12铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线
-1- 铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中应用最广泛的是铁磁物质。
在20世纪初期铁磁材料主要用在电机制造业和通讯器件中如发电机、变压器和电表磁头而自20世纪50年代以来随着电子计算机和信息科学的发展应用铁磁材料进行信息的存储和纪录例如现以成为家喻户晓的磁带、磁盘不仅可存储数字信息也可以存储随时间变化的信息不仅可用作计算机的存储器而且可用于录音和录像已发展成为引人注目的系列新技术预计新的应用还将不断得到发展。
因此对铁磁材料性能的研究无论在理论上或实用上都有很重要的意义。
磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。
本实验仪用交流电对铁磁材料样品进行磁化测绘的B-H曲线称为动态磁滞回线。
测量铁磁材料动态磁滞回线的方法很多用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下交变磁化及脉冲磁化等进行观察和测绘的独特优点。
一、实验目的1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。
2掌握铁磁材料磁滞回线的概念。
3掌握测绘动态磁滞回线的原理和方法。
4测定样品的基本磁化曲线作μH曲线。
5测定样品的HC、Br、Hm和Bm等参数。
6测绘样品的磁滞回线估算其磁滞损耗。
二、实验原理1铁磁材料的磁滞特性铁磁物质是一种性能特异用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。
其特性之一是在外磁场作用下能被强烈磁化故磁导率μB/H很高。
另一特征是磁滞铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。
即磁场作用停止后铁磁物质仍保留磁化状态图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。
将一块未被磁化的铁磁材料放在磁场中进行磁化图中的原点O表示磁化之前铁磁物质处于磁中性状态即BHO当磁场强度H从零开始增加时磁感应强度B随之从零缓慢上升如曲线oa 所示继之B随H迅速增长如曲线ab所示其后B的增长又趋缓慢并当H增至HS时B达到饱和值BS这个过程的oabS曲线称为起始磁化曲线。
铁磁材料磁滞回线及基本磁化曲线的测量
实验26 铁磁材料磁滞回线和基本磁化曲线的测量铁磁性材料分为硬磁材料和软磁材料。
软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。
铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。
矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。
采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。
本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。
【实验目的】①了解用示波器显示和观察动态磁滞回线的原理和方法。
②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。
③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。
【实验仪器与用具】FB310型动态磁滞回线实验仪,双踪示波器,导线。
【实验原理】1.磁性材料的磁化特性及磁滞回线研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。
铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。
但是B 与H 之间的函数关系是非常复杂的。
主要特点如下:(1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。
起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。
最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
铁磁材料的磁滞回线和基本磁化曲线
一、测量样品之前为什么要退磁?
答:铁磁材料被磁化后,当外磁场强度H减为0后,铁磁材料还保留磁感应强度,称其为铁磁材料的剩磁,只有消除声磁我们在测基本磁化曲线时,对较小的磁场强度H的电压U对应的样品的磁感应强度B才是正确的,才能显示正确的图形。
二、什么叫做初始磁化曲线?
答:当铁磁材料从未磁化状态(H=0且B=0)开始磁化时,B随H的增加而非线性增加。
当H增大到一定值Hm后,B增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
达到磁饱和时的Hm和Bm分别称为饱和磁场强度和饱和磁感应强度。
B~H曲线称为初始磁化曲线。
三、怎样使样品完全退磁,使初始状态在H=0,B=0点上?
答:打开实验仪电源,对样品退磁。
顺时针方向转动励磁电压“U选择”旋钮,使U从0增加到3V,然后逆时针方向转动旋钮,将U从3V降至0。
退磁的目的是使样品处于磁中性状态,即B=0,H=0。
四、什么叫铁刺损耗?
答:当铁磁材料沿着磁滞回线经历磁化→去磁→反向磁化→反向去磁的循环过程中,由于磁滞效应,要消耗额外的能量,并且以热量的形式耗散掉。
这部分因磁滞效应而消耗的能量,叫做磁滞损耗]
[BH。
一个循环过程中单位体积磁性材料的磁滞损耗正比于磁滞回线所围的面积。
铁磁材料的磁滞回线和基本磁化曲线
实验名称:软磁材料磁滞回线和基本磁化曲线的测量铁磁材料按特性分硬磁和软磁两大类.软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯.磁化曲线和磁滞回线是反映铁磁材料磁性的重要特征曲线.矫顽力和饱和磁感应强度B s 、剩磁B r .磁滞损耗P 等参数均可以从磁滞回线和磁化曲线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据.铁磁材料磁化时,其磁感强度随磁场强度的变化非常复杂.有如下特点:1.一块从未被磁化的软磁材料磁化时,当H 由0开始逐渐增加至某最大值H m ,B 也由0开始逐渐增加,由此画出的B -H 曲线o -a 称起始磁化曲线,如图1所示. 起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线很陡,第三阶段曲线又变得平缓.最后B 趋于不变,这种现象称为饱和.饱和时的磁感强度称为饱和磁感强度,记做B s .2.磁化过程中材料内部发生的过程是不可逆的,当磁场由饱和时的H m 减小至0,B 并非沿原来的磁化曲线返回,而是滞后于H 的变化.当H =0时,B =B r ,称为剩余磁感应强度.要想使B 为0,就必须施加一反向磁场-H c .H c 称为矫顽力. 继续加大反向磁场至-H m ,曲线到达a ',磁感应强度变为-B s .磁场再由-H m 变至H m ,曲线又回到a ,形成一条闭合曲线,叫磁滞回线.3.如果初始磁化磁场由0开始增加至一小于H m 的值H 1,然后磁场在- H 1与H 1之间变化,也可以得到一条磁滞回线.但这条曲线不是饱和的.逐渐增加磁场至H 2,H 3,H 4,…(H 2<H 3<H 4…),可以得到一系列磁滞回线.将这些磁滞回线的顶点连起来,就得到基本磁化曲线,如图2所示.H图2 磁滞回线和基本磁化曲线图1 起始磁化曲线和磁滞回线i 1 i 2U xU y N 2 N 1 R 2 隔离变压器示波器R 1220V【实验目的】1.了解有关铁磁性材料性质的知识;2.了解用示波器动态测量软磁材料磁滞回线和基本磁化曲线的原理; 3.学习并体会物理实验方法中的转换测量法;4.掌握用示波器动态测量软磁材料磁滞回线和基本磁化曲线的方法. 【实验器材】(1) GY-4隔离变压器; (2) CZ-2磁滞回线装置;(3) COS5020示波器.【实验原理】软磁材料的样品可做成闭合回路状(如图所示),在样品上绕N 1匝初级线圈和N 2匝次级线圈,初级线圈里通过电流i 1,在样品中产生磁场,其磁场强度为1111x N i N H u l R l== (1) 式中l 是初级线圈所绕样品的平均长度,R 1是与初级线圈串联的电阻,u x 是R 1两端的电压.采用动态测量法,初级线圈里需通过交流电(由隔离变压器提供).样品被磁化后产生变化的磁通量,进而在次级线圈中产生感应电动势:22d d d d d d BN N S t t tψφε=-=-=- S 是样品的截面积.次级线圈的电压正比于磁感强度B 随时间的变化率,必须积分后才能得到B .积分可由RC 电路来完成,电路中满足条件212R fCπ,忽略次级线圈的内阻后,可得:22y R CB u N S=(2) u y 是电容器两端的电压.由此可见u x 正比于H ,u y 正比于B ,将两信号分分别输入到双通道示波器的x 端和y 端,选择x -y 方式,就可以在示波器上得到间接的磁滞回线.定量测量时,记录每一步磁滞回线的定点坐标,由电压参数得到相应的电压值,再根据(1)、(2)计算对应的B 、H 值,从而可做出基本磁化曲线.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,可算出相应的实验值.【实验内容及步骤】 实验内容:1.在坐标纸上做出基本磁化曲线和饱和磁滞回线. 2.给出H c 、B s 、B r 的实验结果. 步骤:1.正确连接线路,调节示波器,观察磁滞回线的形状.2.将隔离变压器电压调至80V 左右,调整磁滞回线至理想的大小和形状,确定实验所需的两通道电压参数.3.将电压缓慢调至零,实现对样品的退磁,并在示波器上调整坐标原点.4.将磁场由0(电压为0)开始,逐步(电压每10V 变化一步)增加至B 达到饱和,记下每一步磁滞回线定点的坐标.5.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,测量时应在>0、<0两点进行测量,取平均值.【数据记录】表1 软磁材料基本磁化曲线绘制的测量数据两通道电压参数: X_____________ Y_____________表2 H c 、B s 、B r 的测量数据注意事项:1.测量前检查示波器两通道的垂直微调旋钮是否在校准位置.2.确定软磁材料饱和时对应隔离变压器的电压,饱和时示波器上类磁滞回线的尖端连接处的两条曲线变得重合. 思考题:1.如果测量前没有将材料退磁,会出现什么情况? 2.用磁路不闭合的样品进行测量会导致什么结果?3.测量时磁场H 是正弦变化的,磁感强度B 是否按正弦规律变化?反之,若磁感强度B 是正弦变化的,磁场H 是否也按正弦规律变化? 附录:磁滞回线装置参数20001=N 匝 1212=N 匝 Ω=121R 216k R =Ω0.132m L = 320.20810m S -=⨯ (100.05)F C μ=±。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线
现磁滞回线。
操作指南(续1)
观察基本磁化曲线。对样品进行退磁,从 U=0开始提高励磁电压,将在显示屏上得到 面积由小到大的一族磁滞回线。这些磁滞回 线的顶点就是样品的基本磁化曲线,长余辉 示波器,便可观察到该曲线的轨迹 。
观察比较样品1和2的磁化性能。 测绘曲线。接通实验仪和测试仪之间的连线。
基本磁化曲线。磁滞回线顶点的连线为铁
磁材料的基本磁化曲线,磁导率。
B
H
3,实验仪器
数码照片 磁滞回线实验组合分为实验仪和测试仪两大部
分。
4,操作指南
电路连接。选样品1按实验仪上所给的电路图 连接线路,令 R1 2.5,“U选择” 置于0 位。U 1 和 U 2 分别接示波器的“X输入”和 “Y输入”。
铁磁材料的磁滞回线 和基本磁化曲线
1,简介
铁磁材料(镍、钴、铁及其合金)在电力、通 讯等领域有着十分广泛的应用。磁滞回线磁滞 回线反映磁性材料在外磁场中的磁化特性。
2,实验原理
铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。
磁化曲线。O点为磁中性状态,即BH0,当磁场H
结语谢谢大家!来自从0开始增加时,B随之缓慢上升,并当H到 H s 时,B达
到饱和值 B s ,到此为磁化曲线。当H减小到0时,B不
为0,而保留剩磁 B r 。 当磁场反向从0逐渐变为时,B消失,即要消除剩磁,必 须加反向磁场。H c 为矫顽力,反映保持剩磁状态的能力。
磁化曲线和磁滞回线
实验原理(续)
磁滞回线。当铁磁材料处于交变磁场中, 将沿磁滞回线反复运动,在此过程中要消 耗额外的能量,并以热的形式释放,为磁 滞损耗。可以证明,磁滞损耗与磁滞回线 所围面积成正比。
12铁磁材料的磁滞回线和基本磁化曲线
实验报告:铁磁资料的磁滞回线和基本磁化曲线一、实验题目:铁磁资料的磁滞回线和基本磁化曲线二、实验目的:1认识铁磁物质的磁化规律,比较两种典型的铁磁物质动向磁化特征。
2 测定样品的基本磁化曲线,作μ-H 曲线。
3计算样品的 H c、 B r、 B m和( H m· B m)等参数。
4测绘样品的磁滞回线,估量其磁滞消耗。
三、实验原理:1铁磁资料的磁滞现象铁磁物质是一种性能特异,用途宽泛的资料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特色是在外磁场作用下能被激烈磁化,故磁导率μ很高。
另一特色是磁滞,即磁化场作用停止后,铁磁质仍保存磁化状态,图1为铁磁物质磁感觉强度 B 与磁化场强度H 之间的关系曲线。
图中的原点0 表示磁化以前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感觉强度 B 随之迟缓上涨,如线段0a 所示,继之 B 随 H快速增加,如ab 所示,其后 B 的增加又趋迟缓,并当H 增至 H m时, B 抵达饱和值,0abs 称为开端磁化曲线,图 1 表明,当磁场从H m渐渐减小至零,磁感觉强度 B 其实不沿开端磁化曲线恢复到“0”点,而是沿另一条新曲线SR降落,比较线段0S 和 SR可知, H减小 B 相应也减小,但 B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的显然特色是当H=0时, B 不为零,而保存剩磁Br 。
BH图 1 铁磁资料的开端磁化曲线和磁滞回线图2同一铁磁资料的一簇磁滞回线当磁场反向从0 渐渐变至 -H C时,磁感觉强度 B 消逝,说明要除去剩磁,一定施加反向磁场, H C称为矫顽力,它的大小反应铁磁资料保持剩磁状态能力,线段RD称为退磁曲线。
图 1 还表示,当磁场按 H m→ 0→ H C→ -H m→ 0→ H C→ H m序次变化,相应的磁感觉强度 B 则沿闭合曲线SRDS′ R′ D′ S 变化,这条闭合曲线称为磁滞回线,因此,当铁磁资料处于交变磁场中时(如变压器中的死心),将沿磁滞回线频频被磁化→去磁→反向磁化→反向去磁。
物理实验报告 铁磁材料的磁滞回线和基本磁化曲线
物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。
在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。
而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。
本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。
二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。
三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。
2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。
3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。
4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。
5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。
6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。
四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。
当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。
五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。
铁磁材料的磁滞回线和基本磁化曲线2021推选
磁选滞样回 品线1按顶实点验的仪连上线所为给铁的磁电材路料图的连基接本线磁路化,曲令线,磁导率。,“U选择” 置于0位。
样品退磁。 按观照察实 比验较内样容品的1和要2求的,磁记化录性所能需。的数据,自己画数据表格。
当铁磁材料处于交变磁场中,将沿磁滞回线反复运动,在此过程中要消耗额外的能量,并以热的形式释放,为磁滞损耗。
现磁滞回线。
操作指南(续1)
观察基本磁化曲线。对样品进行退磁,从 U=0开始提高励磁电压,将在显示屏上得到 面积由小到大的一族磁滞回线。这些磁滞回 线的顶点就是样品的基本磁化曲线,长余辉 示波器,便可观察到该曲线的轨迹 。
O在点外为磁磁场中作性用状下态,,能即被强烈磁化,,磁当导磁率场很H高从。0开始增加时,B随之缓慢上升,并当H到 时,B达到饱和值 ,到此为磁化曲线。
连接线路,令 R2 .5 ,“U选择” 置于0 观按察照比 实较验样内品容的1和要2求的,磁记化录性所能需。的数据,自己画数据表格。
在磁外场磁 作场用作停用止下后,能仍被保强持烈磁磁化化状,态磁,导即率磁很滞高。。 磁 令场作用停止后,仍保测持定磁样化品状1态的,特即性磁参滞数。
精品课件!
精品课件!
5,数据处理
按照实验内容的要求,记录所需的数据,自己 画数据表格。
作图。画磁滞回线至少取50个数据。
谢谢观看
当 可磁以场证反 明向 ,从 磁滞0逐损渐耗变与为磁时滞,回B线消所失围,面即积要成消正除比剩。磁,必须加反向磁场。
观察磁滞回线。令U 2 .2 V ,调节示波器,出 对选样品进1按行实退验磁仪,上从所U给=0的开电始路提图高连励接磁线电路压,,令将在显示屏上,得“到U选面择积”由小置到于大0位的。一族磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告实验的第一部分,我们得先明确铁磁材料的基本概念。
铁磁材料能在外磁场作用下,形成稳定的磁性。
你知道吗?这就是为什么铁钉能吸引铁屑的原因。
实验中,我们使用的是一种常见的铁磁材料,像铁氧体或硅钢片。
通过施加不同强度的外磁场,材料的磁性会发生变化,最终形成一条独特的曲线。
这个过程就像一场舞蹈,材料在外部刺激下,展现出它的“个性”。
接着,进入到实验的具体步骤。
首先,我们把样品放入测试装置。
然后,逐步增加外部磁场的强度。
随着外场强度的增强,材料的磁性逐渐增强,形成了磁化过程。
到了某个临界点,磁性不再增强,似乎是遇到了瓶颈。
这时,咱们要测量一下,记录下这个“转折点”的磁场强度,心里别提多兴奋了!而在反向施加外磁场时,情况就变得有趣了。
磁性逐渐减弱,然后出现了滞后现象。
这种滞后特性,就是所谓的磁滞回线。
我们会发现,这条回线与之前的磁化曲线形成了一个闭合的环。
这种现象不仅让我们看到了材料的记忆效应,更让我们感受到材料的复杂性和奇妙之处。
然后,再深入一些,咱们得讨论一些专业术语。
磁滞损耗,这个名词听起来有点复杂,其实它指的就是在磁场变化过程中,材料吸收的能量损失。
很直观地说,就是材料在不断变化的磁场中,有些能量会“跑掉”。
这就像我们在熬夜时,虽说努力学习,但总有点效率低下,没能全部吸收知识。
接下来的部分,咱们需要把数据整理出来。
将不同强度下的磁感应强度和外磁场强度绘制成图,最终得出一个清晰的磁滞回线。
你看,这就像画一幅画,每一笔每一划都很重要。
这幅图不仅让人一目了然,更是研究磁性材料的重要依据。
然后,咱们再来聊聊应用。
磁滞回线不仅在科学研究中有用,实际上在很多工业应用中也能见到它的身影。
比如说,变压器和电动机的设计,就需要充分考虑到这种特性。
好的设计能够减少能量损失,提高效率,真是一举两得。
最后,咱们总结一下。
这次实验不仅让我们深入了解了铁磁材料的行为,更重要的是,让我们体会到了实验的乐趣。
铁磁材料的磁滞回线及基本磁化曲线_实验报告
铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。
根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。
从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。
关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。
2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。
3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。
4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。
(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。
(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。
5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。
实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ—H曲线;计算样品的H c、Br、B m和(H m,Bm)等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很Array大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B为纵轴,H为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H开始增加时,B随之增加。
如右上图中a,称为起始磁化曲线.当H从H m减小时,B沿滞后于H的曲线SR减小,这就是磁滞现象。
当H=0时,B=Br称为保留剩磁。
当B=0时,H=-H c,H c称为矫顽力。
当磁场沿H m→0→-Hc→-Hm→0→H c→H m次序变化时,相应的B沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线.若铁磁材料在交变电场中不断反复被磁图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的B 能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3。
0V,测量铁磁质的磁滞回线;3、将电压从0。
5V逐渐调至3.0V,依次得到Bm、Hm,从而得到铁磁质的基本磁化曲线.实验数据:磁滞回线:表一:磁滞回线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=0.604T;Hm=194。
0A/m;B r=0.183T;H c=37。
3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2、测定样品的基本磁化曲线,作μ—H 曲线。
3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。
4、了解磁性材料在工程技术中的应用。
二、实验原理1、铁磁物质的磁化特性铁磁物质具有很强的磁化特性,其磁感应强度 B 与磁场强度 H 之间不是简单的线性关系。
当 H 从零开始增加时,B 随之缓慢增加;当H 增加到一定值时,B 急剧增加,这种现象称为磁饱和。
当 H 从最大值逐渐减小时,B 并不沿原曲线返回,而是滞后于 H 的变化,这种现象称为磁滞。
2、磁滞回线当磁场强度 H 从最大值 Hm 逐渐减小到零,再反向增加到 Hm,然后再从 Hm 逐渐减小到零,最后又正向增加到 Hm 时,B 随 H 变化的闭合曲线称为磁滞回线。
磁滞回线所包围的面积表示在一个反复磁化的循环过程中单位体积的铁磁物质所消耗的能量。
3、基本磁化曲线对同一铁磁材料,选择不同的最大磁场强度 Hm 进行反复磁化,可得到一系列大小不同的磁滞回线。
连接这些磁滞回线顶点的曲线称为基本磁化曲线,它反映了铁磁材料在反复磁化过程中的平均磁化特性。
4、磁性材料的分类根据磁滞回线的形状,磁性材料可分为软磁材料和硬磁材料。
软磁材料的磁滞回线狭窄,剩磁 Br 和矫顽力 Hc 都很小,磁导率高,适用于制作变压器、电机的铁芯等;硬磁材料的磁滞回线宽阔,Br 和 Hc都很大,适用于制作永磁体。
三、实验仪器1、磁滞回线实验仪2、示波器四、实验步骤1、按实验仪的电路图连接好线路,确保线路连接正确无误。
2、将样品放入测试线圈中,调节示波器的灵敏度和扫描速度,使示波器上能显示出清晰的磁滞回线。
3、逐渐增加磁场强度 Hm,观察磁滞回线的变化,记录不同 Hm下的磁滞回线。
4、测量磁滞回线的顶点坐标,计算出相应的 Bm、Hm、Br 和 Hc 等参数。
5、绘制基本磁化曲线,即 B—H 曲线。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到Bm 、Hm,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=;Hm=m;Br=;Hc=m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告:铁磁材料的磁滞回线和基本磁化曲线一、实验题目:铁磁材料的磁滞回线和基本磁化曲线二、实验目的:1认识铁磁物质的磁化规律,比较两种典型的铁磁物质动态磁化特性。
2测定样品的基本磁化曲线,作卩-H曲线。
3计算样品的H=、B r、出和(Hn- B m )等参数。
4测绘样品的磁滞回线,估算其磁滞损耗。
三、实验原理:1铁磁材料的磁滞现象铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率卩很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点0表示磁化之前铁磁物质处于磁中性状态,即B=H=0当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段0a所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H m时,B到达饱和值,0abs称为起始磁化曲线,图1表明,当磁场从H m逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“ 0 ”点,而是沿另一条新曲线SR下降,比较线段0S和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当4Bkm1TFi^Hc /~0/ Ho H nB线和磁滞回线当磁场反向从0逐渐变至-H e时,磁感应强度H=0时,B不为零,而保留剩磁Br。
一簇磁滞回线图2同一铁B消失,说明要消除剩磁,必须施加反向ii磁场,f 称为矫顽力,它的大小反映铁磁材料保持剩磁状态能力,线段图1还表明,当磁场按 H 宀H --H m ~ 0^ H e — f 次序变化,相应的磁感应强度 B 则沿 闭合曲线SRDS R D S 变化,这条闭合曲线称为磁滞回线, 所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化—去磁—反向磁化—反向去磁。
在此 过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗。
可以证明,磁滞损耗与磁滞回线所围面积成正比。
应该说明,当初始态为 H=B=O 的铁磁材料,在交变磁场强度由弱到强依次进行磁化, 依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示。
这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率卩 =B/H ,因B 与H的关系成非线性,故铁磁材料卩的不是常数,而是随H 而变化(如图3所示)。
铁磁材料相对磁导率可高达数千乃至数万,这一特点是它用途广泛主要原因之一。
图3 铁磁材料与H 的关系 图4不同材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图 4为常见的两种典型的磁滞回线。
其中软磁材料磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料。
而硬磁材料磁滞回线较宽,矫顽力大,剩磁强,可用来 制造永磁体。
2用示波器观察和测量磁滞回线的实验原理和线路观察和测量磁滞回线和基本磁化曲线的线路如图五所示。
RD 称为退磁曲线。
待测样品EI 型矽钢片,N 为励磁绕组, N 2为用来测量磁感应强度B 而设置的绕组。
R为励磁电流取样电阻,设通过 Ni 的交流励磁电流为 i ,根据安培环路定律,L 为样品的平均磁路长度,其中N i i LU H R,所以有HNJ LR ,样品的磁化场强U H式中N、L、R i的均为已知常数,所以由U H可确定Hoi在交变磁场下,样品的磁感应强度瞬时值 B 是测量绕组和 R 2C 2电路给定的,根据法拉第电磁感定律,由于样品中的磁通①的变化,在测量线圈中产生的感生电动势的大小为图五实验原理线路如果忽略自感电动势和电路损耗,则回路方程为&2=i 2F 2+U B式中i 2为感生电流,U B 为积分电容C 2两端电压设在△ t 时间内,i 2向电容的C 2充电电量QC2i2R 2综上所述,只要将图 5中的U H 和U B 分别加到示波器的“ X 输入”和“ Y 输入”便可观察样品的B-H 曲线,并可用示波器测出U H 和U B 值,进而根据公式计算出 B 和H;用该方法,还可求得饱和磁感应强度 B s 、剩磁Br 、矫顽力注、磁滞损耗VBH 以及磁导率□等参数。
四、实验内容:1电路连接:选样品1按实验仪上所给的电路图连接线路,并令R = Q, “U 选择”置于0d 2 N 2 — dt1 N22dt1 B2dts N 2SU B如果选取足够大的 艮和C 2使i 2艮>> 0心,则£2=i 2R 2'2dQ dT C 2dUdt C 2R 2dU dt由(2)、(3)两式可得C 2R 2N 2SU B上式中C 、F 2、N 2和均S 为已知常数。
所以由 U B 可确定B oS 为样品的截面积。
位。
U H 和U B 分别接示波器的“ X 输入”和“ Y 输入”,插孔为公共端。
2样品退磁:开启实验仪电源,对试样进行退磁,即顺时针方向转动“U 选择”旋钮,令 U从0增至3V 。
然后逆时针方向转动旋钮, 将U 从最大值降为0。
其目的是消除剩磁。
确保样 品处于磁中性状态,即 B=H=0如图6 所示 3观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令 U=,并分别调节示波器 X和Y 轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线。
若图形顶部出现编织状的小环, 如图7所示,这时应该检查示波器的通道输入方式,其中 X 通道应该打到交流输入, Y 通道应该打到直流输入,同时适当降低励磁电压U 予以消除)。
4观察基本磁化曲线:按步骤 2对样品进行退磁, 从U=0开始,逐档提高励磁电压,将在显 示屏上得到面积由小到大一个套一个的一簇磁滞回线。
记录下这些磁滞回线顶点的连线就是样品的基本磁化曲线。
另外,如果借助长余辉示波器,便可观察到该曲线的轨迹。
5调节U=, R i =Q,测定样品1的一组U B 、U H 值,并根据已知条件:L= 75mm S=120mr r i Ni=150 匝,N 2=150匝,C b =20u F , R>=10K Q ,计算出相应的 B 和H 的值。
6根据得到的B 和H 的值作B 〜H 曲线,根据曲线求得 B m , B 、和H=等参数。
并估算曲线的 面积来求得W H 。
7测绘□〜H 曲线:依次测定 U=,…时的十组 U B 、U H 值,计算出相应的 H m 、B m 和卩值,作 □〜H 曲线。
8改变R 1观测不同的磁化曲线。
9观察、测量并比较样品 1和样品2的磁化性能。
五、数据处理:1观察磁滞回线:(样品1 R 1 2.5)调节不当引起的畸变现象* Bggjj IpKHW -----------------[sa.^rrwa £■ |-1M.MB3 串戸煎T *»1C F忙PI”箕,*o erra:tf 幷羽花刊SM 厢庭■耳»"TT^旺吒fil飢¥2取R i为不同的值观察基本磁化曲线:(1) R1 2.5(2) R,0.5-PT 5-n «■■!--M. 1-d.arr-B L «迪lt£■A i«~^r~-q.trg~-Q? 2-fl. MB曲心ira-m A-4.IMH黑诗「科听近J U JL IPl特JM血卩示JiGh E時“畫-rt挥臣罪币■: E Fs=F^ir^4卩即27flit0黑供1加毎耳巨万鼻邀匕空氏|血口细逼|r tl_D_fl「ST 誓J!fiW电胡的电痔柯[STirroi示k •日inWSfl-TrasniAqp^rtwt HWX' |■ Si)■ IM柚匝1™匝悴Q>*If莓蔽平寸崛▼|2 0Tft二X* E♦ratIWIkl(3) R 1 4.53测绘□〜H 曲线:依次测定 U=,…时的十组 U B 、U H 值,计算出相应的 □〜H 曲线。
1NHflJJ IS «SJL 檢L 母蕈 ----------------------------- 1韬品曲1!曲扫匝 I-M飞科=|«却£|:9]严。
A|1ZD V干灯:*|1QO印.0讪口塁只,itu-iwt r . L亠INB m 和卩值,作-n EL-0 RTa x:-ii i-a D^fl容3-□ n?3TT 2-a曲日* 0-Q m3p lQft *Ml轻:t 口.1观宾F Ein祎jy曲借甸W) | I咗.tiL^SEM吸|PH ItSTfE |:為撷二常由图中数据可知:H m 52.579554 A/mB m 0.544271 T1 1S 2H m2B m52.579554 0.544271 28.6175A T/m2 2磁滞损耗为14.059591 J / m3由于数据保存格式无法打开,故暂无法通过图像计算出其他各项具体数据。
4观察样品2的磁化性能。
观察样品2的磁滞回线如下:由数据分析可知,样品 2的磁滞损耗比样品1小。
六、实验结果分析:实验中通过图像直观的反映出了磁滞回线的形态,观测到了磁化曲线。
并且通过比较样品1和样品2。
实验中,原本还想验证教科书上的结论: “当温度升高时,磁滞回线变窄,当温 度达到居里点时磁滞现象消失。
”并想找到居里温度,但由于实验条件有限,未能实施。
bl豐t 二"I s .1E=rfiWiEJj —1”””” —片E 三1走用昭 I附Mii^S=r.环划 --------- 叙晅J& | 存.叭|。