2015年材料力学性能思考题大连理工大学讲解
1.2 大连理工材料力学内部习题集及答案 汇总
l2 = c( F )n 2a A
l2
=
2ac
Fn An
则
l
=
3acF n An
(3)当 n=1 时,上述两解答相同。结论:只有当 与 成线性关系时,叠加法才适用于求伸长。
2-5 试求图示构架点 C 的铅垂位移和水平位移,已知两根杆的抗拉刚度均为 EA。
B
D
45°
C F
(a)
F BC
FCD
F (b)
第二章 轴向拉伸和压缩
2-1 一圆截面直杆,其直径 d=20mm, 长 L=40m,材料的弹性模量 E=200GPa,容重γ=80kN/m3, 杆 的上端固定,下端作用有拉力 F =4KN,试求此杆的:
⑴最大正应力;
⑵最大线应变;
⑶最大切应力;
⑷下端处横截面的位移 。
B
B
5004.8N
L x
+
A
A
绳的伸长量为
F (b)
G P
A
B
H CD
L
=
TL EA
=
80 103 8 7 210109 100 10−6
=
4.3510−3 m
在F 作
用下结构变形如图 (c) ,
可得:
(c) 题2-6图
LB + LD = L = 4.3510−3 m (1)
再由三角几何关系得:
LB = AB = 5
(2)
LD AD 9
(1) 试计算杆的总伸长; (2) 如果用叠加法计算上述伸长,则所得的结果如何? (3) 当 n=1 时,上述两解答是否相同?由此可得什么结论?
F1
F2
a
a
F
材料力学性能实验报告
大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。
2、掌握金属材料屈服强度σ0.2的测定方法。
3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。
4、简单了解万能实验拉伸机的构造及使用方法。
二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。
此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。
通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。
在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。
用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。
三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。
液压式万能实验机是最常用的一种实验机。
它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。
(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。
其加载方式是液压式的。
在机座上装有两根立柱,其上端有大横梁和工作油缸。
大连理工大学精品课程-材料力学性能-第一章-金属断裂(3)
2020年7月27日 第一章 单向静载下材料的力学性能 星期一
假设一完整晶体受拉应力
F
作用后,原子间结合力与
引力
m
原子间位移的关系曲线如
a0
图 1-69 所 示 。 曲 线 最 大 值
2
原子位移x
斥力
m代表了晶体在弹性状态
下的最大结合力——理论
图1-69 原子间作用力与 原子位移曲线
断裂强度。作为近似,该曲线用正弦曲线表示:
由和式可得:m E ········· 2 a0 ···
另一方面,晶体脆性断裂时产生两个新的表面。
设单位面积的表面能为s,形成单位裂纹表面外力所 4 作的功U0应为-x曲线下所包围的面积:
2020年7月27日 第一章 单向静载下材料的力学性能 星期一
U 0
2
m sin
2xdx
m
·········
材料的s实际上由表面能和塑性变形功组成,称为有效
表面能。塑性变形功与材料的有效滑移数目及裂纹尖端附近 可动位错数目有关。如bcc金属的有效滑移系数目多,但位 错受杂质原子的钉扎,可动位错数目少,易于脆性断裂。而
20 fcc金属的有效滑移系数目和可动位错数目都比较多,
2020年7月27日 第一章 单向静载下材料的力学性能 星期一
适用于塑性变形 诱发的裂纹
2020年7月27日 第一章 单向静载下材料的力学性能 星期一
三、断裂理论的意义
前已述及,公式 c 2Gs 是金属材料屈服时产
ky d
生解理断裂的判据。那么,应该有
1
c s i kyd 2
1
(id 2 ky)ky 2Gs
1
考虑应力状态的影响,上式可写成 (id 2 ky)ky 2Gsq
材料力学性能大连理工大学课后思考题答案解读
第一章 单向静拉伸力学性能 一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
2015年材料力学性能思考题大连理工大学讲解
一、填空:1.提供材料弹性比功的途径有二,提高材料的__________________________ ,或降低 ___________ 。
2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是_____________ 具有的普遍现象。
3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为 _______________ 与_______________ ;按照晶体材料断裂时裂纹扩展的途径,分为 _________________ 和________________ ;按照微观断裂机理分为 _____________ 和___________ ;按作用力的性质可分为_________ 和_________ 。
4•滞弹性是指材料在_______ 范围内快速加载或卸载后,随时间延长产生附加的 _________ 现象,滞弹性应变量与材料—、__________ 有关。
5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力_______ ;反向加载,规定残余伸长应力__________ 的现象。
消除包申格效应的方法有 ____________ 和____________ 。
6. _______________________________ 单向静拉伸时实验方法的特征是、、 _____________________________________ 必须确定的。
7.过载损伤界越_____ ,过载损伤区越—,说明材料的抗过载能力越强。
8.依据磨粒受的应力大小,磨粒磨损可分为___________________ 、___________ 、 _____________________ 三类。
9. _________________________________ 解理断口的基本微观特征为____ 、 _________________________________________ 和____________ 。
大连理工大学精品课程-材料力学性能-第四章-金属的断裂韧度(2)
建立符合塑性变形临界条件(屈服)的函数表达
式r=f(),该式对应的图形即代表塑性区边界形状,
其边界值即为塑性区尺寸。
由材料力学可知,通过一点的主应力1、2、 3和x、y、z方向上各应力分量的关系为:
7
2020年7月30日 星期四
第四章 金属的断裂韧度
1 x y
2
x
2
y
2
2 xy
1 K cos 1 sin
展。我们将x方向(=0)的塑
性区尺寸r0定义为塑性区宽 度。
10
图4-2 裂纹尖端附近塑性区 的形状和尺寸
2020年7月30日 星期四
第四章 金属的断裂韧度
r0
1
2
K
ys
2
KI—应力场强度因子
ys—有效屈服应力
s—单向拉伸时的屈服强度 —泊松比
r0
1
2
K
s
2
(平面应力)
r0
(1 2 2
)2
、有效裂纹及KI的修正 由于裂纹尖端塑性区的存在,会降
低裂纹体的刚度,相当于裂纹长度的增
加,因而会影响应力场及KI的计算,所 以要对KI进行修正。最简单和实用的方 法是在计算KI时采用虚拟等效裂纹代替 实际裂纹。
20
2020年7月30日 星期四
第四章 金属的断裂韧度
如图4-5所示,裂纹a前方
区域未屈服前,y的分布曲线
2020年7月30日 星期四
第四章 金属的断裂韧度
KI≥KI(KIC)是一个很有用的关系式,它将 材料的断裂韧度同机件的工作应力及裂纹尺寸 的关系定量地联系起来了。应用这个关系式可 解决有关裂纹体的断裂问题:如可以估算裂纹
体的最大承载能力、允许裂纹尺寸a及材料断
大连理工大学精品课程-材料力学性能-第一章-塑性变形(4)
6
系数),是真实应变等于1.0时的真实应力
2020年7月25日 第一章 单向静载下材料的力学性能 星期六
这几个公式的相关系数都在0.99以上。 ★Swift公式中的e0相当于预应变值,用于描述同 一材料或相同形变硬化特性材料经过不同预应变 的流变曲线。 ★ Lüdwick公式中的S0相当于屈服应力,用于描 述具有相似形变硬化特性但有不同屈服应力时的 流变曲线。 ★ Hollomon公式最简单,目前被广泛采用。 7
工程应力-应变曲线
e
4
图1-41 真实应力-应变曲线和工程应力-应变曲线比较
2020年7月25日 第一章 单向静载下材料的力学性能 星期六
通过流变曲线的拟合表达式(经验方程 式),可以找出表征形变强化能力的参量。在 拉伸试验中,对塑性较好的材料,一般会在均 匀塑性变形终结且承力水平达到极值以后出现 颈缩,使试样进入非均匀的集中塑性变形阶段, 所以,上述拟合分析既可针对均匀塑性变形阶 段,也可针对非均匀塑性变形阶段或全过程进 行,只需进行修正即可。 5
2020年7月25日 第一章 单向静载下材料的力学性能 星期六
2.应变硬化和塑性变形适当配合,可使金属进行 均匀塑性变形,从而保证冷变形工艺顺利实施。
金属的塑性变形是不均匀的,时间上也有先 后,由于金属具有应变硬化能力,哪里有变形, 它就在哪里阻止变形的继续发展,从而使变形转 移到别处去,变形和硬化交替进行就构成了均匀 塑性变形,从而获得合格的冷变形加工的金属制 品。 21
是需要不断增加外力才能继续进行,这说明金属有
一种阻止继续塑性变形的抗力,这种随着塑性变形
的增大形变抗力不断增大的现象叫形变硬化。
❖位错交割——形成割阶
❖位错反应——形成固定位错 2 ❖位错增值——提高位错密度
大连理工大学精品课程-材料力学性能-第一章-金属断裂(2)
解理面(001) 扩展方向[110]
挛晶面(112) 挛晶方向[111]
27
图1-67 解理舌形成示意图
2020年7月26日 第一章 单向静载下材料的力学性能 星期日 准解理
材料中弥散细小的第二
相影响裂纹的形成与扩展,
使裂纹难于严格按一定晶体
学平面扩展,断裂路径不再 与晶粒位向有关,主要与细 小碳化物质点有关。其微观 特征似解理河流但又非真正 28 解理,故称准解理。
24
图1-64 河流通过大角度 晶界时的扇形花样
2020年7月26日 第一章 单向静载下材料的力学性能 星期日
当解理裂纹通过扭转晶界时,因晶界两侧晶
体以边界为公共面转动一个角度,使两侧解理裂
纹存在位向差,故裂纹不能直接越过晶界而必须
重新成核,裂纹将沿若干组
新的相互平行的解理面扩展
而使台阶激增,形成为数众
1
m
E s
a0
2
s——表面能;
a0——原子面间距; E——弹性模量
1
1
形成裂纹的力学条件为: (f
i )
d
2
Es 2
2r a0
可得: f i 2Er s
da0
f——形成裂纹所需
的切应力;
7
2020年7月26日 第一章 单向静载下材料的力学性能 星期日 (二)、解理裂纹的扩展 以上所述主要涉及解理裂纹的形成,并不意味 着由此形成的裂纹将迅速扩展而导致材料断裂。解 理断裂过程包括以下三个阶段:塑性变形形成裂 纹;裂纹在同一晶粒内初期长大;裂纹越过晶界向 相邻晶粒扩展。
多的 “河流”,这与通过大角
度晶界的情况类似。
25
图1-65 河流花样通过扭转晶界
大连理工大学精品课程-材料力学性能-第五章-影响疲劳强度的因素
2020年8月3日星 期一
第五章 金属的疲劳
影 响 因 素
3
工作条件
载荷条件 载荷频率 环境温度 环境介质
表面状态及 尺寸因素
尺寸效应 表面粗糙度 缺口效应
应 应 过次平
力 力 载载均
状 比 情情应
态
况况力
表面处理 材料因素
表面喷丸及滚压
表面热处理
表面涂层 化学成分 组织结构 各向异性 内部缺陷
26
2020年8月3日星 期一
第五章 金属的疲劳
喷丸只对承受弯曲、扭转疲劳的机件有用, 对拉压疲劳机件虽可阻止裂纹在表面萌生, 但却助长了裂纹在次表面的萌生,不仅不 利于提高疲劳强度,甚至有害。
滚压和喷丸类似,不过其压应力层深度较 大,适用于大工件,表面粗糙度低时强化 效果更好,但要求工件形状相对简单。提 高疲劳寿命的程度比喷丸要高1倍以上。
第五章 金属的疲劳
试验表明,加载应力低于并接近疲劳极限时,间歇提高疲 劳寿命比较明显,而间歇过载加载对疲劳寿命不但无益,甚至有害。 因为次载时有疲劳强化,间歇有应变时效强化,故能提高疲劳寿命。 而过载造成损伤累积有疲劳弱化,间歇没有效果。次载间歇有一个 最佳的间歇时间,与加载应力的大小有关,应力高,最佳间歇期短, 应力低,最佳间歇期长。间歇间隔周次也有一个最佳值,只有用合 适的间歇时间和最佳的间隔周次进行间歇加载,才会有效提高疲劳 强度和寿命。
27
2020年8月3日星 期一
第五章 金属的疲劳
表面热处理及表面化学热处理:
整体加热(低淬透性钢、薄壳件)
利 表面淬火 火焰加热
用组织
相变获得表
感应加热
面强化,可使机
件获得表硬心韧的 表面化学热处理
大连理工大学精品课程-材料力学性能-第七章-金属的磨损(3)
V-冲蚀磨损体积 M-冲蚀粒子的总质量 v0-粒子入射初速度
18
s-材料屈服强度 -冲击角 0-临界冲击角,0=18.43º
2020年8月7日星 期五
第七章 金属的磨损
由、式可知,冲击角对冲蚀磨损量有 重要影响:18.43º时,冲蚀磨损体积随冲击 角增加明显增加;>18.43º时,冲蚀磨损体积
10
2020年8月7日星 期五
第七章 金属的磨损
微动疲劳中,通常以疲劳强度下降比
frett 1
或疲劳强
1
度下降系数D
(
) frett
1
1
来表示微动损伤的影响。上式中的
1
通常是指寿命为107循环周次的疲劳强度,不一定是真正的
疲劳极限,因为在微动损伤后,即使原先有疲劳极限的材
料,此时也可能不再有疲劳极限了。表7-2示出了材料-1和
随冲击角增加逐渐降低。 实际上,塑性材料表面冲蚀坑是在短程微
切削和塑性变形作用下形成的,在粒子反复冲 击及材料反复塑性变形情况下形成磨屑致使材 料流失。 19
2020年8月7日星 期五
第七章 金属的磨损
脆性材料如陶瓷、玻璃等,其冲蚀磨损是 裂纹形成与快速扩展的过程。当用锐角粒子冲 击脆性材料表面时,人们发现产生两种形状的 裂纹:一种是垂直于表面的初生径向裂纹,另 一种是平行于表面的横向裂纹。在粒子冲击下, 径向裂纹形成及其扩展降低了材料强度,横向 裂纹形成并扩展到表面致使材料脱落变为磨屑 而流失,如图7-14所示。 20
Finnie认为,塑性材料如铝、低碳钢等,表面
受粒子冲击形成冲蚀坑并导致材料流失是由于短程
切削作用所致。他在几个假定的条件下给出下列估
算冲蚀磨损量的公式:
大连理工大学精品课程-材料力学性能-第二章-硬度
0.102F 0.204F sin 68
F
HV
A
d2
0.1891d 2
维氏硬度常用试验力范围在5kgf~100kgf。也
可选择0.01kgf~0.1kgf用以测定薄膜的硬度,亦即
19 显微维氏硬度。
2020年7月28日 第二章 其他静载荷下材料的力学性能 星期二
维氏硬度表示方法:硬度值-符号HV-试验力-试 验力保持时间(10~15s不标注)。如640HV30表示在试验力 为30kgf下保持10~15s测得的维氏硬度值为640。
布氏硬度试验的缺
点是对不同的材料需更
布 氏
硬
换不同直径的压头和改
度
试
变试验力,测量压痕直
验 机
径也比较麻烦,用于自
动检测时受到限制,并
且压痕直径较大时也不
9 宜在成品上试验。
2020年7月28日 第二章 其他静载荷下材料的力学性能 星期二
布氏硬度表示方法: 600HBW1/30/20?
按顺序:硬度值-符号HBW-压头直径 -试验力-试验力保持时间(10~15s不标 注),其中后三项之间用/隔开。如 350HBW5/750 表 示 : 用 直 径 5mm 的 硬 质 合金球在750kgf作用下保持10~15s测得的 硬度值为350。
2020年7月28日 第二章 其他静载荷下材料的力学性能 星期二
金刚石圆锥压头k=0.2mm; 洛
氏
淬火钢球或硬质合金球压头 硬
度
k=0.26mm。
试
验
实际使用的洛氏硬度计, 机
其测量压痕深度的百分表表
盘上的刻度已按上式换算为
相应的硬度值,可直接读出。
14
2020年7月28日 第二章 其他静载荷下材料的力学性能 星期二
大连理工大学精品课程-材料力学性能-第二章-缺口静载荷试验
强度bn与光滑试样的抗拉强度b的比值来衡量,
称为缺口敏感度NSR(Notch Sentivity Ratio),N
SR=bn/b, NSR越大,缺口敏感性越小。脆
性材料的NSR总是小于1,表明缺口根部尚未 发生明显塑性变形时就已经断裂了。高强度材 料NSR一般也小于1,塑性材料的 NSR大于1。 NSR也是安全性的力学性能指标。 21
下的应力分布
5
2020年8月5日星 第二章 其他静载荷下材料的力学性能 期三 纵向伸长将引起横向收缩。若在缺口附近不 同距离内取若干同样大小的微单元,离缺口最近 的微单元y最大,产生的纵向伸长也最大,相应 的横向收缩也最大,与其相邻的微单元y相对较 小,横向收缩也较小,即这些微单元在x方向的收 缩量各不相等。横向收缩将引起相邻微单元间的 分离,但材料的变形是连续的,各微单元被联系 在一个整体内,不能自由收缩,受到约束,这样 6 就在x方向存在一个拉应力x。
态下,尽管应变是二向的,应力却是三向的。
11
2020年8月5日星 第二章 其他静载荷下材料的力学性能 期三
按Tresca 判据:1=s/(1-2)。 按Mises判据: 1=s/(1-2)。 这表明在平面应变且1=2的情况下,屈服条件 可写成: 1=ys=s/(1-2),以金属材料为例,取 =0.3,则ys=2.5s。可见一旦出现三向拉伸的应
(1-2)2+ (2-3)2+ (3-1)2=2s2,认为在三向应力作用
下,形状改变比能达到材料在单向拉伸屈服时的形状改变
比能时,材料就会屈服。同样可得:1=s。这个结果表 明,在平面应力且1=2的情况下,如果把屈服时的最大 主应力叫做有效屈服应力ys,则屈服条件可写成: 1= ys =s,即有效屈服应力与单向拉伸时的屈服应力相同。 ❖平面应变状态:此时1≠0,2≠0,3=0。我们同样设定 1=2,由广义胡克定律:3=21。可见在平面应变状
碳纤维增强复合材料力学性能的试验与分析
2) 宽度 :对于碳纤维织物 ,因其中碳纤维束丝按 一定密度排列 ,因此在尺寸设计时主要考虑保证试样 中含有的碳纤维束丝为整数根 ,宽度近似 15mm。 113 腐蚀环境条件下力学性能试验的试样准备
1) 碱溶液浸渍 :碱溶液的成分为 1L 的去离子水 中 ,含有 11815gCa (OH) 2 、019gNaOH、412gKOH。试样 在密闭容器中浸渍时间为 3 个月 。
碳纤维增强复合材料力学性能的试验与分析
李苏苏 陈凤山 刘 毅
(大连理工大学 土木水利学院 大连 116024)
摘 要 : 通过盐溶液浸渍试验 、碱溶液浸渍试验及人工加速老化试验 ,研究碳纤维增强复合材料 (CFRP) 在腐蚀环境条件下的力学性能 ,进行 CFRP 拉伸试验的应力 - 应变曲线分析及力学性能显著性分析 。研究表 明 ,CFRP 具有良好的耐腐蚀性 ,在腐蚀环境中拉伸强度无显著变化 ,伸长率有显著变化 ;拉伸弹性模量在盐 、 碱溶液浸渍环境下有显著变化 ,在人工加速老化环境下无显著变化 。 关键词 : 碳纤维增强复合材料 腐蚀 力学性能
462160
35
盐溶液浸渍
40
4 280128
531180
40
人工加速老化 44
4 383173
378199
45
伸长率
均值Π%
2194 2180 2133 2133 2143
材料力学性能课后习题答案
材料力学性能课后习题答案绪论1、简答题什么是材料的性能?包括哪些方面?[提示] 材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。
包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。
第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。
弹性比功:弹性变形过程中吸收变形功的能力。
包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。
弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。
实质是产生100%弹性变形所需的应力。
滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断口。
2、简答1) 材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标?解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E 小,反之亦然。
○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。
○3化学成分,○4微观组织○5温度,温度升高,E下降○6加载条件、负载时间。
对金属、陶瓷类材料的E 没有影响。
大连理工大学精品课程-材料力学性能-第三章-冲击韧性
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三
毡座上除了两端的支承块外,中心部分还有一挠度终止 块,以限制试样产生过大的塑性变形。落锤的能量、支承块 的跨距和挠度终止块的厚度应根据材料的屈服强度及板厚选 择。试样一面堆焊一层脆性合金用于诱发裂纹,中间留一缺 口。试样冷却到一定温度后放在毡座上,然后落下重锤。随 试样温度下降,其力学行为将发生如下变化:不裂拉伸侧 表面部分形成裂纹,但未发展到边缘拉伸侧表面裂纹发展 到一侧边或两侧边试样断裂。一般取拉伸表面裂纹发展到 一侧边或两侧边的最高温度为NDT。
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三
冲击功AK
重结晶脆性: 在A1~A3温度区
间,钢中为、
冷脆
蓝脆
重结晶脆性
两相混和组织,
O
冲击值较低,这
525~550℃ A1 温度℃
图3-15 钢的常见脆性温度范围
种脆性称为重结
晶脆性。
17
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三
8
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三
晶体结构:fcc金 属及其合金一般不
存在低温脆性,bcc 金属及其合金存在
明显的低温脆性。
图3-11所示为不同 材料的冷脆倾向。
9
图2-11 不同材料的冷脆倾向
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三
显微组织:细化晶粒使钢的 韧性增加。主要原因是:晶 界是裂纹扩展的阻力;晶界 前塞积的位错数减少,有利 于降低应力集中;晶面总面 积增加,使晶界上杂质浓度 减少。
4
2020年7月29日 第三章 冲击载荷下材料的力学性能 星期三 第五节 影响冲击韧性的因素
大连理工大学精品课程-材料力学性能-第八章-应力腐蚀
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
应力腐蚀断裂并不是金属在应力作用下的机械 性破坏与在化学介质作用下的腐蚀性破坏的迭加所 造成的,而是在应力和化学介质的联合作用下,按 特有机理产生的断裂,其断裂抗力比单个因素分别 作用后再迭加起来的要低得多。所以发生应力腐蚀 时,应力可以是很低的,介质的腐蚀性也可以是很 弱的,也正因如此,应力腐蚀经常受到忽视,导致 “意外”事故不断发生,经常造成灾难性的后果。 4
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
应力腐蚀显微裂纹有分 叉现象,呈枯树枝状,如图 8-2所示。表明在应力腐蚀 时,有一主裂纹扩展较快, 其它分支裂纹扩展较慢。根 据这一特征可以将应力腐蚀 与腐蚀疲劳、晶间腐蚀及其 它形式的断裂区分开来。 12
图8-2 应力腐蚀裂纹的分叉现象
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
2.应力腐蚀造成的破坏是脆性断裂。 3.纯金属一般不发生应力腐蚀。只有在特定的合金 成分与特定的介质组合时才会造成应力腐蚀。 4.应力腐蚀的裂纹扩展速率一般在10-9~10-6m/s, 是比较缓慢的,达到某一临界尺寸时产生失稳扩展 导致断裂。 5.应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的 扩展常垂直于拉力轴。 10
渡区,当KI≥KIC时,裂纹失稳扩展断裂。
第II阶段越长,材料抗应力腐蚀性能越好。如果能测出此阶段da/dt及结
25束时的KI值,就可估算出机件在应力腐蚀条件下的剩余寿命。
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
六、防止应力腐蚀的措施
从产生应力腐蚀的条件来看,防止应力腐蚀的措 施,主要是合理选择金属材料,减少或消除机件中的 残余应力及改变化学介质条件。此外,也可以采用电 化学方法进行保护。 1.合理选择金属材料:针对机件所受的应力和接触的 化学介质,一个基本原则是选用耐应力腐蚀的金属材 料。例如铜对氨的应力腐蚀敏感性很高,那么接触氨 气氛的机件就应避免使用铜合金。
材料力学思考题
材料力学思考题材料力学作为工程学科中的重要基础课程,对于工程学生来说是一门极具挑战性的学科。
在学习过程中,我们不仅需要掌握理论知识,还需要具备一定的实践能力和思维能力。
因此,今天我将为大家提出一些材料力学的思考题,希望能够帮助大家更好地理解和应用这门学科。
1. 为什么在工程材料的研究中,常常会用到应力-应变曲线?应力-应变曲线是描述材料在受力过程中应力和应变之间关系的重要参数。
通过应力-应变曲线,我们可以了解材料的力学性能,如屈服强度、抗拉强度、断裂强度等。
这些参数对于工程设计和材料选择具有重要的指导意义。
因此,在工程材料的研究中,常常会用到应力-应变曲线。
2. 为什么金属材料在拉伸过程中会出现颈缩现象?在金属材料的拉伸过程中,由于材料的应力分布不均匀,会导致材料出现局部缩颈现象。
这是由于材料在拉伸过程中,受力作用下出现应力集中,导致材料局部变形,最终形成颈缩。
这种现象在金属材料的拉伸试验中经常会出现,对于材料的力学性能研究具有一定的影响。
3. 为什么在材料的蠕变过程中会出现塑性变形?材料的蠕变是指在高温和高应力条件下,材料会发生持续的塑性变形。
这是由于在高温和高应力的环境下,材料的晶体结构发生变化,从而导致材料出现塑性变形。
蠕变现象在工程材料的高温应用中具有重要的意义,因此对于材料的蠕变行为进行研究具有重要的工程价值。
4. 为什么在材料的疲劳过程中容易出现裂纹?材料的疲劳是指在受到交变载荷作用下,材料会发生裂纹和最终断裂的现象。
这是由于在疲劳载荷作用下,材料内部会出现应力集中和微观损伤,最终导致裂纹的产生。
因此,在材料的疲劳过程中容易出现裂纹,这对于工程结构的安全性具有重要的影响。
5. 为什么在材料的断裂过程中会出现脆性断裂和韧性断裂?材料的断裂过程可以分为脆性断裂和韧性断裂两种类型。
脆性断裂是指材料在受到外力作用下,会出现迅速断裂的现象;而韧性断裂是指材料在受到外力作用下,会出现一定的变形和吸能过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空:1.提供材料弹性比功的途径有二,提高材料的,或降低。
2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。
4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。
5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。
消除包申格效应的方法有和。
6.单向静拉伸时实验方法的特征是、、必须确定的。
7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。
8. 依据磨粒受的应力大小,磨粒磨损可分为、、三类。
9.解理断口的基本微观特征为、和。
10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。
11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、和。
12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。
14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为、和三大类;在压入法中,根据测量方式不同又分为、和。
15. 国家标准规定冲击弯曲试验用标准试样分别为试样和试样,所测得的冲击吸收功分别用、标记。
16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。
17. 机件的失效形式主要有、、三种。
18.低碳钢的力伸长曲线包括、、、、断裂等五个阶段。
19.内耗又称为,可用面积度量。
20.应变硬化指数反映了金属材料抵抗均匀塑性变形的能力,在数值上等于测量形成拉伸颈缩时的。
应变硬化指数与金属材料的层错能有关,层错能低者n值。
冷加工状态n值。
晶粒粗大材料n值。
21. 是材料抵抗无限次应力循环也不疲劳断裂的强度指标。
22. 应力状态软性系数:用试样在变形过程中的测得和的比值表示。
23.微孔聚集型断裂是包括微孔、直至断裂的过程。
24.缺口试样的与等截面光滑试样的的比值。
称为“缺口敏感度”。
25.机件在冲击载荷下的断口形式仍为、和。
26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。
27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。
28. 洛氏硬度是在一定的实验力下,将120º角的压入工件表面,用所得的来表示材料硬度值的工艺方法。
28.低温脆性是随的下降,材料由转变为的现象。
29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的倾向。
31. 疲劳破坏形式按应力状态分为、、、及。
按应力高低和断裂寿命分为和。
32. 典型的疲劳断口具有、、三个特征区。
33. 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。
34. 金属材料的疲劳过程也是裂纹的和过程。
35.金属材料抵抗疲劳过载损伤的能力,用或表示。
36.金属在和特定的共同作用下,经过一段时间后所发生的现象,成为应力腐蚀断裂。
37.应力腐蚀断裂的最基本的机理是和。
38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫做。
39.氢致脆断裂纹的拓展方式是式,这是与应力腐蚀裂纹式扩展方式是不同的。
40.钢的氢致延滞断裂过程可分为、、三个阶段。
41.典型氢脆类型包括、、、。
42. 机件正常运行的磨损过程一般分为、、段三个阶段。
减轻粘着磨损的主要措施有、、。
43. 按磨损模型分为:、、、、五大类。
44.韧窝是微孔聚集型断裂的基本特征。
其形状视应力状态不同分为下列、、三类。
其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。
45. 磨损量的测定方法有和两种,单位摩擦距离单位压力下的磨损量称之为。
46. 国家标准规定了四种断裂韧性测试试样:、、和。
47.过载持久值越高,说明材料在相同的过载荷下能承受的应力循环周次,材料的能力越强。
48. 按照蠕变速率的变化,可将蠕变过程可分为、和三个阶段。
49. 金属材料的蠕变变形主要是通过、等机理进行的。
50.当试验温度低于某一温度t k时,材料由状态变为状态,冲击吸收功明显下降,断裂机制由型变为断口特征,断口由状变为状,这就是低温脆性。
51.韧脆转变温度t,也是金属材料的指标,它反映了温度对材料的k影响。
也是性能指标,是从韧性角度选材的重要依据之一,可用于抗脆断设计。
52. 金属材料在长时高温载荷作用下的断裂大多为断裂。
在不同的应力和温度条件下,晶界裂纹的形成方式有、两种。
53. 金属材料蠕变断裂断口的宏观特征为:一是在断口附近产生,在变形区域附近有许多,使断裂机件表面出现现象;另一个特征是由于高温氧化,断口表面往往被一层覆盖。
54. 金属材料蠕变断裂断口的微观特征主要是冰糖状花样的。
55. 蠕变极限是表示材料在高温长时间载荷作用下的抗力指标,是选用高温材料,设计高温下服役机件的主要依据之一。
56. 描述材料的蠕变性能常采用、、等力学性能指标。
57. 缺口偏斜拉伸试验过程中,试样在承受拉伸力的同时还承受力的作用,承受复合载荷,故其应力状态更,缺口截面上的应力分布更,因而,更能显示材料的缺口敏感性。
58. 要在同一材料上测得相同的布氏硬度,或在不同的材料上测得的硬度可以相互比较,压痕的形状必须,压入角应。
59.高温下材料晶内和晶界的强度均随温度升高而,但晶界的强度降低速度比晶内的降低速度。
60.根据剥落裂纹起始位置及形态不同,接触疲劳破坏分为、和三类。
61. 是引起疲劳破坏的外力,它是指大小、方向均随时间变化的载荷。
62.紧凑拉伸试样预制裂纹后在固定应力比和应力范围条件下循环加载,随的变化曲线即为疲劳裂纹扩展曲线。
63.疲劳裂纹不扩展的应力强度因子范围临界值,称为。
64.产生疲劳微观裂纹的主要方式有、和。
65.疲劳裂纹扩展第二阶段断口最重要的特征是具有。
66.驻留滑移带在加宽过程中,还会出现和,其成因可用柯垂耳-赫尔模型描述。
67.剪切断裂和解理断裂都是断裂。
前者受剪切力作用是断裂,后者受正应力作用,属断裂。
断裂性质完全不同。
也就是说断裂既可能是韧性断裂也可能是脆性断裂。
取决于材料的本性和力的作用方式。
68解理断裂是沿特定界面发生的脆性断裂,解理断裂实际上是沿一族相互平行的晶面解理而引起的。
这些解理面称为。
69.若干相互平行的而且位于不同高度的解理面,从而形成解理断口的基本微观特征。
二、概念:1.韧脆转变:2.内耗:3.解理裂纹:4.弹性:5.低温脆性:6.低应力脆断:7.过载持久值:8.滞弹性:9.穿晶裂纹:10.疲劳缺口敏感性:11.韧脆转变温度:12.循环韧性:13.解理刻面:14.韧性:15.小范围屈服:16.有效裂纹长度:17.缺口敏感度:18.穿晶断裂:19.解理断裂:20.氢致延滞断裂21.应力腐蚀22.白点23.接触疲劳24.耐磨性25.粘着磨损26.约比温度27.松弛稳定性28.等强温度29持久强度30.蠕变极限三、分析问答题第一章1.试分析金属材料在屈服阶段为何存在上下屈服点?2.循环韧性有何工程意义?选择音叉需要选择循环韧性高的还是低的材料?3. 何为拉伸断口三要素?影响宏观拉伸断口的形态的因素有哪些?4、为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义?5.包申格效应有何意义?工程中对机件会产生哪些影响?6.试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?7. 试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?8. 常温静拉伸试验可确定金属材料的哪些性能指标?说出这些指标的符号定义、意义。
9.常用的标准试样有5 倍试样和10 倍试样,其延伸率分别用σ5和σ10表示,说明为什么σ5>σ10。
10.试述多晶体金属产生明显屈服的条件,并解释bcc金属与fcc金属及其合金屈服行为不同的原因。
第二章1. 布氏硬度与洛氏硬度可否直接比较?2. 缺口对材料的拉伸力学性能有什么影响?3. 布氏硬度与洛氏硬度的测量方法有何不同? HRA、HRB、HRC分别用于测量何种材料的硬度?4、什么是“缺口效应”?它对材料性能有什么影响?5.金属材料在受到扭转、单向拉伸、三向等拉伸、单向压缩、两向压缩、三向压缩应力作用时,其应力状态软性系数分别为多少?6.缺口试样拉伸时应力分布有何特点?7.试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点8. 今有如下工件需要测定硬度,试说明选用何种硬度试验法为宜?(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁,(4)硬质合金,(5)鉴别钢中的隐晶马氏体与残余奥氏体,(6)仪表小黄铜齿轮,(7)龙门刨床导轨,(8)氮化层,(9)火车圆弹簧,(10)高速钢刀具。
第三章1. 试说明低温脆性的物理本质及其影响因素?2.冲击韧性主要有哪些用途?3.细化晶粒尺寸可以降低脆性转变温度或者说改善材料低温脆性,为什么?4.为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性?5.试述冲击载荷作用下金属变形和断裂的特点。
6、什么是低温脆性、韧脆转变温度t k?产生低温脆性的原因是什么?体心立方和面心立方金属的低温脆性有何差异?为什么?第四章1. 说明KI 和KIc的异同。
2.为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?3.试述应力场强度因子的意义及典型裂纹KⅠ的表达式4.试述K判据的意义及用途5.试述裂纹尖端塑性区产生的原因及其影响因素,在什么条件下需考虑塑性区的影响对KⅠ进行修正?6. 张开型、滑开型和撕开型哪种断裂方式最危险?7.试述影响KⅠc 和AkV的异同及其相互之间的关系8.什么叫断裂韧性?它与应力场强度因子有何联系与区别?第五章1.轴对称循环应力的平均应力、应力幅和应力比分别为多少?2. 疲劳宏观断口上的贝纹线与微观断口的条带有什么区别?3.试述金属疲劳断裂的特点4.试说明合金成分、显微组织、非金属夹杂物、表面粗糙度等对金属疲劳性能的影响规律5.试述金属表面强化对疲劳强度的影响。
第六章1.有一M24栓焊桥梁用高强度螺栓,采用40B钢调质制成,抗拉强度为1200MPa,承受拉应力650MPa。
在使用中,由于潮湿空气及雨淋的影响发生断裂事故。
观察断口发现,裂纹从螺纹根部开始,有明显的沿晶断裂特征,随后是快速脆断部分。
断口上有较多腐蚀产物,且有较多的二次裂纹。