下证明.为..21 k n n n n =η=ηS sup 此只需证明:(i )对一切有;(ii )对任何,存在使.S x ∈η≤x ηα<S ∈'α'a <α倘若结论(i )不成立,即存在使,则可找到的位不足近似,使S x ∈η>x x k k x ,=>k k x η+k n n n n 21.k101从而得,kk n n n n x 101.21+> 但这与不等式相矛盾.于是(i )得证.)1(现设ηα<,则存在使的位不足近似,即k ηk k k αη>,k k n n n n α> 21.根据数的构造,存在使,从而有ηS a ∈'k a η≥',k a η≥'αα≥>k 即得到,.这说明(ii )成立.'a <α例4设为非空数集,满足:对一切和有.证明:数集有B A ,A x ∈B y ∈y x ≤A 上确界,数集下确界,且BB A inf sup ≤()2 证 由假设,数集中任一数都是数集的上界,中任一数都是B y A A x B 的下界,故由确界原理推知数集有上确界,数集有下确界.A B现证不等式对任何,是数集的一个上界,而由上确界的定义)2(B y ∈y A 知,是数集的最小上界,故有.而此式又表明数是数集A sup A y A ≤sup A sup 的一个下界,故由下确界定义证得.B B A inf sup ≤ 例5 设为非空有界数集,.证明:B A , A S =B (i );}sup ,max{sup sup B A S =高中资料试卷弯扁度固定盒位置保护层对定值,审核与校对图纸,编写复杂设备或者对某些异常高中资料试卷工况进行自§1.2 数集.确界定理(ii ).}inf min{inf,inf B S =证 由于显然也是非空有界数集,因此的上、下确界都存在.B A S =S (i )对任何,有或或,从而有∈x S ∈x A B x ∈A s sup ≤⇒B x sup ≤≤x ,故得.}{B A sup ,sup max }{B A S sup ,sup max sup ≤另一方面,对任何,有;同理又有A x ∈;sup sup sup S A S x S x ≤⇒≤⇒∈.所以.SB sup sup ≤}{B A S sup ,sup max sup ≥综上,即证得.}{B A S sup ,sup max sup = (ii)可类似地证明.若把和补充到实数集中,并规定任一实数与、的大小关系为:∞+∞-a ∞+∞-,,,则确界概念可扩充为:若数集无上界,则定义为+∞<a -∞>a +∞<∞-S ∞+的非正常上确界,记作;若无下界,则定义为的非正常下确界,S +∞=S sup S ∞-S 记作.相应地,前面定义和定义中所定义的确界分别称为正常上、下确-∞=S inf 23界.推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的).Ⅳ 小结与提问:本节要求学生掌握邻域的概念, 理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅴ 课外作业:P 2、3、4、5、6、7、8.9。
第二节数集确界原理
确界原理的扩充
若把 和 补充到实数集中, 并规定一实数 a 与 、 的大小关系为 a , a , , 则确界概念可扩充为 若 S 无上界, 则定义 + 为 S 的非正常上确界,记作 sup ; 若 S 无下界, 则定义 - 为 S 的非正常下确界, 记作 inf .
相应地,前面定义2和定义3中所定义的确界分别称为正 常上、下确界. 推广的确界原理 任一非空数集必有上、下确界(正常的或非 正ቤተ መጻሕፍቲ ባይዱ的).
例
正整数N+有
S y y 2 x 2 , x R 的 inf , sup 2.
inf N+ =1,sup N+ = +∞.
是S的下界中最大的一个) ,则称数 为数集S 的下确界,记作 inf S .
命题 2 inf S 的充要条件: 1) 是S下界; 2) >0, x0 S, 有x0 < .
例3 设S { x | x为区间(0,1)中的有理数}.试按上、 下确界的定义验证: sup S 1,inf S 0.
2.邻域: 设a与 是两个实数 , 且 0.
U (a) {x a x a }.
U 0 (a) {x 0 x a }.
a
a
a
x
U () {x x M }.
二 有界集 确界原理
(一)有界集
定义1 S为R中的一个数集,若 M R, x S有x M .
注1 确界若存在则必唯一 注2 S sup S inf S 注3 S 的确界可能 S 可能 S
定义4 最大数与最小数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【区间与邻域】
1、有限区间:指形如的区间
无限区间:指形如 的区间
2、点a的δ邻域 , 简记为
3、点a的δ左邻域 , 简记为
4、点a的δ右邻域 ,简记为
5、点a的空心δ邻域 , 简记为
6、∞邻域
+∞邻域
-∞邻域
注:∞,+∞,-∞邻域是存在于无穷远处(即要多远有多远)的无穷开区间
上述定义方法值得探究
定义:任意M大于零,使x大于M恒成立
通俗地说,不论你给一个怎么样的M,x都会比它大
按这种定义操作:
先取一个M,x就比这个M大;
再取一个更大的M,x还是比这个M大;
…………
不断取更大的M,可x的值还是比M大
在这个过程中,M越取越大,x就越接近正无穷
这一定义用有限的语言,阐述了一个无限的过程,量化了什么叫无穷大。
这是极限定义的一种思想。
【界与确界】
1、若 ,则称S有上界,M为S的一个上界,
且若 ,则称M为S的上确界。
2、若 , 则称S有下界,L为S的一个下界,
且若 ,则称L为S的上确界。
3、S既有上界,又有下界,则称S为有界集,反之,则为无界集。
4、确界原理:设S为非空数集。
若S有上界,则S必有上确界;
若S有下界,则S必有下确界。
5、设A,B,S为非空数集,
(1)若 ,则A有上确界,B有下确界,且
sup A ≤ inf B
(2)若 ,则:
(3)定义,则:
(4)。