导数的定义及几何意义

合集下载

高考复习-导数的概念及几何意义

高考复习-导数的概念及几何意义

导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。

导数的概念及其几何意义教案

导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。

在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。

2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。

导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。

二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。

对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。

通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。

2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。

对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。

通过导数,我们可以更直观地理解函数的整体形态和特性。

三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。

通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。

2. 导数与积分的关系在微积分中,导数和积分是密切相关的。

导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。

导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。

结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。

通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。

导数的概念定义

导数的概念定义

导数的概念定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

导数的概念定义可以从几何和代数两个方面来进行解释。

一、几何意义几何意义上,导数可以理解为函数图像在某一点处的切线斜率。

具体来说,设函数y=f(x),在x=a处有导数,则该点切线的斜率即为f'(a)。

当x靠近a时,函数值f(x)也会越来越接近于f(a),此时切线斜率也会越来越接近于f'(a)。

因此,导数可以用来描述函数在某一点附近的变化情况。

二、代数意义代数意义上,导数可以理解为函数在某一点处的极限值。

具体来说,设函数y=f(x),在x=a处有导数,则该点导数的定义式为:f'(a)=lim(x->a){(f(x)-f(a))/(x-a)}这个式子表示当x无限接近于a时,(f(x)-f(a))/(x-a)的极限值即为该点导数。

这个极限值可以看作是函数在该点处微小增量与自变量微小增量之比的极限值。

三、符号表示通常情况下,我们用dy/dx或y'来表示函数y=f(x)的导数。

其中,dy/dx表示y关于x的导数,y'表示函数f(x)的导数。

四、求导法则求导法则是计算导数的基本方法。

以下是常用的求导法则:1. 常数函数的导数为0。

2. 幂函数的导数为其指数乘以系数。

3. 指数函数的导数为其自身乘以ln(a)。

4. 对数函数的导数为其自变量倒数。

5. 三角函数和反三角函数的导数可以通过公式推出。

6. 复合函数求导需要使用链式法则或者换元法等方法。

五、应用1. 导数可以用来求解最值问题。

当函数在某一点处取得最大值或最小值时,该点处必须满足其切线斜率为0或不存在。

因此,我们可以通过计算函数在每个可能取得最值的点处的导数来确定最值点。

2. 导数可以用来分析曲线形状。

通过计算不同点处的斜率,我们可以了解曲线在不同位置上升或下降程度以及拐点位置等信息。

3. 导数还有其他应用,如牛顿迭代法、泰勒展开式等。

导数定义及其几何意义

导数定义及其几何意义

第9讲 导数定义及其几何意义【知识导图】知识点1 导数及导数运算 1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =lim Δx →000()()f x x f x x+∆−∆,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →000()()f x x f x x+∆−∆. (2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′. 2.基本初等函数的导数公式3.导数的运算法则 若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).例题1.1 求下列函数的导数:(1)y =ln x +1x ;(2)f (x )=sin x2⎝⎛⎭⎫1-2cos 2x 4;(3)y =3x e x -2x +e. 答案 (1) y ′=1x -1x 2,(2) f ′(x )=-12cos x ,(3) y ′=(ln 3+1)·(3e)x -2x ln 2解析 (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)因为f (x )=sin x 2⎝⎛⎭⎫-cos x 2=-12sin x , 所以f ′(x )=⎝⎛⎭⎫-12sin x ′=-12(sin x )′=-12cos x . (3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′=3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.例题1.2设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1解析 由f ′(x )=e x (x +a )-e x (x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.例题1.3 已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x ,∴f ′(x )=2x +3f ′(2)+1x.令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94.∴f (1)=1+3×1×⎝⎛⎭⎫-94+0=-234.知识点2 导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).例题2.1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 (1) 3x -y =0,(2) 2x -y =0解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x+1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.例题2.2 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是_______,此时切线方程为_______.答案 (e ,1), x -e y =0解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点(-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1),切线方程为x -e y =0.例题2.3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 例题2.4 已知函数f (x )=a e x (a >0)与g (x )=2x 2-m (m >0)的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为( ) A.⎝⎛⎭⎫4e 2,+∞B.⎝⎛⎭⎫8e 2,+∞C.⎝⎛⎭⎫0,4e 2D.⎝⎛⎭⎫0,8e 2 答案 D解析 设在第一象限的切点为A (x 0,y 0),所以⎩⎨⎧a e x 0=2x 20-m ,a e x 0=4x 0,整理得⎩⎨⎧4x 0=2x 20-m ,x 0>0,m >0,由m =2x 20-4x 0>0和x 0>0,解得x 0>2.由上可知a =4x 0e x 0,令h (x )=4xe x ,x >2,则h ′(x )=4(1-x )e x.因为x >2,所以h ′(x )=4(1-x )e x<0,h (x )=4xe x 在(2,+∞)上单调递减, 所以0<h (x )<8e2,即a ∈⎝⎛⎭⎫0,8e 2.。

导数的概念及几何意义_基础

导数的概念及几何意义_基础

导数的概念及几何意义【要点梳理】要点一:导数的概念 1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数.(4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示. 要点二:导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示: ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.要点诠释:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.如图1.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.如图2,无论点P 在曲线上还是曲线外, 过点P 都可以作两条直线1l 、2l 与曲线相切.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.要点三:导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. 【典型例题】类型一:导数定义的应用例1. 用导数的定义,求函数()y f x x==x =1处的导数. 【思路点拨】三步法求函数在某点处的导数值. 【解析】先求增量:(1)(1)11y f x f x∆=+∆-=-+∆===再求平均变化率:y x ∆=∆ 求极限,得导数:01'(1)lim2x y f x ∆→∆==-∆.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.举一反三:【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - . 【解析】 ∵ )1()1(22x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x∆--+∆+-+∆+==-∆∆∆, ∴()'1=f -()00'(1)limlim 3=3x x yf x x ∆→∆→∆==-∆∆.【变式2】求函数 2()3f x x =在x =1处的导数.【解析】 ∵22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆,∴263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=. ∴函数2()3f x x =在1x =处的导数为6 .【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.【解析】∵2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,∴23()3y x x x x x∆∆-∆==-∆∆∆, ∴00(1)limlim(3)3x x yf x x ∆→∆→∆'-==-∆=∆.例2. 已知函数()24f x x=,求()f x '. 【解析】先求增量:2222444(2)()()x x x y x x x x x x ∆+∆∆=-=-+∆+∆, 再求平均变化率:224(2)()y x x x x x x ∆+∆=-∆+∆. 求极限,得导数:23004(2)8'limlim ()x x y x x y x x x x x∆→∆→∆+∆==-=-∆++∆.【总结升华】求导数的步骤和求导数值的步骤一样,叫三步法求导.举一反三:【变式1】求函数y=在(0,)+∞内的导函数.【解析】∵y∆==,∴y x ∆==∆==∴321lim2x y x -∆→'===-.【变式2】已知()f x =,求'()f x ,'(2)f .【解析】∵y ∆=∴yx ∆=∆==∴'()limx f x y ∆→'==.当2x =时,1'(2)4f ==.例3. 若0'()2f x =,则000()()lim2k f x k f x k→--=________.【思路点拨】【解析】根据导数定义:0000[()]()'()limk f x k f x f x k→+--=-(这时增量x k ∆=-),所以000()()lim2k f x k f x k →--000[()]()1lim 2k f x k f x k →+--⎧⎫=-⋅⎨⎬-⎩⎭000[()]()1lim21221.k f x k f x k →+--=-⋅-=-⨯=-【思路点拨】(1)有一种错误的解法:根据导数的定义:0000()()'()limk f x k f x f x k→--=(这时增量x k ∆=),所以 000000()()()()11limlim 21222k k f x k f x f x k f x k k →→----==⨯=.(2)在导数的定义中,增量x ∆的形式是多种多样的,但不论x ∆选择哪种形式,y ∆也必须选择与之相对应的形式.利用函数()f x 在0x x =处可导的条件,可以将已给定的极限式恒等变形为导数定义的形式.概念是解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题.举一反三:【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【答案】(1)00(1)(1)1(1)(1)1lim lim '(1)1222x x f x f f x f f x x →→+-+-===(2)00(12)(1)(12)(1)lim 2lim 2'(1)42x x f x f f x f f x x→→+-+-===【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【答案】()()()()()()[]00000000000000000()()lim()()lim()()lim21lim 2lim 1()2'()22'()2x x x x x f x x f x x xf x x f x x f x x f x x xf x x f x xf x x f x x x x f x af x a∆→∆→∆→∆→∆→+∆--∆∆+∆--∆+∆--∆∆-∆-∆-∆-=-=-∆∆--∆=-==-==【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.【答案】 原式0000()()()()lim2h f x h f x f x f x h h→+-+--=000000()()()()1lim lim 2h h f x h f x f x h f x h h →→+---⎡⎤=+⎢⎥-⎣⎦ 0000()()1'()lim 2h f x h f x f x h -→--⎡⎤=+⎢⎥-⎣⎦[]0001'()'()'()2f x f x f x =+=. 类型二:求曲线的切线方程例4.求曲线21y x =+在点()12P ,处的切线方程.【思路点拨】利用导数的几何意义,曲线在点P (1,2)处的切线的斜率等于函数21y x =+在1x =处的导数值,再利用直线的点斜式方程写出切线方程. 【解析】先求切线的斜率()'1f :()()22001+111lim lim x x x y x x∆→∆→⎡⎤∆++∆⎣⎦=-∆∆ ()0lim +2=2x x ∆→=∆,由条件可知()1=2f ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.【总结升华】求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 举一反三:【变式】求曲线215y x x=++上一点2x =处的切线方程. 【答案】先求2'|x y =:∵22211(2)2+4222(2)x y x x x x x -∆⎛⎫∆=+∆+-=∆+∆+ ⎪+∆+∆⎝⎭,∴142(2)y x x x ∆-=+∆+∆+∆, ∴001115limlim(4)4=2(2)44x x y y x x x ∆→∆→∆-'==+∆+=-∆+∆.再求2|x y =:22119|=25=22x y =++.由点斜式得切线方程:()915--224y x =,即15480x y -+=. 【高清课堂:导数的几何意义 385147 例2】 例5.求曲线()3f x x =经过点(1,1)P 的切线方程.【思路点拨】本题要分点(1,1)P 是切点和(1,1)P 不是切点两类进行求解. 【解析】第一步:先求导函数.00()()limlimx x f x x f x xy y x ∆→∆→+∆-∆∆'==∆ ()()33322330222()lim3+3+=lim=lim 3+3+3=3x x x x x xxx xx x x x x x x x x x x ∆→∆→∆→+∆-∆-∆=+∆∆∆∆∆g g g第二步:验证点(1,1)P 是否在曲线上. 由于()11f =,所以P 在曲线上. 第三步:分类讨论. ①若点P 是切点,则切线的斜率为()'13f =,于是切线方程为13(1)y x -=-,即32y x =-; ②若点P 不是切点,设切点为()()3000,1x x x≠.则切线的斜率为()200'3f x x =,于是切线方程为:320003()y x x x x -=- . 由于切线经过点(1,1)P ,于是有3200013(1)x x x -=-,整理得:()()()()()()32322322200000000000023+1=22++1=221=21+11x x x x x x x x x x x x ()()2000=121x x x ()()200=12+1=0x x ,解得012x =-或01x =(舍去). 所以切线方程是131+(+)842y x =,即3144y x =+. 综上所述,所求切线方程为32y x =-或3144y x =+. 【思路点拨】求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程. 举一反三:【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程. 【解析】先求导函数:20()lim33x yf x x x∆→∆'==-∆.再验证:3(2)232=2f =-⨯,所以点(2,2)在函数()f x 图象上.最后讨论:(1)当点(2,2)是切点时,切线的斜率为(2)9f '=,则切线方程为:9160x y --=.(2)当点(2,2)不是切点时,设切点坐标为3000(,3)x x x -.则切线的斜率为200()33f x x '=-(02x ≠),所以切线方程为()320000(3)=33()y x x x x x ----. 代入点(2,2)得:()3200002(3)=33(2)x x x x ----整理得:0432030=+-x x ⇒0)2)(1(200=-+x x ⇒10-=x ,此时切线方程为2=y .综上所述,所求的切线方程为9160x y --=或2y =.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【解析】()200()()11'=limlim =x x f x x f x y x x x x x∆→∆→+∆--=-∆+∆ (1)由于点A 不在曲线上,设切点坐标为1,a a ⎛⎫ ⎪⎝⎭, 则切线的斜率为21'|=x a y a =-,切线方程为211()y x a a a -=--, 将()10A ,代入,得12a =.所以所求的切线方程为44y x =+ .(2)令2113x -=-,解得x = 所以斜率为13-的切线的切点为⎭或⎛ ⎝⎭.所以所求的切线方程为133y x =-+或133y x =--. 【高清课堂:导数的几何意义 385147 例3】【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.【答案】 0(2+)(2)'(2)lim x f x f f x∆→∆=∆ 3230(2)2(2)(2)(282)=lim x x a x b x a a b a x∆→+∆++∆++∆+-+++∆ 20lim 1286()128x a b x x a b ∆→⎡⎤=+++∆+∆=++⎣⎦ 0g(2+)g(2)g '(2)lim x x x ∆→∆=∆220(2)3(2)2(2322)=lim x x x x∆→+∆-+∆+--⨯+∆ 0lim(1)1x x ∆→=+∆= 由条件可知:(2)0f =且'(2)'(2)f g =⇒2,5a b =-=,所以切线l 的方程:2y x =-.类型三:导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【思路点拨】【解析】()0(2)(2)'2lim t T t T T t∆→+∆=∆ ()0012012015152+57=lim 120=lim 77+120=49t t t tt ∆→∆→⎛⎫⎛⎫++ ⎪ ⎪∆+⎝⎭⎝⎭∆∆ ()()1202=C /min 49T '︒ 表示太阳落山后2分钟蜥蜴的体温以()120C /min 49︒ 的速度下降. 【总结升华】解释导学的实际意义要结合题目中变化的事物(指自变量),它反映事物变化的快慢.举一反三:【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率). 【解析】00()()s t t s t s t t+∆-∆=∆∆ 220000000011[()()][]2212v t t a t t v t at tv at a t +∆++∆-+=∆=++∆ 2s t ∴=的瞬时速度是02v a +.【变式2】质点按规律()21s t at =+做直线运动(位移单位:m ,时间单位:s ).若质点在 2 s t =时的瞬时速度为8 m / s ,求常数a 的值.【答案】质点 2 s t =时的瞬时速度为()'28s =.∵()222(2)2(2)1214()s s t ―s a t ―a a t a t ∆=+∆=+∆+⨯=∆+∆-, ∴4s a a t t∆=+∆∆. ∴()0'2lim4t s s a t ∆→∆==∆, 所以48a =,即a =2.。

课件3:5.1.2 导数的概念及其几何意义

课件3:5.1.2 导数的概念及其几何意义

2.导数的几何意义
函数 y=f(x)在 x=x0 处的导数 f′(x0)就是切线 P0T 的斜率 k0, lim fx0+Δx-fx0
即 k0=__Δ_x_→_0______Δ_x________=f′(x0).
知识点二 导函数的概念
1.定义:当 x 变化时,y= f′(x) 就是 x 的函数,我们
[规律方法] 求切点坐标可以按以下步骤进行 (1)设出切点坐标; (2)利用导数或斜率公式求出斜率; (3)利用斜率关系列方程,求出切点的横坐标; (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
[跟踪训练] 直线 l:y=x+a(a≠0)和曲线 C:y=x3-x2+1 相切,则 a 的值为___________,切点坐标为____________. 解析:设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0x+Δx3-x+ΔxΔ2x+1-x3-x2+1=3x2-2x, 则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13, 当 x0=1 时,y0=x30-x02+1=1, 又(x0,y0)在直线 y=x+a 上,
答案:B
4.已知函数 y=f(x)的图象在点 M(1,f(1))处的切线方程是 y=12x+2, 则 f(1)+f′(1)=________. 解析:由导数的几何意义得 f′(1)=12,由点 M 在切线上得 f(1)=12×1+2=52,所以 f(1)+f′(1)=3. 答案:3
5.曲线 y=x2-3x 的一条切线的斜率为 1,则切点坐标为________. 解析:设切点坐标为(x0,y0), y′=Δlxi→m0x0+Δx2-3xΔ0+x Δx-x20+3x0 =Δlxi→m02x0Δx-3ΔΔxx+Δx2=2x0-3=1,故 x0=2, y0=x20-3x0=4-6=-2,故切点坐标为(2,-2).

导数的概念及其几何意义课件

导数的概念及其几何意义课件
经济决策
弹性分析:通 过导数计算需 求弹性、供给 弹性等,分析 市场供需关系
动态分析:通 过导数计算动 态均衡、动态 优化等,分析 经济动态变化
经济增长模型: 通过导数建立 经济增长模型, 分析经济增长
规理论:导数在控制系统 中用于计算控制参数,实现 精确控制
优化设计:通过导数计算, 找到最优解,提高工程效率
导数的几何意义
导数与切线斜率的关系
导数是函数在某一点的切线斜率 导数等于函数在该点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的切线斜率的极限
导数与函数图像的变化趋势
导数是函数在某一点的斜率 导数的正负决定了函数图像的变化趋势 导数为正,函数图像上升 导数为负,函数图像下降 导数为零,函数图像在该点处可能存在拐点
导数与极值点的关系
导数是函数在某一点的斜率
导数为0的点可能是极值点
添加标题
添加标题
添加标题
添加标题
极值点是函数在某一点处的最大 值或最小值
导数为正或负的点可能是极值点
导数与函数增减性的关系
导数是函数在某一点的切线斜 率
导数大于0,函数在该点递增
导数小于0,函数在该点递减
导数等于0,函数在该点可能存 在极值
导数的概念及其几何意义
汇报人:
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 单击添加目录项标题 2 导数的概念 3 导数的几何意义 4 导数的应用
单击此处添加章节标题
导数的概念
导数的定义
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的极限值 导数是函数在某一点的微分值
导数的应用

5.1.2导数的概念及几何意义

5.1.2导数的概念及几何意义

C.(0,0)
D.(1,1)
解析:设点M(x0,y0),
= lim Δx→0
x0+Δx2+x0+Δx-2-x20+x0-2 Δx
=2x0+1,
又切线斜率为3即2x0+1=3,
∴x0=1, 则y0=0.
求曲线的切线方程 例 3.已知曲线 y=1x3,求曲线在点 P(3,9)处的切线方程.
解析:由 y=13x3,
一、导数的概念
1.函数的平均变化率
对于函数y=f(x),设自变量x从x0变化到x0+Δx,相应地,函
数值y就从f(x0)变化到f(x0+Δx),这时,x的变化量为Δx,y的变化
量为Δy=f(x0+Δx)-f(x0).我们把比值
y x
,即
y x

___f(__x_0+__Δ_x_)__-__f(__x_0_)____叫做函数y=f(x)从x0到x0+Δx的平均变
求切点坐标可以按以下步骤进行
(1)设出切点坐标; (2)利用导数或斜率公式求出斜率; (3)利用斜率关系列方程,求出切点的横坐标; (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
巩固练习.3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点 M 的坐标为
()
A.(0,-2) B.(1,0)
解析:根据导数的定义
f′(x0)=li m Δx→0
ΔΔyx=liΔmx→0
fx0+Δx-fx0 Δx
=li m Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
=li m Δx→0
4x0·Δx+2Δx2+4Δx Δx
=li m Δx→0
(4x0+2Δx+4)
=4x0+4, ∴f′(x0)=4x0+4=12, 解得x0=2.

导数的定义及几何意义

导数的定义及几何意义

导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

在一个函数存在导数时,称这个函数可导或者可微分。

可导的函数一定连续。

不连续的函数一定不可导。

导数也叫导函数值。

又名微商,是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。

如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

导数的几何意义:函数y=f(x) 在x=x0处的导数f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的概念及几何意义

导数的概念及几何意义
栏目 导引
利用导数求切线的方程
已知曲线 C:y=1x3+4. 33
(1)求曲线 C 在横坐标为 2 的点处的切线方程. (2)在第(1)小题中的切线与曲线 C 是否还有其他的公共点?
[解] (1)将 x=2 代入曲线 C 的方程得 y=4. ∴切点 P(2,4). ∵Δy=13(2+Δx)3+43-13×23-43 =4Δx+2(Δx)2+13(Δx)3, ∴ΔΔxy =4+2Δx+13(Δx)2, 当 Δx 趋于 0 时,4+2Δx+13(Δx)2 趋于 4,所以曲线在 x=2 处 的导数等于 4. 即切线的斜率为 4,故所求切线方程为 y-4=4(x-2),即 4x -y-4=0.
也称为 y=f(x)在 x0 点的__导__数____.
(2)记法:函数 y=f(x)在 x0 点的导数,通常用符号 f′(x0)表示, 记作 f′(x0)=_xl_1i→m_x_0 _f_x_x1_1_- -__fx_0x_0__=_Δl_ixm→_0__f_x_0_+__Δ_Δx_x_-__f_x_0___.
2.导数的几何意义 函数y=fx在x0处的导数;是曲线y=fx在点_______x_0_;f_x_0__处的 切线的______斜__率.函数y=fx在点x0;fx0处切线的斜率反映了 导数的几何意义. 注意:导数的物理意义:函数S=St在点t0处的导数S′t0;就是 当物体的运动方程为S=St时;物体在时刻t=t0时的瞬时速度v; 即v=S′t0;函数v=vt在点t0处的导数v′t0;就是当物体的运动 速度方程为v=vt时;物体在时刻t=t0时的瞬时加速度a;即a= v′t0.
方法归纳 求函数y=fx在点x0处的导数的三个步骤
1.求函数fx=x2+3在x=2处的导数.
解:因为Δy=f a+Δx -f a

导数的概念及其几何意义

导数的概念及其几何意义

= f(x0) , y0 + Δy = f(Δx + x0) , 割 线
PQ
的斜率
k

Δy Δx
+ΔΔxx-fx0.
[解题过程] ∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1 =(Δx)3+3(Δx)2+3Δx, ∴割线 PQ 的斜率 k=ΔΔyx=Δx3+3ΔΔxx2+3Δx =(Δx)2+3Δx+3. 设当 Δx=0.1 时割线的斜率为 k1, 则 k1=(0.1)2+3×0.1+3=3.31.
单击此处添加副标题
§ 2 导数的概念及其几何意义
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
2.1 导数的概念
2.2 导数的几何意义
单击此处添加文本具体内容,简明 扼要地阐述你的观点
理解导数的概念,会求函数在某点处的导数. 理解导数的几何意义. 根据导数的几何意义,会求曲线上某点处的切线方程.
那么,导数f′(x0)表示
的物理意义.
,这就是导数
运动物体在时间x0的速度
解析: y=x2 在 x=1 处的导数为 f′(1)=liΔxm→0 1+ΔΔxx2-1=2.
一.函数y=x2在x=1处的导数为( )
○ A.2x
B.2+Δx
○ C.2
D.1
答案: C
二.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是( )
∴a=1,即 a 的值为 1.
已知函数f(x)=ax2+c,且f′(1)=2,求a.
过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当 Δx=0.1时割线的斜率.
一般地,设曲线 C 是函数 y=f(x)的图象,P(x0,y0)是曲线

课件2:5.1.2 导数的概念及其几何意义

课件2:5.1.2 导数的概念及其几何意义

答案:(1)A
(2)曲线 f(x)=x3 在点(a,a3)(a≠0)处的切线与 x 轴,直线
x=a 围成的三角形的面积为16,则 a=________.
解析:(2)因为 f′(a)=lim Δx→0
a+ΔΔxx3-a3=3a2,
所以曲线在点(a,a3)处的切线方程为 y-a3=3a2(x-a).
令 y=0,得切线与 x 轴的交点为32a,0,
2.若函数 f(x)=-3x-1,则 f′(x)=( )
A.0
B.-3x
C.3
D.-3
解析:k= lim Δx→0
-3x+Δx-Δ1x--3x-1=-3.
答案:D
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点
M 的坐标为( )
A.(0,-2)
B.(1,0)
C.(0,0)
D.(1,1)
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
微点 2 与曲线的切点相关的问题 例 4 已知直线 l1 为曲线 y=x2+x-2 在(1,0)处的切线, l2 为该曲线的另一条切线,且 l1⊥l2. (1)求直线 l2 的方程; (2)求由直线 l1,l2 和 x 轴围成的三角形面积.
方法归纳 1.求曲线上某点切线方程的三个步骤
2.过曲线外的点 P(x1,y1)求曲线的切线方程的步骤 (1)设切点为 Q(x0,y0). (2)求出函数 y=f(x)在点 x0 处的导数 f′(x0). (3)利用 Q 在曲线上和 f′(x0)=kPQ,解出 x0,y0 及 f′(x0). (4)根据直线的点斜式方程,得切线方程为 y-y0=f′(x0)(x-x0).

导数的概念及几何意义

导数的概念及几何意义

(1)求物体在时间区间[t0 , t0 t] 上所经过的路程 :
S S(t0 t) S(t0 ) ,
(2)求物体在时间区间[t0 , t0 t] 上的平均速度:
v S S(t0 t) S(t0 ) ,
t
t
(3)求 t0
时刻 的速度: v(t0 )
lim v
t 0
lim
t 0
S(t0
x0 点的导数,记作
f ( x0 ) ,或 y xx0

或 dy dx
x x0
,即
f ( x0 )
lim y x0 x
lim
x0
f (x0
x) x
f ( x0 )
lim f ( x) f ( x0 )
x x0
x x0
7
1.1 导数的概念与导数的几何意义
若极限 lim y 不存在,则称函数 f x0 x
f( x0 )
lim
x0
y x
lim x0
f ( x0 x) x
f ( x0 )
lim f ( x) f ( x0 ) ;
x x0
x x0
9
1.1 导数的概念与导数的几何意义
若极限 lim y 存在,则称此极限为 f ( x) 在 x0 x
点 x0 处的右导数,记为 f( x0 ) ,即
f (t) f ( x0 ) 。 t x0
(2)由导数定义可得, v(t0 ) s(t0 ) (导数的物理意义);
k f ( x0 ) (导数的几何意义);
8
1.1 导数的概念与导数的几何意义
(2)单侧导数
定义 2 若极限 lim y 存在,则称此极限为 f ( x) x0 x

3.1 导数的概念及几何意义、导数的运算

3.1 导数的概念及几何意义、导数的运算

∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x

'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导

导数的概念几何意义与运算

导数的概念几何意义与运算

导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。

对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。

导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。

导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。

二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。

特定点处的切线斜率表示了函数在该点的变化速度。

2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。

导数的正负性能够直观地反映函数的增减趋势。

3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。

导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。

三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。

2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。

3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。

四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。

二次导数s''(t)则表示在时间t的瞬时加速度。

导数的几何意义

导数的几何意义
导数的几何意义
玉山县樟村中学
王道远
复习回顾
导数的概念 1.定义:设函数y=f(x),当自变量x从x0变到x1时,函 Δy 数值从f(x0)变到f(x1),函数值y关于x的平均变化率为 = Δx fx1-fx0 fx0+Δx-fx0 x1-x0 = ,当x1趋于x0,即Δx趋于0 Δx 时,如果平均变化率趋于一个
解: 先求y 2 x 3在x 1处的导数
f (1 x) f (1) 2(1 x) 3 2 13 x x 6 6x 2(x) 2 . 令x趋于零,可知y 2 x 3在x 1处的导数为f , (1) 6 则函数y 2 x 3在点( 1,f( 1)) (1,2)处的切线斜率为 6 因此切线方程 y 6x 4
P
o
x
yy f Biblioteka x)B割线l
B,
A
切线
o
x0
x
导数的几何意义:函数 y f ( x)在x0处的切线的斜率
例题讲解
例1
已知函数y f ( x) x 2 , x0 2. (1)分别对x 2,1,0.5求y x 2 在区间 [ x0 , x0 x]上的平均变化率。 (2)求函数y x 2 在x0 2处的导数。
( 1)x 2,1,0.5时,区间 [ x0 , x0 x]相应为[2,0],[2,1],[2,1.5]. 解: y x 2 在这些区间上的平均变 化率分别为 f (0) f (2) 0 2 (2) 2 2 2 2 f (1) f (2) (1) 2 (2) 2 3 1 1 f (1.5) f (2) (1.5) 2 (2) 2 3.5 0.5 0.5
作业

导数的概念及几何意义

导数的概念及几何意义

导数的概念及几何意义导数是微积分中的一个重要概念,它描述了函数在其中一点上的变化率。

导数的几何意义是一个函数在其中一点上的斜率或切线的斜率。

假设有一个函数y=f(x),表示自变量x与因变量y之间的关系。

在函数图像上,选取其中一个点P(x,f(x)),然后再选取另一个与点P非常接近的点Q(x+△x,f(x+△x))。

△x表示x的一个小的增量。

这两个点的连线被称为割线,割线的斜率可以表示为:斜率=(f(x+△x)-f(x))/△x当△x逐渐接近于0时,割线的斜率会趋近于一个特定的值,这个值就是函数在点P处的导数。

数学表达式可以表示为:f'(x) = lim(△x→0) (f(x + △x) - f(x)) / △x导数也可以用微分法的符号(dx / dx)表示。

导数可以表示函数的变化率,即在特定点上函数的斜率。

导数的值可以为正、负或零。

导数的几何意义是函数的图像在其中一点上的切线的斜率。

切线是函数图像上与这个点非常接近的直线。

切线的斜率与点的导数值相等。

当导数值大于0时,说明函数图像在该点上是递增的,切线是向上的。

当导数值小于0时,说明函数图像在该点上是递减的,切线是向下的。

当导数值等于0时,说明函数图像在该点上是平的,切线是水平的。

导数还可以提供其他有用的几何信息。

例如,函数在其中一点上的导数值越大,函数曲线在该点附近弯曲得越急。

函数的导数也可以帮助确定函数的拐点。

拐点是函数图像的曲线从凹向上凸或从凸向上凹的点。

导数的计算方法有很多种。

有些函数可以通过求导公式直接计算导数,这些被称为可导函数。

例如,如果函数是关于x的幂函数,如f(x) =x^n,其中n是一个常数,那么它的导数可以通过将指数降低1并将结果乘以原指数来计算,即f'(x) = nx^(n-1)。

还有一些常见的函数,如正弦函数、余弦函数和指数函数,它们也有特定的求导公式。

除了直接求导的公式之外,还可以使用导数的基本性质来求导。

导数的概念及其几何意义

导数的概念及其几何意义
注意:这里的增量不是一般意义上的增量 它可正也可负 注意 这里的增量不是一般意义上的增量,它可正也可负 这里的增量不是一般意义上的增量 它可正也可负. 自变量的增量∆x的形式是多样的 但不论∆x选择 的形式是多样的,但不论 自变量的增量 的形式是多样的 但不论 选择 哪种形式, 也必须选择与之相对应的形式. 哪种形式 ∆y也必须选择与之相对应的形式 也必须选择与之相对应的形式
4.导数的几何意义 导数的几何意义
在点x 函数 y=f(x)在点 0处的导数的几何意义,就是曲 在点 处的导数的几何意义, 在点P(x0 ,f(x0))处的切线的斜率,即曲线 处的切线的斜率, 线 y=f(x)在点 在点 处的切线的斜率 即曲线y= f(x)在点 在点P(x0 ,f(x0)) 处的切线的斜率是 f ′( x0 ). 在点 故曲线y=f(x)在点 曲线 在点P(x0 ,f(x0))处的切线方程是 处的切线方程是: 在点 处的切线方程是
导数的概念及其几何 意义
一、导数的概念 定义:设函数 在点x 定义:设函数y=f(x)在点 0处及其 在点 附近有定义,当自变量 在点x 当自变量x在点 附近有定义 当自变量 在点 0处有改 变量Δ 时函数有相应的改变量 变量Δx时函数有相应的改变量 如果当Δ → Δy=f(x0+ Δx)- f(x0).如果当Δx→0 如果当 的极限存在,这个极限就叫 时,Δy/Δx的极限存在 这个极限就叫 Δ Δ 的极限存在 做函数f(x)在点 0处的导数 或变化率) 在点x 或变化率 做函数 在点 处的导数(或变化 记作 f ′( x )或y′ | , 即:
2
求函数y = x 在点(−2, 4)处的切线.
2
例3求函数y = x 在x0 = 1处的切线.
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导 数一.知识梳理1.导数的概念及几何意义. 2.求导的基本方法①定义法:()x f '=()()xx f x x f x y x ∆-∆+=∆∆→∆0lim ②公式法:0c ='(c 为常数);)(x n ' = 1-n nx (n ∈N) ; )v (u '±=v u '±' 3.导数的应用①求曲线切线的斜率及方程;②研究函数的单调性、极值、最值; ③研究函数的图象形态、性状;④导数在不等式、方程根的分布(个数)、解析几何等问题中的综合应用. 二.基础训练1.(04湖北高考)函数()13++=x ax x f 有极值的充要条件是 ( ) A.0>a B.0≥a C.a<0 D.0≤a2.(04江苏高考)函数()133+-=x x x f 在闭区间[]03,-上的最大值、最小值分别是 ( )A.1,-1B.1,-17C.3,-17D.9,-19 3.(05南通示范高中联考)a>3,则方程x 3-ax 2+1=0在(0,2)上恰好有 A 0个根 B 1个根 C 2个根 D 3个根4. (05南通四县市联考)设函数y=f(x)在其定义域上可导,若)(x f '的图象如图所示,下列判断:①f(x)在(-2,0)上是减函数②x=-1时, f(x)取得极小值;③x=1时, f(x)取得极小值;④f(x)在(-1,1)上是减函数,在(1,2)上是增函数其中正确的是A ①②B ②③C ③④D ②③④5.(05宿迁三模) 函数f(x) =-x 3+3x 2+ax+c 在(-∞,1]上是单调减函数,则a 的最大值是A -3 B-1 C1 D3 6.(05湘.19)设t≠0,点P(t ,0)是函数f(x)=x 3+ax 与y=bx 2+c 的图象的一个公共点,两函数的图象在点P 处有相同的切线.(I)用t 表示a ,b ,c ;(Ⅱ)若函数y=f(x)-g(x)在(-l ,3)上单调递减,求 t 的取值范围.q x () = -2⋅cos x ()三.典型例题例1. (05全国Ⅱ. 21)设a 为实数,函数f(x)=x 3-x 2-x+a . (I )求f(x)的极值;(Ⅱ)当a 在什么范围内取值时,曲线y=f(x)与x 轴仅有一个交点.例2(05苏州一模)已知f(x)=x 3+ax+b 定义在区间[-1,1]上,且.f(0) =f(1),设x l ,x 2∈[-1,1],且x 1≠x 2.1)求证:|f(x 1)-f(x 2)|< 2|x 1-x 2|;2)若0<x l <x 2≤1,求证:|f(x 1)-f(x 2)|<1.例3 (03天津高考)已知抛物线x x y C 221+=:和a x y C +-=22:,如果直线L 同时是1C 和2C 的切线,称L 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段。

①a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程。

②若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分。

导数巩固练习1.(05苏,锡,常,镇一模)已知函数f(x) =2x 3-21x 2+m (m 为常数)图象上点A 处的切线与直线x-y+3=0的夹角为450,则点A 的横坐标为 ( )A .0B .1C .0或61 D. 1或612.(05南通一模)已知函数f(x) =x 3+bx 2+cx+d 在区间[-1,2]上是单调减函数,那么 ( )A. 有最大值215B. 有最大值-215C. 有最小值215D.有最小值-2153.(04苏州一模)若函数()a x x x f --=33在区间[]3,0上的最大值,最小值分别为M ,N ,则M-N 的值为 ( )A.2B.4C.18D.204.(04徐州一模)抛物线y=12x 2+x+2与圆x 2+y 2=r 2(r>0)的一个交点为P ,且它们在交点P 处的切线互相垂直,则r 的一个值是 ( )5.(05重庆高考)曲线y=x 3在点(a,a 3)(a ≠0)处的切线与x 轴,直线x=a 所围成的三角形的面积为1,则a=(Ⅱ)求函数y=f(x)的单调区间.8.已知函数f(x)=x 3+(b-1)x 2+cx(b 、c 为常数).(I) 若f(x)在x=1和x=3处取的极值,试求b 、c 的值;(II) 若f(x)在x ∈(-∞,x 1)、(x 2,+∞)上单调递增且在x ∈(x 1,x 2)上单调递减,又满足x 2-x 1>1,求证:b 2>2(b+2c);(III)在(2)的条件下,若t <x 1,试比较t 2+bt+c 与x 1的大小,并加以证明.参考答案基础训练:1.C2.C3.B4.C5.A6.解: (I)因为函数f(x),g(x)的图象都过点(t,0),所以f(t)=0, g(t)=0。

f(t)=0,即t 3+at=0。

因为t≠0,所以a=-t 2; g(t)=0,即bt 2+c=0,所以c=ab .又因为f(x),g(x)在点(t ,0)处有相同的切线,所以)(x f ' =)(x g '. 而)(x f '=3x 2+a, )(x g '=2bx ,所以3t 2+a=2bt . 将a=-t 2,代入上式得b=t , ,因此c=ab=-t 3, 故a=-t 2,b=t ,c=-t 3。

.(Ⅱ)y= f(x)-g(x)=x 3- tx 2- t 2x +t 3 y '=3x 2-2tx-t 2=(3x+t)(x-t).当y '= (3x+t)(x-t)<0时,函数y= f(x)-g(x)单调递减.由y '<0,若t>0,则-3t <x<t ;若t<0,则t<x<-3t.由题意,函数y= f(x)-g(x)在(-l ,3)上单调递减,则(-l ,3)⊂( -3t,t)或 (-l ,3)⊂ (t ,-3t)所以t≥3或-3t≥3.即t≤-9或t≥3.又当-9<t<3时,函数y= f(x)-g(x)在(-l ,3)上不单调递减. 所以t 的取值范围为(-∞,-9]∪[3,+∞) 典型例题:例1.分析:历经多年的高考命题实践,对“导数”的考查已从“导数”的简单应用,如求曲线切线的斜率、研究函数的单调性、极值、最值,拓展到利用导数研究不等式、函数图象的性态、方程根的分布与个数等问题,问题(Ⅱ)即是利用导数研究函数图象性态的问题, (Ⅱ)也可等价变形为一个方程根的分布(个数)问题:“当a 在什么范围内取值时,方程f(x)=0有且仅有一个根”。

解:(I) )(x f '=3x 2-2x-1.若)(x f '=0,则x=-31或1,当x 变化时,)(x f ',f(x)变化情况如下表:所以f(x)的极大值是f(-3)=27+a, 极小值是f(1)=a-1.(Ⅱ)函数f (x)=x 3-x 2-x+a=(x-1)2(x+1)+a-1, 由此可知x 取足够大的正数时,有f (x)>0,x 取足够小的负数时有f(x)<0.所以曲线,y=f(x)与x 轴至少有一个交点.结合f(x)的单调性可知:当f(x)的极大值寺275+a<0,即a∈(-∞,-275)时,它的极小值也小于0,因此曲线y=f(x)与x 轴仅有一个交点,它在(1,+∞)上;当f(x)的极小值a-1>0,即a∈(1,+∞)时,它的极大值也大于0,因此曲线y=f(x)与x 轴仅有一个交点,它在(-∞,-31)上.所以当a∈(-∞,-275)时,曲线y=f(x)与x 轴仅有一个交点. 例2.分析:对于一些代数不等式,人们习惯运用基本不等式和不等式的基本性质进行证明,但有时技巧性很强,增加了问题解决的难度.如果能凭借导数这个先进工具,将不等式的证明转化为求函数的最值或值域问题,那么不等式的证明就会变得简单明了.证:1)略;2)由f(O)=f(1)知a=-1,所以f(x)=x 3-x+b .设g(x)=x 3-x ,则()g x '=3x 2-1由()g x '>0得x<-3或x>3,所以g(x)在(0)上递减,在,1]上递增.当x∈(0,1)时,g(x)min ,且g(0)=g(1)=0,∴≤g(x)≤0. 当0<x l <x 2≤1时,有 |f(x 1)-f(x 2)|=|g(x 1)-g(x 2)| ≤|g(x 1)|+|g(x 2)|⨯<1 例3.分析:传统的解析几何中涉及切线的问题,常规的处理办法是用“△”法来解决的,但有时计算量较大,容易出错.如果能灵活运用导数的几何意义去解决,则问题的解决往往变得简单,清楚.解:⑴ x x y 22+=的导数为22+='x y曲线1C 在点()12112,x x x P +的切线方程是()()()11121222x x x x x y -+=+-即()21122x x x y -+= ①a x y +-=2的导数x y 2-='曲线2C 在点()a x x Q +-222,的切线方程是()()22222x x x a x y --=+--即a x x x y ++-=2222 ②如果直线L 是过P 和Q 的公切线,则①②都是L 的方程,所以⎩⎨⎧+=--=+ax x x x 2221211,消2x 得0122121=+++a x x 若 ()01244=+⨯-=∆a 即21-=a 时,解得211-=x此时点P 与Q 重合,即当21-=a 时,1C 和2C 有且仅有一条公切线为41-=x y 。

⑵证明:由⑴可知,当21-<a 时,1C 和2C 有两条公切线,设一条公切线上切点为()()2211,,,y x Q y x P ,其中P 在1C 上,Q 在2C 上,则有121-=+x x ,()()()a a x x x a x x x y y +-=++-+=+-++=+112211212212121 ,所以线段PQ的中点为 ⎪⎭⎫ ⎝⎛+--21,21a ,同理,另一条公切线Q P ''的中点也是⎪⎭⎫⎝⎛+--21,21a ,所以公切线段PQ 和Q P ''互相平分。

巩固练习1.C2.B3.C 4.C 5.±1 6.c 7.解:(I)由f(x)的图象经过P(0,2),知d=2,所以f(x)=x 3+bx 2+cx+2,)(x f '=3x 2+2bx+c .由在M(-l,f(-1))处的切线方程是6x-y+7=0,知-6-f(-1)+7=0.即f(-1)=l ,)1(-'f =6.∴⎩⎨⎧=+-+-=+-121623c b c b 解得b=c=-3.故所求的解析式是f(x)=x 3-3x 2-3x+2. (Ⅱ))(x f '=3x 2-6x-3,令)(x f '=O ,解得x 1=1-2,x 2=l+2 当x<1-2,或x>l+2时,)(x f '>0; 当1-2<x<l+2时,)(x f '<0.故f(x)=x 3-3x 2-3x+2在(一∞,1-2)内是增函数,在(1-2,l+2)内是减函数,在(1+2,+∞)内是增函数.8. (I) f /(x)=x 2+(b-1)x+c , 据题意知,1和3是方程x 2+(b-1)x+c=0的两根, ∴1-b=1+3=4, c=1×3=3,即b=-3, c=3 (II) 由题意知,当x ∈(-∞,x 1)、(x 2,+∞)时, f /(x)>0;当x ∈(x 1,x 2)时, f /(x)<0. 所以x 1、x 2是方程x 2+(b-1)x+c=0的两根,则x 1+x 2=1-b, x 1x 2=c.∴b 2-2(b+2c)= b 2-2b-4c=[1-(x 1+x 2)2]-2[1-(x 1+x 2)]-4x 1x 2=(x 1+x 2)2-1∵x 2-x 1>1, ∴(x 1+x 2)2-1>0 ∴b 2>2(b+2c). (III)在(II)的条件下,由上题知x 2+(b-1)x+c=(x-x 1)(x-x 2)即x 2+bx+c=(x-x 1)(x-x 2)+ x 所以 (t 2+bt+c)-x 1=(t-x 1)(t-x 2)+t-x 1=(t-x 1)(t+1-x 2) ∵x 2>1+x 1>1+t, ∴1+t-x 2<0.又0<t <x 1 ∴t-x 1<0.∴(t-x 1)(t+1-x 2)<0,故t 2+bt+c >x 1.。

相关文档
最新文档