桥塞分层射孔压裂技术 23页PPT文档
《压裂施工》PPT课件
整理ppt
16
11.2 完 井
11.2.4.6 桥塞和封隔器
使用时机:当完井过程不允许从最下层开始,然 后逐渐层向上进行分层压裂时,则必须将桥塞和封隔 器结合起来使用。
这样可以跨越一定的间隔并提供一种特别可靠的 隔离方法,这些可回收的工具可以很容易地移动并覆 盖住任何的间隔。
假定只有这些射孔与初始裂缝平面相连通,要达到与裂缝直接连通的1800相 位同样数量的射孔数,则必须要有三次600相位的射孔,这些假定也包含起裂时没 有多个平行裂缝,当然增加600相位的射孔密度就不需假定不存在微环隙。
整理ppt
27
11.3 射 孔
11.3.2.2 张开的微环隙,垂直井/垂直裂缝
微环隙:会引起水泥/岩石胶结表面开裂,与孔眼无关 (除非射孔是与水力裂缝平面成100角范围内)。
11.7 返排对策
11.8 质量保证和质量控制
11.9 健康安全和环境
附录 整理ppt
23
11.3 射 孔
11.3.1 背景
射孔孔眼为井筒和储层之间提供的一种连通方式,而在压 裂期间,射孔孔眼是裂缝和井筒之间的液体流动通道。
射孔参数对压裂施工质量有很大影响,射孔参数主要是指:
➢ 射孔器的尺寸和类型
11.2.4.2 裂缝位置控制
控制压裂液流向的最可靠方法:将射孔限制在 一个单层,当要压裂一口井的几个层位时,各个层 位可以相互隔离,并且逐个单层进行压裂。
最好是首先压裂最深的层位。
另一种多层压裂技术是扰形管传输(参考11B), 其他可使用的多层压裂技术在第10章中有讨论。
整理ppt
11
11.2 完 井
第11章 压裂施工
页岩气水平井分段大型压裂实践PPT课件
滑溜水组成及配比
添加剂名称
产品代号
使用浓度‰ 备注
杀菌剂
BE-9
0.7
配液加入
防水锁剂
Gasperm 1100 0.5-2.0 配液加入
降阻剂
FR-66
0.75
在线加入
降阻剂的破胶剂 Optikleen WF 0.09
在线加入
• 延页平1井使用的清洁压裂液为成品,使用时按1% 比例在线加入。
井号 涪页HF-1 彭页HF-1 延页平1
各井其它压裂配制统计
名称 凝胶基液 线性胶 清洁压裂液
数量(m3) 2150 3400 636.1
备注 除在线加入添加剂之外此时加入
在线加入
第18页/共30页
6 压裂准备
支撑剂
各井支撑剂准备统计
• 延长石油研究院的滑溜水和清洁压裂液。 • 清洁压裂液为成品,施工时按1%的比例在线加入,同
时加入0.01%的过硫酸铵作为破胶剂。
滑溜水组成及配比
添加剂名称
杀菌剂 粘土稳定剂 破乳剂 降阻剂 助排剂
产品代号 KCL PAM
使用浓度(‰) 备注
0.5
配液加入
20
配液加入
2.0
配液加入
0.5
配液加入
4.0
3 压裂液
涪页HF-1井:贝克休斯公司化学剂
• 滑溜水降阻率达70-80%,且具有较好的防膨效果。
• Viking D,延迟交联压裂液, 适用温度65.5-149℃,交联 时 间 0.5-10min 可 控 。 具 有 低摩阻、抗剪切、携砂能力 强、低伤害等特点。
滑溜水组成及配比
电缆桥塞射孔、压裂联作技术在桩23区块的应用
创新技术科技创新导报 Science and Technology Innovation Herald38桩23断块构造上位于济阳坳陷沾化凹陷东北部五号桩洼陷的北部,其主要含油层系为沙三下Ⅱ油层组,沙三下Ⅱ油组分为五个砂层组,含油小层主要集中在一、二砂层组,分布稳定,厚度大,其余砂层组厚度相对较薄。
桩23区块储层纵向跨度大,不能实现各小层均衡动用,在达到采油工程方案要求的半缝长和导流能力的基础上,进行分段数优化和施工参数优化,实现效益的最大化。
1 技术原理及性能指标电缆桥塞射孔、压裂联作技术包括分级多簇点火控制技术、可钻式复合材料桥塞技术、水力泵送优化设计技术、深度校正技术、电缆密闭带压作业技术、井下安全控制技术、非常规储层优化射孔技术、分段压裂技术。
1.1 技术原理该工艺首先采用爬行器或油管输送完成地层最下端第一段射孔任务,再采用电缆输送方式利用水力泵送技术将井下安全工具、射孔器和桥塞工具等输送至目的层,深度校正后首先点火坐封桥塞,然后上提管柱到射孔位置,利用分级点火控制装置逐级引爆各簇射孔枪,从而实现分簇射孔与桥塞联作施工,然后进行分段压裂,最大限度的改造地层,提高采收率。
1.2 主要技术指标(1)可实现10簇以内分级点火起爆;(2)电缆防喷装置耐压1.5×104psi,防硫EE级,通径162 m m;(3)耐温220 ℃/4 h,耐压105 MPa 。
2 工艺技术设计2.1 电缆密闭带压作业技术根据非常规井内压力和电缆的类型选择阻流管的长度和内径、优选注脂方式和注脂压力,优化管柱结构及重量;根据分簇射孔的仪器串长度选择防喷管柱的长度;根据入井工具的外径选择防喷管柱的通径;并根据其配套相应的三翼防喷器和剪切防喷器的闸板等核心部件。
2.2 分级多簇点火控制技术针对非常规油气层施工中,常需要采用多簇射孔器射孔。
目前主要采取液控式和编码式两种分级点火控制技术,实现多簇射孔器准确的点火控制。
国内压裂技术介绍 ppt课件
筛管
0.38
套管+裸眼
0.40
套管
0.30
合计117口:水平井93口,直井24口;ppt油课件井80口,气井37口,累计5.75亿元 12
汇报提纲
• 企业介绍与系统能力 • 一、水力喷射分段压裂技术 • 二、双封单卡分段压裂技术 • 三、滑套式封隔器分段压裂技术 • 四、国外水平井分段压裂技术 • 五、华鼎施工能力保障
126.4m3
分析山2、盒7段2层产水,关闭产水
层后,气量从1.7×104m3/d上升到
5.70×104m3/d
ppt课件
35
四、国外水平井分段压裂技术
连续油管喷砂射孔环空加砂压裂技术
作业程序 水力喷砂射孔 环空加砂压裂
层间封堵方式 砂塞封堵 底封隔器封堵
技术特色 不受压裂层数限制 可实现对多层系的动用
——HWB液压开关工具
ppt课件
25
三、滑套式封隔器分段压裂技术
1.裸眼井固井滑套选择性分段压裂技术 ——施工步骤
ppt课件
26
三、滑套式封隔器分段压裂技术
1.裸眼井固井滑套选择性分段压裂技术 ——施工步骤
ppt课件
27
三、滑套式封隔器分段压裂技术
2. 封隔器滑套选择性分段压裂技术
一次多层压裂措施(酸化或砾石充填),最多压裂15层 (14个球座,1个趾端滑套),无需中心管。
喷射起裂及 水力封隔
压裂液 喷射压裂
工具 喷砂射孔 参数效率
1
一、水力喷射分段压裂技术
1.水力喷射分段压裂机理
• 射孔过程:Pv+Ph<FIP,不压裂
环空加压:Pv+Ph+Pa≥FIP,起裂 • 射流在孔底产生推进压力约2~3MPa,
分簇射孔—复合桥塞联作分段压裂技术
分簇射孔一复合桥塞联作分段压裂技术-工程论文分簇射孔一复合桥塞联作分段压裂技术慕光华成随牛冯滨随着国内页岩气、致密油气的开发,在水平井施工中,分簇射孔一复合桥塞联作的分段压裂开发模式得到广泛应用。
与其他开发模式相比,它具有可实现大排量注入、分簇射孔、分段体积压裂和作业效率高等优点。
分簇射孔一复合桥塞的分段压裂的核心技术为水力泵送工艺技术、多级点火分簇射孔技术、快钻复合桥塞技术、滑溜水多段体积压裂技术。
前三项技术由射孔施工队伍承担完成。
分簇射孔一复合桥塞分段压裂示意图将水平井段分成若干段(一段的控制距离为100〜150m ),第一段采用油管、连续油管及电缆爬行器进行射孔后压裂,其他段采用分簇射孔-复合桥塞联作工艺技术施工。
用电缆将联作仪器串下入井内,在大斜度及水平井段用水力泵送的方式推进,即水力泵送工艺技术。
首先用复合桥塞封堵前一段,再对本段进行分簇射孔,起出联作仪器串,再对该段进行体积压裂施工。
联作仪器串示意图多级点火分簇射孔技术是将串接的电缆射孔器和桥塞座封工具下放到预定射孔位置后,从底部逐级进行分层点火。
主要通过两种方式来实现:分簇射孔一复合桥塞联作分段压裂技术一是采用压力机械开关装置,由下部射孔枪起爆后,产生的爆炸压力推动机械开关闭合,接通上部射孔枪雷管的原理,实现电缆分级射孔。
如果某级压力开关未闭合,则本级和后级射孔器无法点火起爆。
二是利用可编码的电子开关技术,通过地面仪器控制可编码电子开关,有选择地将雷管与电缆缆芯导通,完成分级点火。
特点是可以串接数量比较多(10〜20级)的下井射孔器,跳过故障级对后一级进行点火,提高分簇射孔的下井一次成率。
多级点火分簇射孔还具有以下特点:电缆传输+液体推送+座封桥塞+分级起爆多根射孔枪,每级分2〜6簇射孔,每簇长度0.46〜0.77m,簇间距20〜30m。
快钻复合桥塞是从常规铸铁桥塞发展而来,通常采用连续油管或电缆水力泵入下入方式。
技术特点是采用分级点火联作施工,先坐封复合桥塞,后进行分簇射孔。
桥塞分层射孔压裂技术
爆炸桥丝式雷管
负电 电缆
正电 Px-1 EBW雷管(第一级射孔) EBw雷管是无起爆药的高精密微秒电雷管 。 爆炸桥丝式雷管 Px-1
EBW雷管(桥塞)
5、使用水力推送技术 在水平段采用水力将桥塞和射孔枪泵送到预定位置。
2、第一次射孔(一般在三层左右)
采用爬行器输送枪进行电缆射孔或采用油管传输射孔,射 孔层位可能有几层。如果采用电缆电缆射孔需要使用多级点火 装置。
2、下桥塞与射孔 桥塞与射孔枪连接在一起,采用水力泵送方式输送桥塞和 射孔枪。需要使用8mm单芯电缆。
电缆输送管串实例图
总长10.72m 1.5米规格1.69m 40cm
编写:陈永昌
2013年1月
报告内容
一、前言 二、工艺简介 三、工艺特点
一、前言
水平井桥塞分段射孔压裂技术综合了下桥 塞、分段射孔和压裂三种工艺,它主要应用 在页岩气的开采上。采用此工艺的优点在于 能够保证每一段都有很好的压裂效果。
二、工艺简介
1、工艺流程 第一次射孔 压裂 下桥塞、第二次射孔 压裂 下桥塞、第三次射孔 压裂 下桥塞、第四次射孔 压裂 钻塞
电缆井口防喷装置(下图是Elmar公司的图片)
盘根盒(防喷盒) 阻流管 密封脂注入头 球阀 上工具捕集器 防喷管 下工具捕集器
防喷器BOP
注脂控制系统
3、使用多级点火装置 电缆射孔多级点火装置用于电射孔中分级引爆射孔 枪,只需要一个缆芯。装置装在射孔枪接头内,与下 层射孔枪电路连通。下层射孔枪射孔后,井液压力推 动开关杆向上运动,微动开关断开下层射孔枪线路, 接通上层射孔枪线路。
第级装置 射孔枪 多级装置 射孔枪
9.5cm+15.5cm
桥塞
桥塞零长10.16m 第一枪:5.7m;第二枪:3.72;第三枪:1.78
射孔工艺介绍上PPT课件
127
127超深穿透
SDP39RDX30-1 SDP36HMX24-7 SDP48HMX45-1
≥140 ≥178 ≥178
20
6
1075
11.4
40
8
871
9.7
16
4
1349
12.4
.
15
大孔径射孔特点:射孔后套管上孔眼直 径大,射孔孔道相对深穿透射孔孔道短而粗, 渗流面积增加。
大孔径射孔适用于孔径为第一射孔要求 的射孔作业;适用于高黏油、稠油储层,出 砂储层。对于一些老井的多次采油,增大孔 道直径也有利于注入聚合物等的后续作业。
180
含砂微
3-06503
09.01. 23
1352
640
0.1 364 1
182
含砂微
3-07501
08.12. 19
253
202
2.4 375 4
75
含砂微
3-07502
07.06. 30
2311
986
9.0 915 7
114
含砂微
3-07503
07.06. 21
1653
7488
2.2
898
5
150
.
16
锦16块化学驱注入井射孔参数研究
BH46RDX43-1靶体剖开照片
.
17
锦16块化学驱注入井射孔参数研究
❖ 采用高孔密、大孔径、深穿透油管传输负压射孔, 负压值3~8MPa,利用负压射孔方式清洗孔道,减 少堵塞。
❖ 弹型选择:BH46RDX43-1 ❖ 枪型:140枪 孔密:24孔/m ❖ 相位: 8 相位
弹型
51 60 51 60 76 51 60 76 89 51 60 76 89 51 60 76 89 102 127 76 大孔径 1米弹
泵送式桥塞与射孔联做技术介绍n课件
安全可靠
由于采用泵送原理,避免了传 统桥塞在安装过程中可能出现 的卡塞、掉落等问题,提高了 作业安全性。
环保节能
泵送式桥塞采用密封设计,减 少了作业过程中对环境的污染 和能源的浪费。
适用范围广
泵送式桥塞适用于各种不同管 径和材料的管道,具有广泛的
适用范围。
泵送式桥塞的应用实例01来自02其他领域除油气田开发和煤层气开采外,该 技术还可应用于其他需要高效、安 全地实现桥塞和射孔联做的领域。
技术发展现状与趋势
技术发展现状
目前,泵送式桥塞与射孔联做技术已经得到了广泛应用和认可,成为油气田开发 领域的一项重要技术。
技术发展趋势
未来,该技术将继续朝着高效、安全、环保的方向发展,进一步提高施工效率和 降低对地层的伤害。同时,随着科技的不断进步和应用需求的不断提高,该技术 将不断优化和完善,以适应更广泛的应用领域和更复杂的地层条件。
02
泵送式桥塞技术
泵送式桥塞工作原理
泵送式桥塞是一种利用泵送原 理进行输送和定位的桥塞。
通过泵送系统将桥塞输送到预 定位置,然后通过触发机构使 其定位并实现密封。
泵送式桥塞通常与射孔枪配合 使用,以实现桥塞和射孔的一 体化作业。
泵送式桥塞的特点与优势
高效快速
泵送式桥塞能够快速准确地输 送到预定位置,减少了作业时
传统桥塞和射孔技术的局限性
传统的桥塞和射孔技术存在一定的局限性和不足,如施工周期长、对地层伤害 大等,无法满足现代开采的需求。
技术应用领域
油气田开发
该技术广泛应用于油气田开发领 域,尤其适用于海上油气田、复 杂地层和低渗透油气藏的开发。
煤层气开采
在煤层气开采领域,该技术也可用 于实现安全、高效、环保的煤层气 开发。
《压裂工艺技术》PPT课件
(三) 压裂工具与管柱
压裂管柱组配和使用技术要求:
①压裂管柱采用N-80以上钢级的外加厚油 管和短节组配。
②封隔器卡点应选择在套管光滑部位,避 开套管接箍。
③压裂管柱喷砂器与封隔器直接连接,最 下一级封隔器以下的尾管长度不小于8m。管柱 底端距井内砂面或人工井底距离不小于10m。
(三) 压裂工具与管柱
④按照施工设计精确配出封隔器卡距、油 管下入深度,卡点深度与设计深度误差不超过 ±0.2m。
⑤由K344-114封隔器组成的浅井分压多层 管柱最多允许使用4级封隔器,允许上提一次。 该管柱承压能力为40 Mpa。
⑥压裂管柱是专用管柱,严禁用于替喷、 冲砂、压井、打捞等作业施工。
(三) 压裂工具与管柱 滑套式分层压裂管柱
(三)压裂的应用
大约40%完钻井数实施了压裂
125
80
100
1981年
1991年
2001年
全球压裂井次(万口)
美 石油储量的30%是通过压裂改造才达到经济开采条件的。
国 北 通过压裂增加130亿吨石油储量。
美 我 已探明低渗透地质储量约40亿吨,这些储量只有通过 国 压裂改造才能具备工业开采价值。
4 ± Ê »æ ͼ Æ÷
H D E ÏÖ ³¡ ²Î Êý У Õý ÒÇ ¡¢ S M ¡ª A ѹ ²î ʽ É°ÃÜ ¶È ¼Æ
1 ¡¢ ´ó ± à ˮ ¹¦ ÂÊ 1 3 0 0 Âí Á¦ £» 2 ¡¢ Öù Èû Ö±¾¶ 1 1 4 . 3 m m £» 3 ¡¢ ³å ³Ì 2 0 3 . 2 m m ¡£
²Ù ×÷Ä£ ʽ
ÊÖ ¿Ø
ÒÇ ±í ³µ
´ó ±Ã ¿Ø ÖÆ
水平井泵送桥塞分层射孔压裂技术
三、工艺特点
1、使用可钻式桥塞
2、使用防喷装置
由于射孔枪和工具推进过程中以及坐封和射孔时井口都是带 压的,所以必须使用电缆井口防喷装置。防喷管内径应大于桥 塞外径。
电缆井口防喷装置(下图是Elmar公司的图片)
盘根盒(防喷盒)
阻流管 密封脂注入头 球阀 上工具捕集器 防喷管 下工具捕集器
防喷器BOP
40cm
CCL 点火头 射孔枪 多级装置 射孔枪 多级装置 射孔枪 第一点火头 桥塞火头送进工具 桥塞 9.5cm+15.5cm
桥塞零长10.16m 第一枪:5.7m;第二枪:3.72;第三枪:1.78
3、压裂 每次射孔后都进行压裂。
4、钻塞 使用连续油管钻塞。
5、建页HF-1井射孔+压裂日志表格
时间 9月12日16:00 9月13日2:00 9月13日9:0011:00 9月13日17:00 9月14日上午
9月14日下午
9月14日晚上
9月15日3:07
工序 下第一层射孔枪 校深、打压点火 硫化氢溢流防喷演习和压裂演习
备注 13.5MPa 压降至5MPa 继续打压升至13.5MPa 稳压1min 泄压至0
17:19坐封桥塞 17:36射孔枪第一级点火、 17:40第二级点火、 17:43射孔枪第三 级点火
投球坐封 2000型压裂车传送凡尔到位,破裂压力33MPa 施工压力25-33MPa 停 泵压力16MPa 施工排量10.0-10.5m3/min 砂量59m3 前置液量332m3 携砂液量 1381.7m3 顶替液量21m3 平均砂比4.4% 入地液量1734.7m3 (入地总液量 3212.5m3)
射孔多级点火装置核心部件
4、无起爆药的爆炸桥丝起爆系统(EBWs): 普通电火工品固有安全性低,含有敏感的起爆药或点
桥塞分段射孔压裂
桥塞分段射孔压裂系统5/13/2010•耐压高达12,500psi,耐温可达450华氏度•没有铜环或者碳化钨镶齿阻碍磨铣•可以下多个桥塞去堵塞多个层段•齿合机理防止钻磨桥塞时,桥塞打转•坐封力被卡瓦和本体锁紧环牢牢地锁住•复合材料的特性大大提高的切割速率•坐封后无剪切销钉等遗留•卡瓦与套管的接触面积大,有效防止桥塞移动•可带生产通道(单向承压)或不带生产通道(双向承压)•带生产通道的桥塞:可以在桥塞磨掉之前进行试气,生产。
–1. 投球式•投球之后隔离下层–2. 单流阀式•内置提升阀,桥塞上部承压,流体可以从下往上流动•无生产通道桥塞:压裂完成之后全部磨掉,进行生产。
投球式单流阀式全堵塞式QUIK Drill TM桥塞坐封方式-电缆或液压坐封E-4电缆座封工具J型液压坐封工具适配接头QUICK DRILL桥塞•1. 井筒准备(Thunder)–用合适尺寸通径规通井,保证井筒内干净。
5 ½”套管•2. 第一段射孔–用爬行器拖动射孔枪下入,进行第一段射孔•3. 取出射孔枪,进行第一段压裂作业射孔枪•4. 电缆作业下入桥塞及射孔枪–水平段开泵泵送桥塞至预订位置•5. 点火坐封桥塞•6. 上提射孔枪至预设位置,射孔桥塞+适配接头+E-4电缆下入工具射孔枪•7. 起出射孔枪和桥塞下入工具•8. 压裂作业–投球至桥塞球座,封隔已压裂层,对此层进行压裂作业•9. 用同样的方式,根据下入段数要求,依次下入桥塞,射孔,压裂钻塞过程齿合式设计使上面桥塞剩余部分和下部桥塞锁紧,防止磨铣时的转动连续油管下入磨铣工具低密度钻屑很容易随着循环液返出到井口桥塞完全磨掉,有效防止了底层污染,得到了干净的井筒。
连续油管磨铣管串•连续油管接头•双回压阀•液压丢手接头•非旋转扶正器•双启动循环阀•双向震击器•高强度应急丢手工具•马达•磨鞋•泵排量:3-4bbl/min •马达转速:100-120rpm •钻压:4,000-8,000lb©2009 Baker Hughes Incorporated. All Rights Reserved. 11。
(江汉油田)江汉油田水平井大规模分段压裂施工配套技术PPT课件
现场应用情况
序 号
井号
分段数、 射孔簇和 施工用时
桥塞位置和井斜
压裂施工参数
1
广1-P3
2段×3簇 1天
1550m、1949m 井斜:86 °
泵压20—27.2MPa
2
面4-16X35
3段×3簇 1天
1531.0m、1478.0m 井斜:83.84°
泵压7.4-12.8MPa,最大排量4.1m3/min, 最大砂比64.5%,总加砂量85.25m3,总液
电缆
射孔枪
水力推送压力
坐封工具
桥塞
江汉石油工程有限公司井下测试公司
一、泵送复合桥中塞石化与江射汉石孔油联工程作公技司测术录井公司
复合材料桥塞技术
实心和空心结构 轻质铸铁卡瓦复合材料桥塞
全复合材料桥塞
斜坡和齿状两种自锁形式
工作压差:70MPa 工作温度:150℃ 丢手拉力:140~180KN
江汉石油工程有限公司井下测试公司
泵压43.12-71.04MPa,最大排量 14.7m3/min,最大砂比4.3%,入井总液量
34345m3,支撑剂1209.3m3。
江汉石油工程有限公司井下测试公司
一、泵送复合桥塞与射孔联作技术
现场应用情况
序 号
井号
分段数、射孔 簇和施工用时
桥塞位置和最大井斜
压裂施工参数
1 新1-1HF
8段×1簇 3天
4 新1-5HF
10段×1簇 3天
1587m、1510m、1445m、1380m、 1314m、1260m、1205m、1140m、
1087m,最大井斜: 91.2°
泵压8-20MPa,最大排量7.0m3/min,最大砂 比30.1%,总加砂量630m3,总液量2895.6m3。
水平井水力桥塞分段压裂技术
三、水力泵入式快钻桥塞分段压裂工艺设计
三、水力泵入式快钻桥塞分段压裂工艺设计
——以苏东13-65H2为例
(一)苏东13-65H2井钻完井简况 (二)关键施工环节论证与设计 (三)现场分段压裂施工介绍 (四)应急处理措施
三、水力泵入式快钻桥塞分段压裂工艺设计
n 苏东13-65H2井基本资料
u 储层:盒8 u 深度(TVD):2880~2900m u 孔隙度:5.5~14% u 渗透率:0.03~1md u 含气饱和度:20%~60% u 储层压力:23.2MPa u 储层温度:90°C u 7″技术套管:3136m u 4½″气层套管:4506m u 水平段长度:1370m
二、水力泵入式快钻桥塞分段压裂工具简介
目前常用快钻桥塞主要有三类:
全堵塞式复合桥塞 单流阀式复合桥塞
投球式复合桥塞
二、水力泵入式快钻桥塞分段压裂工具简介
p 工具指标
二、水力泵入式快钻桥塞分段压裂工具简介
(2)复合桥塞座封配套工具
由于复合桥塞的密封系统、锚定系统以及锁紧系统的原理与常规可钻桥 塞类似,因此投送座封工具与常规电缆传送座封桥塞通用,可采用的座封工 具有:
GR 51~54 68~78 53~62 41~48 58~63 49~68 52~62 51~54 49~50 33~51 32~35 32~39 45~49 68~72
提纲
一、水力泵入式快钻桥塞分段压裂技术原理 二、水力泵入式快钻桥塞分段压裂工具简介 三、水力泵入式快钻桥塞分段压裂工艺设计 四、水力泵入式快钻桥塞分段工艺现场施工 五、结束语
n 液压油通过延时缓冲嘴流出,推动 下活塞,使下活塞连杆推动推筒下 行;
n外推筒下行,推动挤压上卡瓦,与此 同时,由于反作用力使得外推筒与芯 轴之间发生相对运动;
压裂工艺ppt
对选择的压裂液进行效果分析,包括性能评估、增产效果等 方面的评估。
油田开发方案中压裂液的配制及应用效果
配制方法
详细介绍所选择的压裂液的配制方法,包括配方、配比等方面的信息。
应用效果
介绍该压裂液在油田现场应用的效果,包括提高产量、降低伤害等方面的效 果。
05
压裂工艺的优势与不足
压裂工艺的优势
2
压裂工艺也可用于改造老油田或气田,提高采 收率。
3
压裂工艺还可应用于开发非常规能源,如煤层 气、天然气水合物等。
02
压裂工艺基本原理
压裂液的组成及作用
总结词
由多种化学剂复配而成,主要 作用为支撑裂缝、清洁裂缝以
及传递压力。
组成
由稠用
压裂液在地层中产生支撑裂缝 ,增大储层渗透率;同时清洁 裂缝,使地层中的流体流动更 加顺畅;并通过传递压力,形
压裂工艺发展历程
压裂工艺起源于20世纪40年代,经历了传统压裂、水力喷 射压裂、多段压裂、水平井压裂等多个阶段,目前正在向 无砂支撑剂和重复压裂方向发展。
中国自20世纪50年代开始应用压裂工艺,目前在该领域的 技术水平已经达到国际先进水平。
压裂工艺应用场景
1
压裂工艺广泛应用于低渗透油田或气田开发中 ,如页岩气、致密气等。
压裂液的配制及使用
总结词
根据实际需求进行配制,使用过程中需严格控制质量。
配制
根据不同的配方和比例,将化学剂和水混合搅拌均匀,制成压裂液。
使用
将配制好的压裂液通过泵送系统注入地层,在高压作用下压开地层并形成裂缝,同时通过清洁和支撑作用提高地层渗透率 。使用过程中需严格控制压裂液的质量和注入速度,以保证压裂效果和安全性。
水平井桥塞分段压裂技术
理原术技裂压段分塞桥钻可式入泵力水、一
。制限深下大最管油续连受度长段平水�业 作塞钻、孔射、井通行进管油续连用采次多需中程过工施术技裂压段分 限受度长段平水井平水 n 。业作合配行进备设喷防口井及以备设业作缆 电、备设业作管油续连用动需�外备设裂压常正处�中程过工施裂压段分 高用费�多备设用动工施 n 。产投管油径直小入下需后压�井气压低于对�塞桥 除钻需�后成完工施�孔射、塞桥入下级逐业作缆电过通需�中程过工施 长较对相期周工施裂压层分 n 性限局艺工裂压段分塞桥钻可式入泵力水 p
业作裂压行进层此对�层裂压已隔封�座球塞桥至球投 业作裂压 .8
理原术技裂压段分塞桥钻可式入泵力水、一
裂压�孔射�塞桥入下次依�求要数段入下据根�式方的样同用 .9
理原术技裂压段分塞桥钻可式入泵力水、一
产求液排�掉磨全完塞桥 n
具工铣磨入下管油续连 n
塞桥除钻管油续连用采�后成完裂压段分 .9
%06�%02�度和饱气含 u
m0092�0882��DVT�度深 u 料资本基井2H56-31东苏 n
计设艺工裂压段分塞桥钻快式入泵力水、三
西东�向方力应主
计设艺工裂压段分塞桥钻快式入泵力水、三
m0.1为度长孔射�域区的07于小数读RG间中级本在择选段孔射 q 段51布分匀均筒井沿段各裂压 q
型选管套与析分力受柱管、1
计设艺工裂压段分塞桥钻快式入泵力水、三
。求要度强足满能均管套种三�中工施常正在�)52.1-0.1(准标的数系 全 98 2 安管套据根 1 1073
79.1 07.1 46.1 34.1 08Nmm42.8 "2/14 33.2 20.2 49.1 96.1 011Pmm73.7 "2/14 96.1 7.63 4.24 1.44 6.05 3.96 8.07 6.86 )apM( 力压内柱管 6.05 6.9 2.8 5.6 )aPM( 阻摩体液 0.0 3.82 3.82 5.42 0.0 74.1 14.1 32.1 08Nmm73.7 "2/14 数系全安 982 9 882 0 052 )m( 深垂
哈里伯顿桥塞+射孔分层压裂PPT课件
1号枪
1号枪 已点火
For Internal Use Only
11
选择性开关/双二极管配置图
4号枪
选择性开关 (类型1)
3号枪
选择性开关 (类型2)
2号枪
Detonator
-
+ + DBeOtoOnaMtor
+
++ + + + + +
++ + + +
2号枪 已点火
1号枪
1号枪 已点火
For Internal Use Only
21
转换接头
For Internal Use Only
22
Arming Sub (or capping sub)
For Internal Use Only
23
Plug shoot adaptor
For Internal Use Only
24
坐封工具点火头
▪ 贝克坐封工具 ▪ 短小
▪ 红色雷管 ▪ 非红色雷管
For Internal Use Only
10
选择性开关/双二极管配置图
4号枪
选择性开关 (类型1)
3号枪
选择性开关 (类型2)
2号枪
双二极管
Detonator
-
- - Detonator
+
- - DBeOtoOnaMtor
-
- - - - - - --
-- - - - -
- - - - - - -- +
+
+
+
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9月15日3:07 9月15日 9月15日
第三层压裂
第四层射孔(电缆传输送凡尔到位 ,破裂压力34MPa 施工压力23-34MPa 停泵压力14MPa 施工排量10.0-10.5m3/min 砂量59m3 前置液量366m3 携砂液 量1317.5m3 顶替液量20m3 平均砂比4.4% 入地液量1703.5m3
40cm
CCL 点火头 射孔枪 多级装置 射孔枪 多级装置 射孔枪 第一点火头 桥塞火头送进工具 桥塞 9.5cm+15.5cm
桥塞零长10.16m 第一枪:5.7m;第二枪:3.72;第三枪:1.78
3、压裂 每次射孔后都进行压裂。
4、钻塞 使用连续油管钻塞。
5、建页HF-1井射孔+压裂日志表格
爆炸桥丝起爆系统的特点: 1、不含起爆药:大大提高火工品的固有安全性; 2、特殊的电路设计:将射频、杂散电流、静电、雷击 等危害拒之门外; 3、能有效抵抗恶劣电磁环境的危害; 4、防误通电:只有在特殊的高压电能的快速作用下才 能起爆。
爆炸桥丝式雷管
负电 Px-1 EBW雷管(桥塞)
电缆
正电
Px-1 EBW雷管(第一级射孔)
EBw雷管是无起爆药的高精密微秒电雷管 。
爆炸桥丝式雷管
5、使用水力推送技术 在水平段采用水力将桥塞和射孔枪泵送到预定位置。
三、工艺特点
1、使用可钻式桥塞
2、使用防喷装置
由于射孔枪和工具推进过程中以及坐封和射孔时井口都是带 压的,所以必须使用电缆井口防喷装置。防喷管内径应大于桥 塞外径。
电缆井口防喷装置(下图是Elmar公司的图片)
盘根盒(防喷盒)
阻流管 密封脂注入头 球阀 上工具捕集器 防喷管 下工具捕集器
防喷器BOP
17:19坐封桥塞 17:36射孔枪第一级点火、 17:40第二级点火、 17:43射孔枪第三 级点火
投球坐封 2000型压裂车传送凡尔到位,破裂压力33MPa 施工压力25-33MPa 停 泵压力16MPa 施工排量10.0-10.5m3/min 砂量59m3 前置液量332m3 携砂液量 1381.7m3 顶替液量21m3 平均砂比4.4% 入地液量1734.7m3 (入地总液量 3212.5m3)
16:20坐封桥塞,16:26射孔枪第一级点火射孔 16:30射孔枪第二级点火射孔 16:34射孔枪第三级点火射孔) 起出射孔枪 枪型89 孔密19 孔数8孔 弹型HSC4500-411T 相位角60度 应射24发 实射16发 射孔率67﹪
投球坐封 2000型压裂车传送凡尔到位,破裂压力35MPa 施工压力24-35MPa 停 泵压力14MPa 施工排量10.0-10.5m3/min 砂量59m3 前置液量333m3 携砂液量 1258.5m3 顶替液量18.5m3 平均砂比4.4% 入地液量1610m3 累计入地总液量 6526m3
注脂控制系统
3、使用多级点火装置 电缆射孔多级点火装置用于电射孔中分级引爆射孔
枪,只需要一个缆芯。装置装在射孔枪接头内,与下 层射孔枪电路连通。下层射孔枪射孔后,井液压力推 动开关杆向上运动,微动开关断开下层射孔枪线路, 接通上层射孔枪线路。
多级点火装置(射孔枪串联接头) 公接头长:9.5cm;母接头长:15.5cm
2、第一次射孔(一般在三层左右)
采用爬行器输送枪进行电缆射孔或采用油管传输射孔,射 孔层位可能有几层。如果采用电缆电缆射孔需要使用多级点火 装置。
2、下桥塞与射孔
桥塞与射孔枪连接在一起,采用水力泵送方式输送桥塞和 射孔枪。需要使用8mm单芯电缆。
电缆输送管串实例图
1.5米规格1.69m
总长10.72m
时间 9月12日16:00 9月13日2:00 9月13日9:0011:00 9月13日17:00 9月14日上午
9月14日下午
9月14日晚上
9月15日3:07
工序 下第一层射孔枪 校深、打压点火 硫化氢溢流防喷演习和压裂演习
备注 13.5MPa 压降至5MPa 继续打压升至13.5MPa 稳压1min 泄压至0
射孔多级点火装置核心部件
4、无起爆药的爆炸桥丝起爆系统(EBWs): 普通电火工品固有安全性低,含有敏感的起爆药或点
火药,在较小的电流作用下就会发火,在非工作时间易被 意外引爆。其安全措施繁琐,给生产管理带来很大不便。 如海上平台作业,在电起爆作业时,关闭平台通讯以及其 他带电作业,可能引起其它不便或安全隐患,降低了整体 作业效率,增加了整体作业成本。
编写:陈永昌
2013年1月
报告内容
一、前言 二、工艺简介 三、工艺特点
一、前言
水平井桥塞分段射孔压裂技术综合了下桥 塞、分段射孔和压裂三种工艺,它主要应用 在页岩气的开采上。采用此工艺的优点在于 能够保证每一段都有很好的压裂效果。
二、工艺简介
1、工艺流程
第一次射孔 压裂 下桥塞、第二次射孔 压裂 下桥塞、第三次射孔 压裂 下桥塞、第四次射孔 压裂 钻塞
小型压裂 第一层压裂
第二层射孔(电缆传输下放射孔枪及桥 塞) 第二层压裂
第三层射孔(电缆传输下放射孔枪及桥 塞)
破裂压力34MPa 施工压力29-34MPa停泵压力15MPa 施工排量10.0-10.5m3/min 砂量46m3 前置液量286m3 携砂液量1089.7m3 顶替液量22.1m3 入地层砂量 46m3 平均砂比4.3% 入的液量1397.8m3