2014.10.24指数函数题型汇总
指数函数及其性质知识点及题型分类
指数函数及其性质【知识点分析及例题】1、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R.注意: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)x y =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11x y ==是个常量,就没研究的必要了. y=a x0<a<1时图象 a>1时图象图象性质 ①定义域R ,值域 (0,+∞) ②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x >1 x>0时,0<a x <1 ⑤x<0时,0<a x <1 x>0时,a x >1 ⑥ 既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。
(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。
当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。
当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。
(3)指数函数x y a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。
(4)利用函数的单调性,结合图象还可以看出:在[a ,b]上)10()(≠>=a a a x f x 且,值域是)](),([b f a f 或)](),([a f b f(5)若0≠x ,则1)(≠x f ;)(x f 取遍所有正数当且仅当R x ∈; (6)对于指数函数)10()(≠>=a a a x f x 且,总有a f =)1(; 3、指数函数底数变化与图像分布规律① xy a = ②xy b = ③xy c = ④x y d =注意:(1)0<b <a <1<d <c(2)x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) (3)x ∈(-∞,0)时,x x x x b a d c >>> 4、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法(中间量为1) (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=;②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可.【例题】题型一、指数函数的概念例1、指出下列函数哪些是指数函数?(1)4x y =;(2)4y x =;(3)4x y =-;(4)(4)x y =-;(5)1(21)(1)2x y a a a =->≠且;例2、函数2(33)x y a a a =-+是指数函数,求a 的值.题型二、指数函数的图像例3、函数与的图象大致是( ).例4、函数()的图象是()例5、若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限例6、指数函数y=a x,y=b x,y=c x,y=d x的图像如图所示,则a、b、c、d、1之间的大小关系是 [ ]A.a<b<1<c<d B.a<b<1<d<cC.b<a<1<d<c D.c<d<1<a<b题型三、函数的定义域、值域例7、求下列函数的定义域、值域.(1)313xxy=+;(2)y=4x-2x+1;(3)21139x--;(4)211xxy a-+=(a为大于1的常数)例8、已知,当其值域为时,的取值范围是;函数的值域是__________ .题型四、比较大小例9、判断下列各数的大小关系(1)1.8a与 1.8a+1;(2)24-231(),3,()331;(3)22.5,(2.5)0, 2.51()2;(4)23(0,1)a a a a>≠与例10、比较下列各组数的大小:(1)若,比较与;(2)若,比较与;(3)若,比较与;(4)若,且,比较a与b;(5)若,且,比较a与b.例11、已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.例12、讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.题型六、判断函数的奇偶性例13、判断下列函数的奇偶性:)()21121()(x x f xϕ+-= (()x ϕ为奇函数)例14、已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.例15、 某乡镇现在人均粮食占有量为360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%.设x 年后年人均粮食占有量为y 千克,求出函数y 关于x 的解析式.例16、设12()2x x af x b+-+=+(a ,b 为实常数)。
指数函数的性质及常考题型(含解析)
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
指数函数题型学霸总结四(含答案)-
指数函数题型学霸总结四(含答案)阳光老师:祝你学业有成一、选择题(本大题共12小题,共60.0分)1.函数是指数函数,则有A. 或B.C. D. ,且【答案】C【解析】【分析】本题主要考查的是指数函数的概念,直接结合指数函数底数大于0且不等于1,前面系数为1,求解即可.【解答】解:由指数函数的概念,得,解得或当时,底数是1,不符合题意,舍去;当时,符合题意.故选C.2.若函数是指数函数,则a的取值范围是A. B. ,且C. D.【答案】B【解析】【试题解析】【分析】本题主要考查指数函数的定义,属于基础题.利用指数函数的定义中对底数的要求,列出不等式组,求解即得.【解答】解:因为函数是指数函数,得:,化简得故选B.3.有下列函数:;;;其中指数函数的个数是A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查指数函数的表达式和定义,属于基础题.根据指数函数的定义和表达式的要求即可得解.【解答】解:形如,且的函数称为指数函数,只有是指数函数.故选B.4.已知函数,若,则A. B. 0 C. D.【答案】C【解析】【试题解析】【分析】本题主要考查函数值的计算,属于基础题.发现是解题的关键.【解答】解:因为,所以,又,那么.故选C.5.下列各函数中是指数函数的是A. B. C. D.【答案】D【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易.根据指数函数的概念即可判断结果.【解答】解:根据指数函数的定义,且,可知只有D项正确,故选D.6.若函数在R上单调递减,则实数a的取值范围是A. B. C. D.【答案】C【解析】【分析】本题主要考查指数函数的单调性,属于基础题.根据指数函数的单调性,可知,解得实数a的取值范围.【解答】解:函数,在R上单调递减,则,解得,实数a的取值范围是.故选C.7.已知常数,函数经过点、,若,则a的值为A. 2B. 4C. 6D. 8【答案】B【解析】【分析】本题主要考察指数与指数幂的运算,考查运算求解能力,属于基础题.将p,q直接带入,计算即可求解得到答案.【解答】解:因为,,,,即,所以,所以,又因为,所以,又因为,所以,故选B.8.已知函数则A. 2B.C. 0D.【答案】B【解析】【分析】本题考查了函数定义域与值域、分段函数的相关知识,试题难度容易【解答】解:,.9.如图所示,面积为8的平行四边形OABC的对角线AC与BO交于点E,且若指数函数且的图象经过点E,B,则a等于A. B. C. 2 D. 3【答案】A【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度一般【解答】解:设点,则由已知可得点,,.因为点E,B在指数函数的图象上,所以所以,所以舍去或.10.下列图象中,可能是二次函数及指数函数的图象的是A. B.C. D.【答案】A【解析】【试题解析】【分析】本题主要考查指数函数的图象及性质、二次函数的图象及性质,属于基础题.指数函数在R上单调递减,则,可得,二次函数的图象与x轴的交点为、,结合选项即可判断.【解答】解:由指数函数的图象可知,指数函数在R上单调递减,则,,二次函数的图象与x轴的交点为、,只有选项A符合题意.故选A.11.函数与的图象关于A. 原点对称B. x轴对称C. y轴对称D. 直线对称【答案】C【解析】【分析】本题考查了函数的周期性和对称性、函数图象的变换平移、对称、伸缩、翻折变换的相关知识,试题难度较易【解答】解:设点为函数的图象上任意一点,则点为的图象上的点.因为点与点关于y轴对称,所以函数与的图象关于y轴对称,故选C.12.已知定义在R上的函数满足,且当时,,则A. 0B.C. 18D.【答案】C【解析】【分析】本题考查函数的周期性,涉及指数的运算,属于基础题.由题意可得函数为周期为2的周期函数,可得,代值计算可得.【解答】解:定义在R上的函数满足,函数为周期为2的周期函数,又当时,,,故选:C.二、填空题(本大题共14小题,共70.0分)13.指数函数的值域是__________.【答案】【解析】【分析】本题考查求函数值域的方法,考查指数函数的性质,解题的关键是将复杂函数化为基本函数,属于基础题.根据题意可知,函数,若令,于是可得y 转化为关于t的二次函数,根据指数函数的性质可知,结合二次函数的单调性还可得到在上函数单调递增,于是不难得到,对该不等式式求解,即可得到原函数的值域.【解答】解:令,则,因为该二次函数在上递增,所以,即原函数的值域为.故答案为.14.若函数且在区间上的最大值与最小值之和为3,则实数a的值为________.【答案】2【解析】【分析】本题考查指数函数的性质,属基础题,难度不大.讨论底数a的大小,利用指数函数的单调性求解即可.【解答】解:当时,函数在区间上单调递增,的最大值为a,最小值为,,解得,当时,函数在区间上单调递减,的最大值为,最小值为a,,解得舍,综上所述:.故答案为2.15.函数的定义域为________.【答案】【解析】【分析】本题考查了函数定义域与值域、指数方程与指数不等式的相关知识,试题难度容易【解答】解:依题意得,,得,得,得.则函数的定义域为.故答案为.16.已知函数且在区间上的函数值恒小于2,则a的取值范围是________.【答案】【解析】【分析】本题考查指数函数的性质,属于基础题.分类讨论,由指数函数的单调性得最值,求a的取值范围.【解答】解:当时,函数且在区间上单调递增,最大值为,由题意,所以,当时,函数且在区间上单调递减,最大值为,由题意,所以,则a的取值范围是故答案为17.若指数函数的图象经过点,则,.【答案】;【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度较易【解答】解:设且.因为的图象经过点,代入得,解得或舍去,所以,所以.18.若指数函数的图象经过点,则.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:设且,由于其图象经过点,所以,解得或舍去,因此,故.19.已知,若,求的值.【答案】解:,若,则.所以.【解析】本题考查了指数与指数幂的运算的相关知识,试题难度一般20.已知函数是指数函数,且,则__________.【答案】 5x【解析】【分析】本题主要考查指数函数,由得,,解得即可.【解答】解:设x,且.由,得,,x.故答案为.21.若函数且的图象过点,则________.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:由于函数图象过点,则,解得,故.22.已知直线与函数,,,的图象依次相交于点A,B,C,D,则这四点按从上到下的顺序排列是________.【答案】C,D,B,A【解析】【分析】本题考查指数函数的图象和性质,根据底数对指数函数图象的影响,在同一坐标系中画出题中四个函数的图象,即得到四个点的顺序.【解答】解:根据在第一象限内,底数越大指数函数的图象越靠近y轴,在同一坐标系中画出函数,,,的图象如下图:由图象得:这四个点从上到下的排列次序是:C,D,B,A.23.已知函数与的图象关于y轴对称,则.【答案】【解析】【分析】本题考查指数函数,涉及图象的对称变换和指数幂的运算,属于基础题.利用图象关于y轴对称的函数的解析式的关系将x换成,求得的解析式,然后代入运算化简即得.【解答】解:函数与的图象关于y轴对称,,.故答案为.24.以下是三个变量,,随变量x变化的函数值表:x1234567824816326412825614916253649640123其中关于x呈指数函数变化的函数是________.【答案】【解析】【分析】本题考查对数函数、指数函数与幂函数的增长差异.解题时要认真审题,注意指数函数的性质的合理运用.观察题中表格,可以看出,三个变量、、都是越来越大,但是增长速度不同,其中变量的增长速度最快,画出它们的图象图略,可知变量呈指数函数变化.【解答】解:观察题中表格,可知,三个变量,,都是越来越大,但是增长速度不同,增长速度最快,画出它们的图象,可知呈指数函数变化.25.函数是指数函数,则_______【答案】【解析】【分析】本题考查指数函数的定义,比较容易根据指数函数的定义,先确定a的值,再求.【解答】解:函数是指数函数,则,解得.所以,.所以,.故答案为.26.给定下列函数:;;,且;;;;;其中是指数函数的有________填序号【答案】解:指数函数为,很显然为二次函数,为指数函数,底数不一定大于0,故不是指数函数,底数小于0,不是指数函数,是指数函数,不是指数函数,是指数型函数,不是指数函数,不是指数函数,故答案为【解析】此题考查指数函数的定义,属于基础题.根据指数函数的定义进行求解即可.三、解答题(本大题共4小题,共48.0分)27.已知指数函数满足,定义域为R的函数是奇函数.确定和的解析式;判断函数的单调性,并用定义证明;若对于任意,都有成立,求a的取值范围.【答案】解:设且,,,,,是定义域为R的奇函数,,即,解得.经检验,当时,为奇函数,是定义在R上的减函数,证明如下:任取,,,则.,,又,,,,是定义在R上的减函数;,且为奇函数,,所以,因为,所以成立,设,,由对勾函数的单调性可知,函数在单调递增,在上单调递减,所以当时,有最大值为,所以.【解析】本题考查了函数的奇偶性和单调性,本题难度适中,属于较难题.利用指数函数过定点和函数为奇函数,得到关于参数的方程,解方程得到本题结论;利用函数单调性的定义加以证明,得到本题结论;利用函数的奇偶性和单调性,将原不等式转化为相应自变量的比较,利用对勾函数的单调性得到本题结论.28.某镇现在人均一年占有粮食,如果该镇人口平均每年增长,粮食总产量平均每年增长,那么x年后若人均一年占有y kg粮食,求y关于x的函数解析式.【答案】解:设该镇现在人口数量为M,则该镇现在一年的粮食总产量为360M kg.1年后,该镇粮食总产量为,人口数量为,则人均一年占有粮食为,2年后,人均一年占有粮食为,,x年后,人均一年占有粮食为,即所求函数解析式为【解析】本题考查了函数模型的应用的相关知识,试题难度较易29.用描点法在同一平面直角坐标系中画出与的图象.在的条件下,分别计算并比较与,与,与的值,从中你得到什么结论?【答案】解:作,的图象如下,,,;,;,;故;即与的图象关于y轴对称.【解析】本题主要考查了指数函数的图象及其性质,属于较易题.结合指数函数的图象,利用描点法作,的图象.可求得;;;从而可判断.30.已知不相等的两个实数a,b满足,判断实数a,b的大小关系.【答案】解:画出,的图像如图所示:,当a,b同为负时,,当a,b同为正时,,当a,b不同号时,不存在,综上所述,答案:当或.【解析】本题主要考查了指数函数的图像与性质,属于较易题画出图像,由图像可得结果.。
指数函数常考题型归纳含详解
A. a b 1 c b B. b a 1 d c C.1 a b c d D. a b 1 d c 3、已知函数 f (x) (x a)(x b) (其中 a b) 的图象如图所示,则函数 g(x) ax b 的图象是( )
A.
B.
C.
D.
4、画出下列函数的图像
D.
0,
1 2
A. ab aa
B. ba bb
C. ab bb
D. ab ba
2、设 a , b , c R ,且 a b ,则( )
A. a2 b2
B.
1 2
a
1 2
b
C. a3 b3
D. 1 1 ab
3、已知集合 A {x | x2 3x 2 0}, B {x |1 2 x 4} ,则 A B ( )
题型九:复合函数的单调性
C. f x x 1
x
1、函数
y
1 2
82 xx2
的单调递增区间为_________.
D. f x 3 x
2、求下列函数的定义域和值域,并写出其单调区间.
(1) f ( x) 1 3x2 ;
1
(2)
f
(x)
1 2x 3
;
(3) f ( x) 2x22x3 ;
A.{x |1 x 2} B.{x |1 x 2} C.{x |1 x 2} D.{x | 0 x 2}
4、已知 a 0.20.3 , b 0.30.3 , c 0.20.2 ,则( )
A. a b c
B. b a c
题型八:指数函数的单调性
C. b c a
D. a c b
A.函数 f x 在 R 上既是奇函数,也是增函数 B.函数 f x 在 R 上既是奇函数,也是减函数
根据指数函数知识点及题型归纳总结
根据指数函数知识点及题型归纳总结指数函数是数学中的重要概念之一,它在各个领域中都有广泛的应用。
本文将对指数函数的知识点和常见题型进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、知识点总结1. 定义:指数函数是以底数为常数,指数为变量的函数,一般形式为 f(x) = a^x,其中 a 是底数,x 是指数。
2. 指数的性质:- 正指数:a^x 是递增函数,即 x1 < x2,则 a^x1 < a^x2。
- 负指数:a^x 是递减函数,即 x1 < x2,则 a^x1 > a^x2。
- 零指数:a^0 = 1,任意数的零次方等于 1。
3. 底数的性质:- a > 1 时,指数函数呈现增长态势;- 0 < a < 1 时,指数函数呈现衰减态势;- a = 1 时,指数函数为常数函数。
4. 指数函数的图像:根据底数的不同,指数函数的图像可以是上升的曲线、下降的曲线或是一条直线。
5. 指数函数的特殊情况:- 当底数为 e(自然对数的底数)时,指数函数被称为自然指数函数,常用记作 f(x) = e^x。
- 当底数为 10 时,指数函数被称为常用对数函数,常用记作f(x) = log10(x)。
二、题型归纳1. 指数函数的图像绘制:- 根据给定的底数和定义域绘制指数函数的图像。
2. 指数函数的性质应用:- 判断给定的函数是指数函数还是其他类型的函数。
- 比较多个指数函数的增长趋势。
- 求解包含指数函数的方程或不等式。
3. 指数函数的变形与组合:- 利用指数函数的特性进行函数的变形与组合,如 f(x) = a^(2x)、f(x) = a^(x+1) 等。
4. 自然指数函数与常用对数函数的特性:- 探究自然指数函数和常用对数函数的特点及应用。
总结:指数函数是数学中重要的函数类型之一,掌握其基本概念及性质对于理解和应用数学知识具有重要意义。
通过练不同类型的题目,读者可以更好地熟悉指数函数的特点和应用,提高解题能力。
指数函数经典例题(问题详解)
指数函数1.指数函数の定义:函数)1(≠>=aaay x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质:在同一坐标系中分别作出函数y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101の图象.我们观察y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101图象特征,就可以得到)1(≠>=aaay x且の图象和性质。
a>1 0<a<1图象654321-1-4-22461654321-1-4-22461性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在R上是增函数(4)在R上是减函数指数函数是高中数学中の一个基本初等函数,有关指数函数の图象与性质の题目类型较多,同时也是学习后续数学内容の基础和高考考查の重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c の大小关系是_____.分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间内.解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x の取值X 围是___________. 分析:利用指数函数の单调性求解,注意底数の取值X 围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x の取值X 围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-,∞. 令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数の值域是[)01,. 评注:利用指数函数の单调性求值域时,要注意定义域对它の影响. 4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a の值是_______.分析:令x t a =可将问题转化成二次函数の最值问题,需注意换元后t の取值X 围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤.∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤,∴1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a の值是3或13.评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程の解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935x y =⨯+の图象,可以把函数3x y =の图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度 D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象の平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =の图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+の图象,故选(C ). 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且,比较a 与b ; (5)若 ,且,比较a 与b .解:(1)由 ,故 ,此时函数为减函数.由,故 .(2)由 ,故.又 ,故 .从而 . (3)由 ,因,故.又,故.从而.(4)应有.因若,则.又,故 ,这样 .又因,故 .从而 ,这与已知 矛盾. (5)应有.因若,则.又,故,这样有.又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线 分别是指数函数,和の图象,则与1の大小关系是 ( ).(分析:首先可以根据指数函数单调性,确定,在 轴右侧令,对应の函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型の数形结合の题目,第(1)题是由数到形の转化,第(2)题则是由图到数の翻译,它の主要目の是提高学生识图,用图の意识. 求最值3,求下列函数の定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x の定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x の值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1の定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1の值域为{y |y>1}.4,已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x の最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
(完整word版)指数函数题型总结-孟-推荐文档
指数函数题型总结:题型一. 比较大小例1:已知函数满足, 且, 则与的大小关系是_____.小练: 1.比较下列各组数的大小:(1)若/ , 比较/ 与/ ;(2)若/ , 比较/ 与/ ;(3)若/ , 比较/ 与/ ;(4)若/ , 且/ , 比较a 与b ;(5)若/ , 且/ , 比较a 与b .2.曲线/ 分别是指数函数/ ,/ 和/ 的图象,则/ 与1的大小关系是 ( ).(题型二. 求解有关指数不等式例2 已知, 则x 的取值范围是___________.小练3: 5、设, 解关于的不等式.题型三. 求定义域及值域问题例3 求函数的定义域和值域.小练4: 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.小练5.若函数的定义域为R, 则实数的取值范围 .题型四. 最值问题例4 函数在区间上有最大值14, 则a 的值是_______.小练6.若函数, 求函数的最大值和最小值.小练7、已知函数在区间[-1,1]上的最大值是14, 求a 的值.题型五. 解指数方程例5 解方程.题型六. 图像及图象变换例6 为了得到函数的图象, 可以把函数的图象( ).A. 向左平移9个单位长度, 再向上平移5个单位长度B. 向右平移9个单位长度, 再向下平移5个单位长度C. 向左平移2个单位长度, 再向上平移5个单位长度D. 向右平移2个单位长度, 再向下平移5个单位长度小练8、若函数的图像经过第一、三、四象限, 则一定有( )A. B C. D.小练9、方程2|x|+x=2的实根的个数为_______________.小练10、函数在R 上是减函数, 则的取值范围是( )A. B. C. D.小练11、当时, 函数的值总是大于1, 则的取值范围是_____________题型七、定点问题例7、函数)10(33≠>+=-a a a y x 且的图象恒过定点____________.题型八、函数的奇偶性问题小练12.如果函数在区间上是偶函数, 则=_________A 、小练13.函数是( )奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数小练14、若函数是奇函数, 则=_________题型九、单调性问题小练14.函数的单调增区间为_____________.小练15.函数在区间上的最大值比最小值大, 则=__________.小练16.函数在区间上是增函数, 则实数的取值范围是 ( )A.[6,+....B...C....D.题型十、指数函数性质综合问题例8(1)已知是奇函数, 求常数m 的值;(2)画出函数的图象, 并利用图象回答:k 为何值时, 方程|3X-1|=k 无解? 有一解? 有两解?小练17、 求函数y =23231+-⎪⎭⎫⎝⎛x x 的单调区间.小练18、 已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.小练19、定义在R 上的奇函数有最小正周期为2, 且时,(1)求在[-1, 1]上的解析式;(2)判断在(0, 1)上的单调性;(3)当为何值时, 方程=在上有实数解.小练20、 函数y =a |x |(a>1)的图像是( )答案:例1: 解: ∵, ∴函数的对称轴是. 故, 又, ∴.∴函数在上递减, 在上递增. 若, 则, ∴;若, 则, ∴. 综上可得, 即.小练1: 解: (1)由/ , 故/ , 此时函数/ 为减函数. 由/ , 故/ .(2)由/ , 故/ . 又/ , 故/ . 从而/ .(3)由/ , 因/ , 故/ . 又/ , 故/ . 从而/ .(4)应有/ . 因若/ , 则/ . 又/ , 故/ , 这样/ . 又因/ , 故/ . 从而/ , 这与已知/ 矛盾.(5)应有/ .因若/ , 则/ .又/ , 故/ , 这样有/ .又因/ , 且/ , 故/ .从而/ , 这与已知/ 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2、首先可以根据指数函数单调性,确定,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 例2: 解: ∵, ∴函数在上是增函数,∴, 解得. ∴x 的取值范围是. :小练4解:(1)∵x -3≠0, ∴y =2的定义域为{x |x ∈R 且x ≠3}.又∵≠0, ∴2≠1,∴y =231 x 的值域为{y |y>0且y ≠1}. (2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.例3解: 由题意可得, 即, ∴, 故. ∴函数的定义域是.令, 则, 又∵, ∴. ∴, 即.∴, 即. ∴函数的值域是.例4: 解: 令, 则, 函数可化为, 其对称轴为.∴当时, ∵, ∴, 即. ∴当时, .解得或(舍去);当时, ∵, ∴, 即,∴ 时, , 解得或(舍去), ∴a 的值是3或.小练7解: , 换元为, 对称轴为.当, , 即x=1时取最大值, 解得 a=3 (a= -5舍去)例5 解: 原方程可化为, 令, 上述方程可化为, 解得或(舍去), ∴, ∴, 经检验原方程的解是.例6解:∵, ∴把函数的图象向左平移2个单位长度, 再向上平移5个单位长度, 可得到函数的图象, 故选(C ). 例8、解: (1)常数m=1(2)当k<0时, 直线y=k 与函数的图象无交点,即方程无解;当k=0或k1时, 直线y=k 与函数的图象有唯一的交点, 所以方程有一解;当0<k<1时, 直线y=k 与函数的图象有两个不同交点, 所以方程有两解。
(完整版)指数函数经典习题大全
指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。
指数函数习题及答案完整版
指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
(完整word版)指数函数题型归纳
指数函数及其性质应用1.指数函数概念一般地,函数「,/(... I —“丿:叫做指数函数,其中芫是自变量,函数的定义域为三.2:2归纳:综合类“已知a (幫,b(2)3则a 、b 、c 的大小关系为51 ⑵如果 m 0,则 a 2m ,b(—)m ,c0.2m则a 、b 、c的大小关系为 _________ 题型二过定点问题 1、 函数y a x 3 3恒过定点 ____________X 1 2、 函数y 5 a a 0, a 1图像必过定点,这个定点是 ________________________ 3、已知对不同的a 值,函数f xX 12 a a 0,a 1的图像恒过定点 P ,则P 点的坐标是 _________ 归纳: 题型三解指数函数不等式 X 2 21、12 2 (1)32x 3、0.2X 25 4、(a 2 a 2)x (a 2 a 2)1 x指数函数题型训练题型一比较两个值的大小 1、“同底不同指”型 1 21 21 3(1)丄丄5— 5(2)1.72.51.731(3)40.8 1.8(4) 0.5aa 0.6 a 0,a 1归纳: 2、“同指不同底”型53 6(1) -113342归纳:3、“不同底不同指”型(1)1.70.3 0.93.1 (2)1.72.5 0.73 (3)0.80.19 0.2(4)a b _b a (0a b1)(5)13"归纳: 题型四求指数函数相关的定义域 1、 i 6x24、y 2x 35 、已知 f(x)的定义域为(0,1),则f (3x )的定义域为题型五求指数函数相关的值域 仁y 2 xx x 12、y 42 13、y 3x41 x — 、设0 x 2,求函数y 4 2—x … 3 15、求A xy 42* 1 3, x (,1]的值域。
题型六 方程问题1、3x 2 32 x82、32x3x 63、32 x 23 x 5 032归纳:题型七 最值问题归纳:9x 的最大值和最小值5值域1、已知 1 x 2,求函数f(x) 3 2 3x 12、已知函数ya 2x 2a x1(a 1)在区间[3、函数f (x)a x(a 0,且a1)在区间[则a的值为 归纳: 题型八奇偶性问题1,1]上的最大值是14, 求a 的值.a1,2]中的最大值比最小值大一,2若函数f (x) a 为奇函数,则实数 a 的值是 ___________________题型九单调性问题 21、函数y 2x 2x 3的单调区间。
指数函数(带答案)
3.12指数函数一、选择题1.若函数y =(2a -1)x +a -2为指数函数,则a 的值为( ) A .0 B .12C .1D .2[答案] D[解析] 要使函数y =(2a -1)x +a -2为指数函数,应满足⎩⎪⎨⎪⎧2a -1>02a -1≠1a -2=0 ,解得a =2.2.函数f (x )=a x (a >0且a ≠1)对于任意的实数x 、y 都有( ) A .f (xy )=f (x )f (y ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )f (y ) D .f (x +y )=f (x )+f (y )[答案] C[解析] ∵f (x )=a x ,∴f (x +y )=a x +y ,f (x )·f (y )=a x ·a y =a x +y ,∴f (x +y )=f (x )·f (y ).3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B .45C .2D .9[答案] C[解析] ∵f (0)=20+1=2,∴f [f (0)]=f (2)=4+2a =4a ,解得a =2.4.若函数y =(1-a )x 在R 上是减函数,则实数a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(-∞,1) D .(-1,1)[答案] B[解析] ∵函数y =(1-a )x 在(-∞,+∞)上是减函数, ∴0<1-a <1,∴0<a <1.5.下图是指数函数:①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c[答案] B[解析] 直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数 [答案] B[解析] f (-x )=3-x +3x =f (x ),∴f (x )为偶函数,g (-x )=3-x -3x =-(3x -3-x )=-g (x ),∴g (x )为奇函数,故选B.7.函数f (x )=3x -x -4的零点,所在的大致区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)[答案] C[解析] ∵f (-1)=3-1-1-4=13-1-4=-143<0,f (0)=30-4=1-4=-3<0, f (1)=3-1-4=-2<0, f (2)=32-2-4=9-2-4=3>0,∴函数f (x )的零点所在的大致区间为(1,2).8.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b b ,a >b ,则函数f (x )=1*(12)x 的图象为( )[答案] D[解析] 由题意,得f (x )=⎩⎪⎨⎪⎧1 (x ≤0)(12)x (x >0).∵x ≤0时,f (x )=1,排除A 、C , 又∵x >0时,f (x )=(12)x ,∴f (1)=12<1,排除B ,故选D.9.已知集合M ={-1,1},N ={x |12<2x +1<4,x ∈Z },则M ∩N =( )A .{-1,1}B .{-1}C .{0}D .{-1,0}[答案] B[解析] 解法一:验证排除法:由题意可知0∉M ∩N ,故排除C 、D ;又1∉N ,∴1∉M ∩N ,故排除A ,故选B.解法二:M ={-1,1},N ={x |-1<x +1<2,x ∈Z }={x |-2<x <1,x ∈Z }={-1,0},∴M ∩N ={-1}. 10.函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1][答案] A[解析] 本题考查了定义域的求法.由题意知⎩⎪⎨⎪⎧ 1-2x ≥0x +3>0,即⎩⎪⎨⎪⎧ 2x≤1x >-3,即⎩⎪⎨⎪⎧x ≤0x >-3,∴f (x )定义域为(-3,0].11.函数y =(12)1-x 的单调增区间是( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)[答案] A[解析] 令u =1-x ,则y =(12)u .∵u =1-x 在(-∞,+∞)上是减函数, 又∵y =(12)u 在(-∞,+∞)上是减函数,∴函数y =(12)1-x 在(-∞,+∞)上是增函数,故选A.12.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2B .154C. 174D .a 2[答案] B[解析] ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,① 得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2, ①-②,得f (x )=a x -a -x .又g (2)=a ,∴a =2,∴f (x )=2x -2-x ,∴f (2)=22-2-2=154.13.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2-|x |[答案] B[解析] ∵y =x 3在定义域R 上是奇函数,∴A 不对. y =-x 2+1在定义域R 上是偶函数, 但在(0,+∞)上是减函数,故C 不对. D 中y =2-|x |=(12)|x |虽是偶函数, 但在(0,+∞)上是减函数,只有B 对.14.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如右图所示,则函数g (x )=a x +b 的图象是( )[答案] A[解析] 由f (x )的图象,知0<a <1,b <-1,所以g (x )的图象可以看作是由函数y =a x (0<a <1)的图象向下平移|b |个单位得到的,所以选A.15.(2014·陕西文,7)下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=(12)x[答案] B[解析] 当f (x )=3x 时,f (x +y )=3x +y ,f (x )f (y )=3x ·3y =3x +y ,∴f (x +y )=f (x )+f (y );当f (x )=(12)x 时,f (x +y )=(12)x +y ,f (x )f (y )=(12)x ·(12)y =(12)x +y,∴f (x +y )=f (x )f (y ),又f (x )=(12)x 为单调递减函数,f (x )=3x 为单调递增函数,故选B.二、填空题16.已知f (x )、g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x ·g (x )(a >0,且a ≠1);②g (x )≠0.若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.[答案] 2或12[解析] 由f (x )=a x ·g (x ),得f (x )g (x )=a x .∵f (1)g (1)+f (-1)g (-1)=52,∴a +a -1=52.解得a =2或12.17.已知a >b ,ab ≠0,下列不等式①a 2>b 2;②2a >2b ; ③0.2-a >0.2-b ;④(13)a <(13)b 中恒成立的有________.[答案] ②③④[解析] ①若0>a >b ,则a 2<b 2,故①不正确; ②y =2x 为增函数,∴2a >2b ,②正确; ③y =0.2x 为减函数,∴0.2-a >0.2-b ,③正确;④y =(13)x 为减函数,∴(13)a <(13)b ,④正确.18.函数y =2x -12x +1的奇偶性是__________.[答案] 奇函数[解析] f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),∴f (x )为奇函数. 19.函数y =⎝⎛⎭⎫12-x 2+x +2定义域是__________,值域为__________.[答案] [-1,2] [24,1] [解析] 由-x 2+x +2≥0得-1≤x ≤2, 此时-x 2+x +2∈[0,94],∴u =-x 2+x +2∈[0,32],∴y =⎝⎛⎭⎫12u ∈[24,1]. 20.已知函数f (x )是定义在R 上的奇函数,当x >0时, f (x )=1-2-x ,则不等式f (x )<-12的解集是______________. [答案] (-∞,-1)[解析] ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1. 当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (x )=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知不等式的解集为(-∞,-1). 三、解答题21.函数f (x )=12(a x +a -x ),(a >0且a ≠1).(1)讨论f (x )的奇偶性;(2)若函数f (x )的图象过点(2,419),求f (x ).[解析] (1)函数f (x )的定义域为(-∞,+∞), f (-x )=12(a -x +a x )=f (x ),∴函数f (x )为偶函数. (2)∵函数f (x )的图象过点(2,419), ∴419=12(a 2+a -2)=12(a 2+1a 2), 整理得9a 4-82a 2+9=0, ∴a 2=19或a 2=9.∴a =13或a =3.故f (x )=12(3x +3-x ).22.已知a >0且a ≠1,y 1=a 3x +1,y 2=a-2x,问当x 取何范围内的值时,①y 1=y 2;②y 1>y 2.[解析] (1)若y 1=y 2,则a 3x +1=a-2x,即3x +1=-2x ,解得x =-15,因此当x =-15时,y 1=y 2.(2)由y 1>y 2得a 3x +1>a-2x,当a >1时,由3x +1>-2x ,得x >-15,当0<a <1时,由3x +1<-2x ,得x <-15,综上可知:当a >1,x >-15时,y 1>y 2;0<a <1,x <-15时,y 1>y 2.23.已知f (x )=x (12x -1+12)(x ≠0).(1)判断f (x )的奇偶性;(2)求证:f (x )>0. [解析] (1)f (-x )=-x ⎝⎛⎭⎫12-x +1+12=-x ⎝⎛⎭⎫2x1-2x +12=x ⎝⎛⎭⎫2x2x -1-12 =x ⎝ ⎛⎭⎪⎫2x-1+12x-1-12 =x ⎝⎛⎭⎫12x -1+12=f (x )∴f (x )是偶函数. (2)当x >0时,2x -1>0, ∴f (x )=x ⎝⎛⎭⎫12x -1+12>0,又∵函数f (x )是偶函数,其图象关于y 轴对称, ∴当x ≠0时,总有f (x )>0. 24.已知函数f (x )=1-23x +1.(1)求函数f (x )的定义域,判断并证明f (x )的奇偶性; (2)用单调性定义证明函数f (x )在其定义域上是增函数; (3)解不等式f (3m +1)+f (2m -3)<0. [解析] (1)∵3x >0,∴3x +1≠0, 函数f (x )的定义域为R .f (x )=1-23x +1=3x +1-23x +1=3x -13x +1,∴f (-x )=3-x -13-x +1=1-3x3x 1+3x 3x =1-3x1+3x=-f (x ),∴f (x )是定义在R 上的奇函数. (2)任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=1-23x 1+1-(1-23x 2+1)=23x 2+1-23x 1+1=2(3x 1+1)-2(3x 2+1)(3x 1+1)(3x 2+1)=2(3x 1-3x 2)(3x 1+1)(3x 2+1),∵x 1<x 2,∴3x 1<3x 2,∴3x 1-3x 2<0, 又3x 1+1>0,3x 2+1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在其定义域内是增函数.(3)由f (3m +1)+f (2m -3)<0得f (3m +1)<-f (2m -3),∵函数f (x )为奇函数,∴-f (2m -3)=f (3-2m ),∴f (3m +1)<f (3-2m ). 由(2)已证得函数f (x )在R 上是增函数, ∴f (3m +1)<f (3-2m )⇔3m +1<3-2m ,∴m <25.不等式f (3m +1)+f (2m -3)<0的解集为{m |m <25}.。
(特效提高)2014高考数学一轮精品复习2.5指数与指数函数题库理
2.5 指数与指数函数一、选择题1.函数y =a |x |(a >1)的图像是( )解析:y =a |x |=⎩⎪⎨⎪⎧ a x x ,a -x x <当x ≥0时,与指数函数y =a x (a >1)的图像相同;当x <0时,y =a -x 与y =a x 的图像关于y 轴对称,由此判断B 正确.答案:B2.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x 2x x ,则f (9)+f (0)=( ) A .0 B .1 C .2 D .3 解析:f (9)=log 39=2,f (0)=20=1,∴f (9)+f (0)=3.答案:D3. 设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ). A .(0,1) B .(1,2)C .(2,3)D .(3,4)解析 (数形结合法)如图所示.由1<x <2,可知1<x 3<8; -1<x -2<0,1<⎝ ⎛⎭⎪⎫12x -2<2. 答案 B4.函数y =⎝ ⎛⎭⎪⎫12x +1的图象关于直线y =x 对称的图象大致是( ).解析 函数y =⎝ ⎛⎭⎪⎫12x +1的图象如图;作其关于直线y =x 的对称图象,可知选A.答案 A5.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值为( ) A. 6 B .2或-2C .-2D .2解析:(a b +a -b )2=8⇒a 2b +a-2b =6, ∴(a b -a -b )2=a 2b +a-2b -2=4. 又a b >a -b (a >1,b >0),∴a b -a -b =2.答案:D6.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2解析:作出函数f (x )=|2x -1|的图象如右图中实线所示,又a <b <c ,且f (a )>f (c )>f (b ),结合图象知f (a )<1,a <0,c >0.∴0<2a <1,∴f (a )=|2a -1|=1-2a .∴f (c )<1,∴0<c <1.∴1<2c <2,f (c )=|2c -1|=2c -1.又f (a )>f (c ),即1-2a >2c -1.∴2a +2c <2.答案:D7.设函数f (x )=2x1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域是( ).A .{0,1}B .{0,-1}C .{-1,1}D .{1,1}解析 由f (x )=2x 1+2x -12=1-11+2x -12=12-11+2x , 由于(2x +1)在R 上单调递增,所以-11+2x 在R 上单调递增,所以f (x )为增函数,由于2x >0,当x →-∞,2x →0,∴f (x )>-12,当x →+∞,11+2x →0, ∴f (x )<12,∴-12<f (x )<12, ∴y =[f (x )]={0,-1}.答案 B二、填空题8.8×42+(32×3)6=________.解析:原式=2×2+⎝⎛6=2+22×33=2+4×27=110. 答案:1109.若直线y =2a 与函数y =|a x-1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是________.解析 (数形结合法)由图象可知0<2a <1,∴0<a <12. 答案 ⎝ ⎛⎭⎪⎫0,12 10.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________.解析:函数y =2-x +1+m =(12)x -1+m , ∵函数的图象不经过第一象限,∴(12)0-1+m ≤0,即m ≤-2. 答案:(-∞,-2]11.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点;若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞)12.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.解析:∵a 2-2a -3=0,∴a =3或a =-1(舍).函数f (x )=a x 在R 上递增,由f (m )>f (n )得m >n .答案:m >n三、解答题13.已知f (x )=e x -e -x ,g (x )=e x +e -x (e =2.718 28…)(1)求[f (x )]2-[g (x )]2的值;(2)若f (x )f (y )=4,g (x )g (y )=8,求g x +y g x -y 的值. 解析 (1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2=(e 2x -2+e -2x )-(e 2x +2+e-2x )=-4. (2)f (x )f (y )=(e x -e -x )(e y -e -y )=e x +y +e -x -y -e x -y -e -x +y=[e x +y +e -(x +y )]-[e x -y +e -(x -y )]=g (x +y )-g (x -y )∴g (x +y )-g (x -y )=4①同理,由g (x )g (y )=8,可得g (x +y )+g (x -y )=8,②由①②解得g (x +y )=6,g (x -y )=2,∴g x +y g x -y=3. 14.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x );(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围. 解析:(1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得⎩⎪⎨⎪⎧ 6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎪⎨⎪⎧ a =2,b =3.∴f (x )=3·2x.(2)要使(12)x +(13)x ≥m 在(-∞,1]上恒成立, 只需保证函数y =(12)x +(13)x 在(-∞,1]上的最小值不小于m 即可. ∵函数y =(12)x +(13)x 在(-∞,1]上为减函数, ∴当x =1时,y =(12)x +(13)x 有最小值56. ∴只需m ≤56即可. ∴m 的取值范围(-∞,56] 15.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解析:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减, 而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ), 由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧ a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.16.若函数y =a ·2x -1-a2x -1为奇函数.(1)求a 的值;(2)求函数的定义域;(3)求函数的值域.解析 ∵函数y =a ·2x -1-a2x -1,∴y =a -12x -1. (1)由奇函数的定义,可得f (-x )+f (x )=0,即a -12-x-1+a -12x -1=0,∴2a +1-2x1-2x =0,∴a =-12. (2)∵y =-12-12x -1, ∴2x -1≠0,即x ≠0.∴函数y =-12-12x -1的定义域为{x |x ≠0}. (3)∵x ≠0,∴2x -1>-1.∵2x -1≠0,∴0>2x -1>-1或2x -1>0.∴-12-12x -1>12或-12-12x -1<-12. 即函数的值域为{y |y >12或y <-12}.。
指数函数经典例题(答案)
指数函数1.指数函数的定义:函数叫做指数函数,其中x是自变量,函数定义域是R2.指数函数的图象和性质:在同一坐标系中分别作出函数y=,y=,y=,y=的图象.我们观察y=,y=,y=,y=图象特征,就可以得到的图象和性质。
指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小 例1 已知函数满足,且,则与的大小关系是_____. 分析:先求的值再比较大小,要注意的取值是否在同一单调区间内. 解:∵, ∴函数的对称轴是. 故,又,∴. ∴函数在上递减,在上递增. 若,则,∴; 若,则,∴. 综上可得,即. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知,则x的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵, ∴函数在上是增函数, ∴,解得.∴x的取值范围是. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题 例3 求函数的定义域和值域. 解:由题意可得,即, ∴,故.∴函数的定义域是. 令,则, 又∵,∴.∴,即. ∴,即. ∴函数的值域是. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数在区间上有最大值14,则a的值是_______. 分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围. 解:令,则,函数可化为,其对称轴为. ∴当时,∵, ∴,即. ∴当时,. 解得或(舍去); 当时,∵, ∴,即, ∴时,, 解得或(舍去),∴a的值是3或. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程. 解:原方程可化为,令,上述方程可化为,解得或(舍去),∴,∴,经检验原方程的解是. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数的图象,可以把函数的图象( ). A.向左平移9个单位长度,再向上平移5个单位长度 B.向右平移9个单位长度,再向下平移5个单位长度 C.向左平移2个单位长度,再向上平移5个单位长度 D.向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象的平移规律进行判断. 解:∵,∴把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C). 评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数的大小: (1)若,比较与; (2)若,比较与; (3)若,比较与; (4)若,且,比较a与b; (5)若,且,比较a与b. 解:(1)由,故,此时函数为减函数.由,故. (2)由,故,故.从而. (3)由,因,故.又,故.从而. (4)应有.因若,则.又,故,这样,故.从而,这与已知矛盾. (5)应有.因若,则.又,故,这样有.又因,且,故.从而,这与已知矛盾. 小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2,曲线分别是指数函数,和的图象,则与1的大小关系是 ( ). ( 分析:首先可以根据指数函数单调性,确定,在轴右侧令,对应的函数值由小到大依次为,故应选. 小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识.求最值3,求下列函数的定义域与值域.(1)y=2; (2)y=4x+2x+1+1.解:(1)∵x-3≠0,∴y=2的定义域为{x|x∈R且x≠3}.又∵≠0,∴2≠1,∴y=2的值域为{y|y>0且y≠1}.(2)y=4x+2x+1+1的定义域为R.∵2x>0,∴y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2>1.∴y=4x+2x+1+1的值域为{y|y>1}.4,已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值解:设t=3x,因为-1≤x≤2,所以,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
指数函数常见题型
(2)若直线y=2a与函数y=|ax-1|(a>0,且a≠1)的图像只 有两个公共点,则实数a的取值范围是________.
【解析】 ①当a>1时,如图知y=2a与y=|ax-1|的图像 只有一个公共点.
②当 0<a<1 时,由图知 当 0<2a<1,即 0<a<12时,y=2a 与 y=|ax-1|,图像只有 两个公共点. 【答案】 0<a<12
49-73+25×5 1 2×4102=-197+2=19.
(2)原式= 5-2-1- 5-22
=( 5-2)-1-( 5-2)=-1.
3
3
(3)先对条件等式变形,求出 x2+x-2及 x2+x-2 的值.
1
1
由 x2+x-2=3,两边平方,得 x+x-1=7.
再平方得 x2+x-2=47.
1
1
例3 求函数y=33+2x-x2的值域及单调区间. 【解析】 原函数化为 y=(13)x2-2x-3,函数的定义域 为 R, 设 u=x2-2x-3=(x-1)2-4≥-4, ∴0<y≤(13)-4=81, 即函数的值域为{y|0<y≤81}.
∵x∈(-∞,1]时,u 为减函数, x∈[1,+∞)时,u 为增函数. 又∵y=(13)u 为减函数. ∴y=(13)x2-2x-3 的单调递减区间为[1,+∞),单调递 增区间为(-∞,1]. 【答案】 值域为{y|0<y≤81},单调递减区间为[1,+ ∞),单调递增区间为(-∞,1]
3
4
3
(3)1.15,0.65,0.65从小到大的顺序为________.
4
3
3
答案 (1)3 (2) 5,7 (3)0.65<0.65<1.15
指数与指数函数知识点及题型归纳总结
指数与指数函数知识点及题型归纳总结(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--指数与指数函数知识点及题型归纳总结知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ?R ); (2)mm n n a a a-=( m ,n ?R) (3)(a m )n =a mn (m ,n ?R ); (4)(ab )m =a m b m (m ?R ); (5)pp aa-=1(p ?Q )(6)m m n na a =(m ,n ?N +)二、指数函数(1)一般地,形如y =a x (a >0且a ?1)的函数叫做指数函数; (2)指数函数y =a x (a >0且a ?1)的图像和性质如表2-6所示.y =a x a >1 0<a <1图象(1)定义域:R (1)定义域:R 值域(2)值域:(0,+?) (2)值域:(0,+?) (3)过定点(0,1) (3)过定点(0,1) (4)在R 上是增函数.(4)在R 上是减函数.(5)0<y <1?x >0y =1?x =0 y >1?x <0(5)0<y <1?x <0y =1?x =0 y >1?x >0题型归纳及思路提示题型1指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ?0(?0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算 例化简并求值.(1)若a =2,b =41的值; (2)若x x -+=11223,x x x x --+-+-33222232的值;(3)设nna --=11201420142(n ?N +),求)n a 的值.分析:利用指数运算性质解题.解析:1==2211. 当a =2,b =4,原式===12.(2)先对所给条件作等价变形:()x x x x --+=+-=-=11122222327,()()x xx x x x ---+=++-=⨯=33111222213618,x 2+x -2=(x +x -1)2-2=72-2=47. 故x x x x --+--==+--3322223183124723.(3)因为nna --=11201420142,所以()nna -++=11222014201412,所以nnnnna ---+-=-=111112014201420142014201422.所以)n a -=12014.变式1 设2a =5b =m ,且ab+=112,则m =( ).B. 10C. 20D. 100二、指数方程 例 解下列方程(1)9x -4?3x +3=0;(2)()()x x ⋅=29643827; 分析:对于(1)方程,将其化简为统一的底数,9x =(3x )2;对于()()x x ⋅2938,对其底进行化简运算. 解析:(1)9x -4?3x +3=0?(3x )2-4?3x +3=0,令t=3x (t>0),则原方程变形为t 2-4t+3=0, 得t 1=1,t 2=3,即x =131或x =233,故x 1=0,x 2=1.故原方程的解为x 1=0,x 2=1.(2)由()()x x ⋅=29643827,可得()x ⨯=33294383即()()x =33443,所以()()x -=33344,得x =-3.故原方程的解为x =-3.变式1 方程9x -6?3x -7=0的解是________. 变式2 关于x 的方程()x aa+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式例若对x ?[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.解析:因为函数y =2x 是R 上的增函数,又因为x ?[1,2],不等式x m +>22恒成立,即对?x ?[1,2],不等式x +m >1恒成立?函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.所以实数m 的取值范围是{m |m >0}. 变式1 已知对任意x ?R ,不等式()x mx m xx-+++>22241122恒成立,求m 的取值范围. 变式2 函数()xf x x -=-21的定义域为集合A ,关于x 的不等式ax a x +<222(x ?R)的解集为B ,求使A ∩B =A 的实数a 的取值范围. 题型2 指数函数的图像及性质 思路提示解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像例 函数()x b f x a -=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).A. a >1,b <0B. a >1,b >0C. 0<a <1,0<b <1D. 0<a <1,b <0分析:考查指数函数的图象及其变换.解析:由图2-14可知0<a <1,当x =0时,b a -?(0,1),故-b >0,得b <0,故选D.评注:若本题中的函数变为()x f x a b =-,则答案又应是什么由图2-14可知?(x )单调递减,即0<a <1,函数y =a x 的图像向下平移得到x y a b =-的图像,故0<b <1,故选C. 变式1 若函数y =a x +b -1(a >0且a ?1)的图像经过第二、三、四象限,则一定有( ). A. 0<a <1且b >0 B. a >1且b >0C. 0<a <1且b <0D. a >1且b <0变式2 (2012四川理5)函数x y a a=-1(a >0,a ?1)的图象可能是( ).变式3 已知实数a ,b 满足()()a b =1123,下列5个关系式:①0<b <a ,②a <b <0,③0<a <b ,④b <a <0,⑤a =b =0.其中不可能...成立的有( ). A. 1个B. 2个C. 3个D. 4个例 函数?(x )=x a +1(a >0且a ?1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.解析:因为函数?(x )=a x (a >0且a ?1)的图像过定点(0,1),又函数?(x )=x a +1(a >0且a ?1)的图像是由函数?(x )=a x (a >0且a ?1)的图像向左平移一个单位得到的,故函数?(x )=x a +1(a >0且a ?1)的图像过定点(-1,1).变式1 函数?(x )=a x+1(a >0且a ?1)的图像过定点________. 变式2 函数?(x)=ax+x-2的图像过定点________.变式3 ?(x )=x a -1(a >0且a ?1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n+11的最小值为________. 二、指数函数的性质(单调性、最值(值域))例 函数?(x )=a x (a >0且a ?1)在[1,2]上的最大值比最小值大a 2,则a 的值是_______. 分析:本题考查指数函数的单调性.解析:当0<a <1时,函数?(x )=a x 在[1,2]上单调递减,故在[1,2]上最大值为a ,最小值为a 2,则a a a -=22,得a a =22,又0<a <1,所以a =12;当a >1时,函数?(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得a a =232,又a >1,所以a =32.综上所述,a 的值是12或32.评注:函数?(x )=a x (a >0且a ?1),不论0<a <1还是a >1都是单调的,故最大值和最小值在端点处取得.所以||a a a -=22,解得a =12或a =32.变式1 函数?(x )=a x (a >0且a ?1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____. 变式2 定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.变式3 若y =3|x |(x ?([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).A. []B. [4,16]D. [4,12]例 函数x x y a --+=+248145(0<a <1)的单调增区间是________.分析:复合函数x x y a --+=+248145内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+?)上单调递减,在(-?,-1]上单调递增,且y =a x (0<a <1)是减函数,所以x x y a --+=+248145(0<a <1)的单调增区间是[-1,+?). 变式1 函数()f x =的单调增区间是________.变式2 求函数()()()x x f x =-+11142(x ?[-3,2])的单调区间及值域. 变式3 已知0?x ?2,求函数x xa y a -=-⋅++1224212的最大值和最小值.变式4 设函数y =?(x )在(-?,+?)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ⎧=⎨⎩()()f x k f x k ≤>,取函数?(x )=2-|x |,当k =12时,函数?k (x )的单调增区间为( ). A. (-?,0]B. [0,+?)C. (-?,-1]D. [1,+?)变式5 若函数||()x y m -=+112的图像与x 轴有公共点,则m 的取值范围是________.变式6 已知函数()||x f x -=-21,x ?R ,若方程?(x )=a 有两个不同实根,则a 的取值范围是__________.题型3 指数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合指数函数图像求解.(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.例 设()x x f x a =++⋅124(x ?R),当x ?(-?,-1]时,?(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ?1时,x x a ++⋅124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值.解析:因为当x ?(-?,1]时,?(x )的图像在x 轴上方,所以对于任意x ?1,x x a ++⋅124>0恒成立,即x x a +>-214(x ?1)恒成立.令()()()x x x x u x +=-=--2111424(x ?1),a >u (x )max ,x ?(-?,1].因为()x y =12,()x y =14均是减函数,所以u (x )在(-?,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-34. 故实数a 的取值范围为(-34,+?). 变式1 已知函数()()x x af x a a a -=--21(a >0且a ?1). (1)判断函数?(x )的奇偶性; (2)讨论函数?(x )的单调性;(3)当x ?[-1,1]时,?(x )?b 恒成立,求实数b 的取值范围.变式2定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1) 求a,b 的值.(2) 若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.变式3 已知函数1()22x x f x =-,若2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.最有效训练题1.函数2(33)x y a a a =-+是指数函数,则有( ) A a=1或a=2 B a=1 C a=2 D 0a >且1a ≠2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31x f x =-,则有( )A 132()()()323f f f <<B 231()()()323f f f <<C 213()()()332f f f <<D 321()()()233f f f <<4. 函数()22x x f x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340x x a ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞-6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10x f x =,在[0,2014]x ∈上的解的个数是 .11.已知函数()x f x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。
高一数学指数函数知识点及练习题(含答案)[1]
高一数学指数函数知识点及练习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学指数函数知识点及练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学指数函数知识点及练习题(含答案)(word版可编辑修改)的全部内容。
指数函数2。
1。
1指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符n 是偶数时,正数a 的正的n,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(42。
指数函数典型例题总结
指数函数题型总结典型一:辨析指数函数例一、下列函数中,那些是指数函数?( )(1)y=4x (2) y=x4 (3) y=(−2)x (4) y=5x-1 (5) y=a x变式1、函数f(x)=(a2−3a+3)a x(a>0,a≠1)是指数函数,则f(−1)=________变式2、函数f(x)=(k+2)a x+2−b(a>0,a≠1),是指数函数,则k=__,b=___.典型二、图像过定点问题例2、函数y=a x−4+5(a>0,a≠1)的图像一定过_______.变式1、函数f(x)=a2x−3+1(a>0,a≠1)的图像一定过______.变式2、已知函数f(x)=4+a x+1(a>0,a≠1)的图像一定过点P,则点P的坐标是______.典型三、指数函数解析式问题例3、若指数函数的图像过A(2、4),则f(x)=___________.变式1,已知指数函数y=a x+(a−2)(a−3)的图像过(2,4),则a=________.典型四、指数函数的图像问题例4、已知y=a x+b(a>0,a≠1)的图像经过第二、三、四象限,则a的取值范围是________. b的取值范围是________.变式、已知y=a x+b+1(a>0,a≠1)的图像经过第一、三、四象限,则a 的取值范围是________. b的取值范围是________.典型五、利用函数的单调性比较大小,解不等式,求最值。
例6、试比较下列各组数的大小。
(1)、(56)−0.24和(56)−14 (2)(1π)−π和1 (3)0.8−2和(54)−14 (4)0.43,30.4,π0 例7、解不等式(1)(12)3x−1≤2 (2)a x 2−3x+1<a x+6(a >0,a ≠1)(3)求函数f (x )=√1−2x +√x+3的定义域。
例8、已知指数函数f (x )=a x (a >0,a ≠1),若f (x )在⌊−2,2⌋上的最大值为16,则a=_______.典型六、图像变换例9、画出下列函数图像,并说明是有y =2x 的图像怎么变换的。
指数函数及其性质常见题型
——习题课题型一:与指数有关的复合函数的定义域和值域1、 含指数函数的复合函数的定义域(1) 由于指数函数()1,0≠>=a a a y x 且的定义域是R ,所以函数()x f a y =的定义域与()x f 的定义域相同.(2) 对于函数()()1,0≠>=a a a f y x且的定义域,关键是找出x a t =的值域哪些部分()t f y =的定义域中. 2、 含指数函数的复合函数的定义域 (1) 在求形如()x f ay =()1,0≠>a a 且的函数值域时,先求得()x f 的值域(即()x f t =中t 的范围),再根据t a y =的单调性列出指数不等式,得出t a 的范围,即()x f a y =的值域.(2) 在求形如()x a f y =()1,0≠>a a 且的函数值域时,易知0>x a (或根据()x a f y =对x 限定的更加具体的范围列指数不等式,得出xa 的具体范围),然后再()+∞∈,0t 上,求()t f y =的值域即可. 【例】求下列函数的定义域和值域.(1)114.0-=x y ; (2)153-=x y ; (3)x a y -=1.题型二:利用指数函数的单调性解指数不等式解题步骤:(1)利用指数函数的单调性解不等式,首先要将不等式两端都凑成底数相同的指数式.(2)()()()()()()⎩⎨⎧<<>>>⇔>10,1,a x g x f a x g x f a a x g x f 【例】(1)解不等式22113≤⎪⎭⎫ ⎝⎛-x ; (2)已知()1,06132≠><++-a a a a x x x ,求x 的取值范围.题型三:指数函数的最值问题解题思路:指数函数在定义域R 上是单调函数,因此在R 的某一闭区间子集上也是单调函数,因此在区间的两个端点处分别取到最大值和最小值.需要注意的是,当底数未知时,要对底数分情况讨论.【例】函数()()1,0≠>=a a a x f x 在[]2,1上的最大值比最小值大2a ,求a 的值.题型四:与指数函数有关的单调性1、研究形如()x f a y =()1,0≠>a a 且的函数的单调性时,有如下结论:(1)当1>a 时,函数()x f a y =的单调性与()x f 的单调性相同;(2)当10<<a 时,函数()x f ay =的单调性与()x f 的单调性相反. 2、研究形如()x a y ϕ=()1,0≠>a a 且的函数的单调性时,有如下结论:(1)当1>a 时,函数()x ay ϕ=的单调性与()t y ϕ=的单调性相同; (2)当10<<a 时,函数()xa y ϕ=的单调性与()t y ϕ=的单调性相反. 注意:做此类题时,一定要考虑复合函数的定义域. 【例】1.已知1,0≠>a a 且,讨论()232++-=x xa x f 的单调性.2.求下列函数的单调区间.(1)322-+=x xa y ; (2)12.01-=x y题型五:指数函数与函数奇偶性的综合应用虽然指数函数不具有奇偶性,但一些指数型函数可能具有奇偶性,对于此类问题可利用定义进行判断或证明.【例】1. 已知函数()a x f x ++=131为奇函数,则a 的值为 . 2. 已知函数()()R x a x f x∈+-=211是奇函数,则实数a 的值为 . 3. 已知函数()()1,02111≠>+-=a a a x f x ,判断函数()x f 的奇偶性.题型六:图像变换的应用1、平移变换:若已知x a y =的图像,(1)把x a y =的图像向左平移b 个单位,则得到b x a y +=的图像;(2)把x a y =的图像向右平移b 个单位,则得到b x a y -=的图像;(3)把x a y =的图像向上平移b 个单位,可得到b a y x +=的图像;(4)把x a y =的图像向下平移b 个单位,则得到b a y x-=的图像.2、对称变换:若已知x a y =的图像,(1)函数x a y =的图像与x a y -=的图像关于y 轴对称;(2)函数x a y =的图像与x a y -=的图像关于x 轴对称;(3)函数xa y =的图像与x a y --=的图像关于坐标原点对称. 【例】1. 画出下列函数的图象,并说明它们是由函数x y 2=的图像经过怎样的变换得到的.①12-=x y ;②12+=x y ;③x y 2=;④12-=x y ;⑤x y 2-=;⑥x y --=22. 函数a x y +=与x a y =()1,0≠>a a 且的图像可能是( )A B C D3.若直线a y 2=与函数11+-=x a y ()1,0≠>a a 且的图像有两个公共点,则a 的取值范围是 .。
指数与指数函数题型归纳
指数与指数函数题型归纳(非常全)(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--指数式及指数函数题型归纳()一. 指数幂与根式的互化:题组一:根式化为分数指数幂(1) 化简√a 12√a 12√a =________. (2) 计算2√a ⋅√a23=________.(3)若a <0,则√aa 3=________. (4)√a √a a 的值为( )题组二:运用分数指数幂进行化简:(1)下列各式中错误的是( ) 1. A. 225×2 52=2B. (127)−13=3 C. √26=√23 D. (−18)23=2. 化简(a 23a 12)×(-3a 12a 13)÷(13a 16a 56)的结果( )A. 6aB. −aC. −9aD. 9a 23.(1)计算:1612+(181)−0.25−(−12)0 (2)化简:(2a 14a −13)(−3a −12a23)÷(−14a −14a −23).(3)(√23×√3)6+(√22)43-4(1649)−12-√24×(-2009)0.题组三:指数式的条件求值问题:1.已知a 12+a −12=3,求下列各式的值(写出过程):(1)a 1+a −1 (2)a 2+a −2 (3)a 32+a −32=2.(1)已知a +a −1=3,求a 12+a −12a 2+a −2+3的值.(2)已知2x +2-x =3,则 4x +4-x =______ .题组四:利用指数函数比较大小;1.下列各式比较大小正确的是: 1.72.3______ 1.74 ; 0.6−1______ 0.62 ; 1.70.3______ 0.92.3 0.8−0.1______ 1.250.22.已知a =(13)−1.1,a =a 0,a =30.9,则a ,b ,c 三者的大小关系是()A. a <a <aB. a <a <aC. a <a <aD. a <a <a3. 已知a =(35)25,b =(25)35,c =(25)25,则()A. a <a <aB. a <a <aC. a <a <aD. a <a <a题组五:指数函数过定点问题;1.函数f (x )=2-a x +1(a >0且a ≠1)的图象恒过定点( )A. (0,2)B. (1,2)C. (−1,1)D. (−1,2) 2.函数y =a x -3+1(a >0且a ≠1)图象一定过点______ .3.函数y =a −a2+2a +3(a >0,a ≠1)的图象经过定点为______4. 题组六:指数函数解方程(或不等式);1. 设集合A ={x |-1<x <2},{x |18<(12)x <1},则A ∩B =()A. (0,3)B. (1,3)C. (0,2)D. (1,+∞)2.(1)不等式3−a2+2a>13a +4的解集为________.(2)不等式2x-2>22x+4的解集为______(3)求不等式a 2x -7>a 4x -1(a >0,且a ≠1)中x 的取值范围3.方程4x -6×2x +8=0的解是______ .题组七:指数函数有关图像问题;1.函数a (a )=a a +a −1(其中0<a <1且0<a <1)的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 若函数y =a x +b 的部分图象如图所示,则( )A. 0<a <1,−1<a <0B. 0<a <1,0<a <1C. a >1,−1<a <0D. a >1,0<a <13.函数f (x )=-3|x |+1的图象大致是( )A. B. C. D.4.函数a =aa a|a |(a >1)的图象的大致形状是( )A. B.C. D.5.如图①a =a a ,②a =a a ,③a =a a ,④a =a a ,根据图象可得a 、b 、c 、d 与1的大小关系为( )A. B. C.D.题组八:指数函数有关复合函数问题:1.(1)函数a =(13)a 2−6a的单调递增区间为______( 2 ) 函数a =2−a2−4a的单调递减区间为_____ 2.(1)函数y =(12)−a2+2a的值域是( ) A. RB. [12,+∞)C. (2,+∞)D. (0,+∞)(2)函数a (a )=(13)a 2−6a +5的值域为_____ (3)函数a =2a2−1的值域是______ 3.求函数y =3−a 2+2a +3的定义域、值域和单调区间.题组九:指数函数与其它函数交汇问题: 1.已知a (a )=a a 1+a a(a ≠0),则a (−2018)+a (−2017)+⋯+a (2017)+a (2018)=( )A. 2018B.40372C. 2019D.403922.已知函数a (a )={3a −1,a >0−2a 2−4a ,a ⩽0,若方程a (a )=a 有3个不等的实根,则实数a 的取值范围是________.3.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是______.4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =______.5.函数a (a )=4a −2a +1+3的定义域为a ∈[−12,12]. (Ⅰ)设a =2a ,求t 的取值范围; (Ⅱ)求函数a (a )的值域.6.已知函数a (a )=a −2a 1+2a(a ∈a ),且a ∈a 时,总有a (−a )=−a (a )成立.(1)求a 的值;(2)判断并证明函数a (a )的单调性;6.已知定义域为R的函数,a(a)=−2a+a2a+1+a是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.答案和解析1.【答案】C【解析】【分析】本题主要考查指数幂的计算,要求熟练掌握指数幂的运算法则,属基础题. 根据分数指数幂的运算法则进行求解即可.【解答】解:由条件知a≥0,则√a12√a12√a=√a12√a12+12=√a12⋅√a=√a12⋅a12=a12.故选C.2.【答案】A【解析】【分析】本题考查有理指数幂的运算法则的应用,考查计算能力,属于基础题.利用已知条件,通过开方运算,求解即可,利用a12+a−12=√(a12+a−12)2,即可得.【解答】解:由a+1a=7,可得a>0,a12+a−12>0,∴a12+a−12=√(a12+a−12)2=√7+2=3,故选A.3.【答案】B【解析】【分析】由已知a (a )+a (−a )=a a 1+a a +a −a 1+a −a =1+a a1+a a =1,再利用倒序相加进行求和即可求解. 【解答】解: 由已知有a (a )+a (−a )=a a 1+a a+a −a 1+a −a =1+a a1+a a =1,设a =a (−2018)+a (−2017)+⋯+a (2017)+a (2018), 则a =a (2018)+a (2017)+⋯+a (−2017)+a (−2018), 两式相加得2T =4037×1, 所以a =40372.故选B .4.【答案】C【解析】【分析】本题考查有理指数幂的化简求值,是基础的计算题.化根式为分数指数幂,再由有理指数幂的运算性质化简求值. 【解答】 解:2√a ⋅√a 23=a 2⋅a −12⋅a −23=a2−12−23=a 56. 故选C . 5.【答案】A【解析】解:原式=a 32−12a 14−14=a ,故选:A根据指数幂的运算性质计算即可.本题考查了指数幂的运算性质,属于基础题. 6.【答案】A【解析】【分析】本题考查了指数函数解析式,由已知解析式得到5a +b =3,所求为5a •5b ,利用同底数幂的乘法运算转化即可,属于中档题. 【解答】解:因为f (x )=5x ,因为f (a +b )=3,所以5a +b =3, 则f (a )•f (b )=5a •5b =5a +b =3. 故选A . 7.【答案】B【解析】【分析】本题主要考查函数值的计算,利用指数幂的运算性质是解决本题的关键,比较基础.根据指数幂的运算性质,进行平方即可得到结论.解:∵f (x )=3x +3-x , ∴f (a )=3a +3-a =4, 平方得32a +2+3-2a =16, 即32a +3-2a =14.即f (2a )=32a +3-2a =14. 故选B . 8.【答案】D【解析】解:∵a <0,ax 3≥0, ∴x ≤0,∴√aa =|x |√aa =-x √aa ,故选:D由题意可得x ≤0,即可求出答案.本题考查了根式的化简,属于基础题. 9.【答案】B【解析】【分析】本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题. 求解一元二次不等式和指数不等式化简集合M ,N ,然后直接利用补集和交集的运算求解. 【解答】解:由题意,集合M ={x |x 2+x -6<0}={x |-3<x <2}, N ={x |(12)a ≥4}={x |x ≤-2},全集为R ,所以∁a a ={x |x >-2},所以M ∩(∁a a )={x |-2<x <2}, 所以M ∩(∁a a )=(-2,2). 故选B .10.【答案】A【解析】解:A 、原式=225+52=22910; B 、原式=(3−3)−13=3;C 、原式=√226=(22)16=√23; D 、原式=(−2−3)23=(−2)−2=14.故选:A根式与分数指数幂的互化公式是√a a a =a aa ,分数指数幂公式是x -n =1a a (x ≠0),按公式运算即可.本题考查了根式与分数指数幂的互化以及负分数指数幂的运算问题,是基础题.11.【答案】C【解析】【分析】根据指数幂的运算性质计算即可.本题考查了分数指数幂和根式的互化,以及指数幂的运算性质,属于基础题.解:√a√a a=(a·(a·a12)12)12=a78,故选C.12.【答案】C【解析】解:(a23a12)(−3a12a13)÷(13a16a56)=(−3)÷13×a23+12−16a12+13−56=-9a故选:C.由指数幂的运算法则直接化简即可.本题考查指数式的化简、指数幂的运算法则,考查运算能力.13.【答案】D【解析】解:a=(13)−1.1=31.1,a=a0=1,a=30.9,∵指数函数a=3a在R上单调递增,∴31.1>30.9>30=1,即有a>c>b,即b<c<a.故选:D.运用指数函数的单调性,可得31.1>30.9>1,即可得到a,b,c的大小关系.本题考查指数函数的单调性的运用:比较大小,考查运算能力,属于基础题.14.【答案】B【解析】【分析】本题考查函数的定义域与值域,以及函数图象的判断,属于基础题.先求出函数的定义域,再分别讨论x>0,x<0时函数的范围,由此判断函数的图象即可.【解答】解:函数f(x)=a aa的定义域为:(−∞,0)∪(0,+∞),排除选项A.当x>0时,函数f(x)=a aa>0,选项C不满足题意.当x<0时,函数f(x)=a aa<0,选项D不正确,故选B.15.【答案】C【解析】【分析】本题考查识图问题,利用特值或转化为比较熟悉的函数,利用图象变换或利用函数的性质是识图问题常用的方法.f(x)中含有|x|,故f(x)是分段函数,根据x的正负写出分段函数的解析式,对照图象选择即可.【解答】解:f(x)是分段函数,根据x的正负写出分段函数的解析式,f(x)={a a(a>0)−a a(a<0),∴x>0时,图象与y=a x(a>1)在第一象限的图象一样,x<0时,图象与y=a x(a>1)的图象关于x轴对称,16.【答案】B【解析】解:函数y=(2a-1)x在R上为单调减函数,∴0<2a-1<1<a<1解得12故选:B.指数函数y=a x,当0<a<1时为定义域上的减函数,故依题意只需0<2a-1<1,即可解得a的范围本题主要考查了指数函数的单调性,通过底数判断指数函数单调性的方法,属基础题17.【答案】C【解析】【分析】本题考查指数函数的图象过定点问题,即a0=1的应用,属于基础题.由x+1=0得x=-1代入解析式后,再利用a0=1求出f(-1)的值,即可求出答案.【解答】解:由x+1=0得x=-1,则f(-1)=2-a0=1,∴函数f(x)=2-a x+1的图象恒过定点(-1,1).故选C.18.【答案】A【解析】【分析】本题考查的知识点是函数的图象,其中根据函数的解析式分析出函数的性质及与坐标轴交点位置,是解答的关键.根据已知可分析出函数的奇偶性,进而分析出函数图象的对称性,将x=0代入函数解析式,可判断函数图象与y轴交点的位置,利用排除法可得函数的图象.【解答】解:∵函数f(x)=-3|x|+1,∴f(-x)=-3|-x|+1=-3|x|+1=f(x),即函数为偶函数,其图象关于y轴对称,故排除B、D,当x=0时,f(0)=-30+1=0,即函数图象过原点,故排除C.故选A.19.【答案】C【解析】【分析】本题主要考查了指数函数的图象的应用及函数图像的平移变换,属于基础题,由0<a<1可得函数y=a x的图象单调递减,且过第一、二象限,再利用图象的平移,可得结论.【解答】解:由0<a<1可得函数y=a x的图象单调递减,且过第一、二象限,∵0<b<1,∴-1<b-1<0,∴0<1-b<1,∵y=a x的图象向下平移1-b个单位即可得到y=a x+b-1的图象,∴y=a x+b的图象一定在第一、二、四象限,一定不经过第三象限.故选C.【解析】【分析】此题考查复合函数的单调性,属于基础题,利用二次函数及指数函数的单调性可得出函数的单调性.【解答】解:∵函数a=(13)a2−9是由函数a=a2−9与a=(13)a复合而成,因为a=a2−9的单调递减区间为(−∞,0),又a=(13)a单调递减,所以函数a=(13)a2−9的单调递增区间为(−∞,0).故选A.21.【答案】C【解析】【分析】本题考查指数型函数图象恒过定点问题,关键是掌握该类问题的求解方法,是基础题.由指数式的指数等于0求解x值,进一步求得y值得答案.【解答】解:由x-3=0,得x=3,此时y=a0+1=2.∴函数y=a x-3+1(a>0且a≠1)图象一定过点(3,2).故选:C.22.【答案】B【解析】【分析】本题考查了指数函数的单调性的应用,属于基础题.根据指数函数的单调性判断数的大小即可.【解答】解:y=为增函数,<3,∴故A错误,y=为减函数,-1<2,∴>,故B正确,由于,,故C错误,由于,对于指数函数y=为增函数,<,∴故D错误,故选B.23.【答案】B【解析】【分析】本题主要考查复合函数的单调性、指数函数的定义域和值域,属于基础题,令t=-x2+2x,则y=(12)a,再根据t≤1以及指数函数的单调性求得y的值域.【解答】解:令a=−a2+2a=−(a−1)2+1≤1,则y=(12)a,由于t≤1,∴y≥(12)1=12,所以函数y=(12)−a2+2a的值域是[12,+∞).故选B.24.【答案】D 【解析】【分析】本题考查了利用指数函数、幂函数的单调性判断数的大小,属于基础题.解题时利用指数函数、幂函数的单调性即可判断.【解答】解:∵y=(25)a为减函数,且35>25,∴b<c,又∵y=a25在(0,+∞)为增函数,∴a>c,∴b<c<a,故选D.25.【答案】C【解析】【分析】本题考查描述法表示集合的定义及表示形式,指数式的运算,以及指数函数的单调性,交集的运算.可写出18=(12)3,1=(12)0,然后根据指数函数单调性即可求出集合B={x|0<x<3},根据交集的定义运算即可得出A∩B.【解答】解:18=(12)3,1=(12)0;∴由18<(12)a<1得,0<x<3;∴B={x|0<x<3},且A={x|-1<x<2};∴A∩B=(0,2).故选C.26.【答案】A【解析】解:由图象可以看出,函数为减函数,故0<a<1,因为函数y=a x的图象过定点(0,1),函数y=a x+b的图象过定点(0,b+1),∴-1<b<0,故选A.根据指数函数的图象和性质即可判断.本题主要考查函数图象的应用,利用函数过定点是解决本题的关键.27.【答案】C【解析】【分析】本题主要考查指数函数的图象和性质,比较函数值的大小即可,比较基础.根据指数函数的图象和性质即可得到结论.【解答】解:很显然a,b均大于1;且y=b x函数图象比y=a x变化趋势小,故b<a,综上所述:a>b>1.故选:C.28.【答案】B【解析】【分析】本题考查对数函数的图象与性质,作出直线x=1,给出直线与四条曲线的交点坐标是正确解答本题的关键,本题的难点是意识到直线x=1与四条曲线交点的坐标的纵坐标恰好是四个函数的底数,此也是解本题的重点.可在图象中作出直线x=1,通过直线与四条曲线的交点的位置确定出a、b、c、d 与1的大小关系,选出正确选项【解答】解:由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b),(1,a),(1,d),(1,c)故有b<a<1<d<c故选:B.29.【答案】C【解析】【分析】本题考查指数型函数的图象与性质,由函数的图象可以看出其变化趋势,由图象特征推测出参数的范围.观察到函数是一个指数型的函数,不妨作出其图象,从图象上看出其是一个减函数,并且是由某个指数函数向下平移而得到的,故可得出结论.【解答】解:如图所示,图象与y轴的交点在y轴的负半轴上(纵截距小于零),即a0+b-1<0,且0<a<1,∴0<a<1,且b<0.故选C.30.【答案】C【解析】【分析】令x-1=0,求出x的值,从而求出对应的y的值,从而求出定点的坐标.本题考查了指数函数的性质,是一道基础题.【解答】解:令x-1=0,解得:x=1,故x=1时,y=1,故函数过(1,1),故选C.31.【答案】D【解析】【分析】本题主要考查复合函数求单调区间的问题,复合函数求单调区间时,一般分离成两个简单函数根据同增异减的特性来判断.)a,z=x2-6x+5,根据同增异减性可得答将原函数分离成两个简单函数y=(13案.【解答】解:令z=x2-6x+5是开口向上的二次函数,x∈(-∞,3]上单调递减,x∈[3,+∞)上单调递增.)a,t=x2-6x+5,则原函数可以写为:y=(13因为y=(13)a单调递减,故原函数的单调递减区间为:[3,+∞).故选D.32.【答案】C【解析】【分析】本题考查了指数函数的定义,属于容易题.函数a=(a2−5a+5)a a是指数函数,所以必须满足{a 2−5a+5=1a>0,且a≠1,解出即可.【解答】解:∵函数a=(a2−5a+5)a a是指数函数,∴{a 2−5a+5=1a>0,且a≠1,解得a=4.故选C.33.【答案】C【解析】【分析】本题考查指数函数的单调性的应用,考查计算能力.直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=,c=,可知:c>a>b.故选C.34.【答案】5【解析】【分析】本题考查对数式、指数式化简求值,属于基础题.利用指数,对数的性质、运算法则求解.【解答】解:=1+3×23+lg100=1+2+2=5.故答案为5.35.【答案】7【解析】解:∵2x+2-x=3,∴4x+4-x=(2x+2-x)2-2=32-2=7.故答案为:7.直接把要求解的式子配方后代入已知条件得答案.本题考查了有理指数幂的化简求值,关键是完全平方式的应用,是基础题.36.【答案】19【解析】【分析】本题考查有理指数幂的化简求值,考查计算能力,直接利用有理指数幂化简求值即可.【解答】解:0.027−13-(-17)-2+25634-3-1+(√2-1)0 =103-49+64-13+1=19.故答案为19. 37.【答案】-6b【解析】解:(−3a 13a 23)·(a 12a 12)÷(12a 56a 16)=−6a 13+12−56a 23+12−16=−6a 0a 1=-6b故答案为-6b .本题考查了指数的运算法则,与单项式相乘除的法则相同,系数相乘除作系数,同底数幂相乘除,底不变,指数相加减,即可得出. 38.【答案】x =1或x =2 【解析】【分析】求解关于2x 的一元二次方程,然后进一步求解指数方程得答案.本题考查有理指数幂的化简与求值,考查了一元二次方程的解法,是基础题.【解答】解:由4x -6×2x +8=0,得 (2x -2)(2x -4)=0, 即2x =2或2x =4. ∴x =1或x =2.故答案为:x =1或x =2. 39.【答案】3【解析】【分析】本题主要考查了根式的化简,属于基础题. 根据根式的特点化简即可. 【解答】解:由4<x <7,则式子√(a −4)44+√(a −7)44=|x -4|+|x -7|=x -4+7-x =3,故答案为3.40.【答案】(−1,4) 【解析】【分析】本题考查指数函数单调性的应用,一元二次不等式的解法等基础知识, 考查运算求解能力与转化思想.先利用指数函数单调性,得−a 2+2a >−a −4, 解不等式即可. 【解答】解:原不等式可化为3−a2+2a>3−a −4,∵函数y =3x 为R 上的增函数, ∴−a 2+2a >−a −4, 解得−1<a <4 故答案为(−1,4).41.【答案】(2,2)【解析】【分析】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.令x-2=0,则x=2,即为定点横坐标,代入函数式可得定点纵坐标.【解答】解:令x=2,得a=a0+1=2,所以函数a=1+a a−2的图象恒过定点坐标是(2,2).故答案为(2,2).42.【答案】(0,3]【解析】【分析】本题考查了指数函数的性质,复合函数的值域,利用换元法求函数的值域,属于基础题.令t=x2-1,将求函数a=(13)a2−1的值域的问题转化为求a=(13)a在[-1,+∞)上的值域问题,再利用函数a=(13)a的单调性求值域. 【解答】解:令t=x2-1,t∈[-1,+∞),即a=(13)a,t∈[-1,+∞),函数a=(13)a在区间[-1,+∞)上是减函数,故y≤(13)−1=3 ,故函数a=(13)a2−1的值域是(0,3].故答案为(0,3].43.【答案】(0,2)【解析】【分析】本题考查函数的零点个数,函数的图象的应用,属于中档题. 利用分段函数画出函数的图象,然后判断m的范围即可. 【解答】解:画出函数a(a)={3a−1,a>0−2a2−4a,a⩽0的图象如下:由函数f(x)=m有3个不等实根,即函数a(a)与直线a=a有3个交点,结合图象得:0<m<2,即m∈(0,2).故答案为(0,2).44.【答案】0<a<12【解析】解:①当0<a<1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,∴0<a<1.2②当a>1时,作出函数y=|a x-1|图象:若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点由图象可知0<2a<1,此时无解.综上:a的取值范围是0<a<1.2故答案为:0<a<12先分:①0<a<1和a>1时两种情况,作出函数y=|a x-1|图象,再由直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,作出直线,移动直线,用数形结合求解.本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,同时,还考查了数形结合的思想方法.45.【答案】[3,+∞)【解析】【分析】本题主要考查了函数的定义域问题,由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x-8≥0,得2x≥8,则x≥3,∴函数y=a=√2a−8的定义域为[3,+∞).故答案为[3,+∞).46.【答案】(2,3)【解析】【分析】本题考查指数型函数的图象恒过定点问题,关键是掌握此类问题的求法,是基础题.由指数式的指数等于0求得x值,进一步求得y值,则答案可求.【解答】解:由x-2=0,得x=2,此时y=3.∴函数y=a x-2+2(a>0且a≠1)一定过定点(2,3).故答案为(2,3).47.【答案】−32【解析】【分析】本题考查指数函数的单调性的应用,以及分类讨论思想,属于中档题. 对a 进行分类讨论,结合指数函数的单调性列出方程组,解得答案. 【解答】解:当a >1时,函数f (x )=a x +b 在定义域上是增函数,所以{1+a =0a −1+a =−1,解得b =-1,1a =0不符合题意舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数,所以{1+a =−1a −1+a =0,解得b =-2,a =12, 综上a +b =−32, 故答案为:−32 .48.【答案】(1)解:原式=aaa 322×8329-52aaa 53=2-32=-7.(2)解:原式=(32)2×12-1-(32)3×23+(32)2=32-1-94+94=12.【解析】本题考查了指数幂与对数的运算性质,考查了计算能力,属于基础题.(1)利用对数的运算性质即可得出. (2)利用指数的运算性质即可得出.49.【答案】解:(1)√(3−a )44+()13-()12×(√2)-4=π-3+=π-3+ =π.(2)(√23×√3)6+(√)43-4(1649)−12-√24×(-2009)0=4×27+(234)43-7-1614-1=108+2-7-2-1 =100.【解析】本题主要考查指数式化简求值,是基础题.解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.50.【答案】解:(1)原式=53−(23)3×13-1+2−2×(−12)=53−23-1+2=2.(2)原式=aa8×1252×512aa10×(−aa10)=aa102−12=-4.(3)∵a ,b ,c 为正实数,a x =b y =c z =k >0,k ≠1. ∴x =aaaaaa ,y =aaaaaa ,z =aaaaaa , ∵1a +1a +1a =0,∴aaa +aaa +aaa aaa =aa (aaa )aaa=0,∴abc =1.【解析】(1)本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.利用指数幂的运算性质即可得出.(2)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.利用对数的运算性质即可得出.(3)本题考查了对数的运算性质,考查了推理能力与计算能力,属于基础题.设a x =b y =c z =k >0,可得x =aaa aaa ,y =aaa aaa ,z =aaaaaa ,再利用对数的运算性质即可得出.51.【答案】解:(1)(214)12−(−0.96)0−(338)−23+(1.5)−2=32−1−[(32)3]−23+(32)−2=12−(32)−2+(32)−2 =12. (2)∵10x =3,10y =4, ∴102x -y =102a10a=(10a )210a=94.【解析】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.52.【答案】解:(1)原式=0.82×(−12)+33×23-1-23=54+9-1-8=54.(2)原式=aaa 3(102×0.81)=aaa 334=4.【解析】(1)利用指数的运算性质即可得出. (2)利用对数的运算性质即可得出.本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.53.【答案】解:(1)原式=(8116)0.5−1÷(43)2+(2764)23=94−916+916=94.(2)原式=aaa 3332+aa 1004+aa4+2+1=32+2−aa4+aa4+3=132.【解析】(1)本题考查指数式化简求值,是基础题.利用有理数指数幂的性质及运算法则求解,解题时要认真审题,注意有理数指数幂的性质及运算法则的合理运用.(2)本题考查对数式和指数式的化简求值,是基础题.利用对数的运算性质化简即可.54.【答案】解:(1)(279)12-(2√3-π)0-(21027)−23+0.25−32,原式=√259-1-(6427)−23+(14)−32=53-1-(2764)23+432 =23-916+8=8548.(2)由题意:0<x <1, ∴a 12−a −12<0所以:(a 12−a −12)2=x +x -1-2. ∵x +x -1=3,∴(a 12−a −12)2=1, 故得a 12−a −12=-1.【解析】本题考查了指数幂的运算性质,属于基础题. (1)利用指数幂的运算性质即可得出. (2)由题意0<x <1,且x +x -1=3,判断x 12-x−12的值为负,采用两边平方后,再开方可得答案. 55.【答案】解(1)原式=(94)12−1−(278)−23+(110)−2=32-1-49+100=180118.(2)∵(a 12+a −12)2=x +x -1+2=5, ∴a 12+a −12=√5, ∴(x +x -1)2=x 2+x -2+2=9, ∴x 2+x -2=7, ∴a 12+a −12a 2+a −2+3=√510.【解析】本题考查了幂的运算性质,属于基础题. (1)根据幂的运算性质计算即可, (2)根据幂的运算性质计算即可. 56.【答案】解:(1)(2a 23b12)(-6a12b13)÷(-3a16b56)(a >0,b >0) =4a 23+12−16a 12+13−56 =4a .(2)2(aa √2)2+aa √2×aa5+√(aa √2)2−aa2+1=lg√2(lg2+lg5)+√(lg√2−1)2=lg√2+1−aa√2=1.【解析】本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用.(1)利用指数式性质、运算法则求解.(2)利用对数性质、运算法则求解.57.【答案】解:1612+(181)−0.25−(−12)0=4+3-1 =6.(2a14a−13)(−3a−12a23)÷(−14a−14a−23)= 24a14−12+14a−13+23+23= 24b.【解析】本题考查指数性质、运算法则的应用,是基础题,解题时要认真审题,注意指数性质、运算法则的合理运用.利用指数性质、运算法则直接求解.58.【答案】解:根据题意,函数的定义域显然为(-∞,+∞).令u=f(x)=3+2x-x2=4-(x-1)2≤4.∴y=3u是u的增函数,当x=1时,u max=f(1)=4,而u∈(−∞,4).∴0<3u≤34,即值域为(0,81].(3)当x≤1时,u=f(x)为增函数,y=3u是u的增函数,根据同增异减原则.即原函数单调增区间为(-∞,1],单调减区间为(1,+∞);其证明如下:任取x1,x2∈(-∞,1]且令x1<x2,则a(a1)a(a2)=3−a12+2a1+3÷3−a22+2a2+3=3−a12+2a1+3+a22−2a2−3=3(a22−a12)+2(a1−a2)=3(a1−a2)(2−a1−a2)∵x1<x2,x1,x2∈(-∞,1]∴x1-x2<0,2-x1-x2>0∴(x1-x2)(2-x1-x2)<0∴3(a1−a2)(a1+a2+2)<1∴f(x1)<f(x2)∴原函数单调增区间为(-∞,1]同理可证,原函数单调减区间为[1,+∞).即原函数单调增区间为(-∞,1],单调减区间为(1,+∞).【解析】根据题意,定义域的求解易知为(-∞,+∞),值域的求解通过换元法将3+2x-x2换成u,通过二次函数的知识求得u的范围为(-∞,4],再根据指数函数y=3u的单调性即可求解利用复合函数的单调性的特点(根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数)判断出函数的单调区间,在根据定义:(就是定义域内的任意取x 1,x 2,且x 1<x 2,比较f (x 1),f (x 2)的大小,或f (x 1)<f (x 2)则是增函数;反之则为减函数)证明即可本题考查了以指数函数为依托,通过换元法进行求解函数值域,另外还有复合函数的单调性问题,属于基础题.59.【答案】解:(Ⅰ)因为f (x )是奇函数,所以f (0)=0, 即a −1a +2=0⇒a =1,∴a (a )=1−2a a +2a +1,又由f (1)=-f (-1)知1−2a +4=−1−12a +1⇒a =2.所以a =2,b =1.经检验a =2,b =1时,a (a )=−2a +12a +1+2是奇函数.(Ⅱ)由(Ⅰ)知a (a )=1−2a 2+2a +1=−12+12a +1,易知f (x )在(-∞,+∞)上为减函数. 又因为f (x )是奇函数,所以f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因为f (x )为减函数,由上式可得:t 2-2t >k -2t 2. 即对一切t ∈R 有:3t 2-2t -k >0,从而判别式a =4+12a <0⇒a <−13. 所以k 的取值范围是(−∞,−13).【解析】本题主要考查函数奇偶性与单调性的综合应用,同时考查一元二次不等式恒成立问题的解决策略,属于中档题.(Ⅰ)利用奇函数的定义,在f (x )=-f (-x )中运用特殊值求a ,b 的值; (Ⅱ)首先确定函数f (x )的单调性,然后结合奇函数的性质把不等式f (t 2-2t )+f (2t 2-k )<0转化为关于t 的一元二次不等式,最后由一元二次不等式知识求出k 的取值范围.60.【答案】解:(1)∵f (-x )=-f (x ), ∴a −2−a 1+2−a=-a −2a 1+2a, 即a ⋅2a −11+2a=2a −a 1+2a,∴a =1, ∴f (x )=1−2a 1+2a;(2)函数f (x )为 R 上的减函数. ∵f (x )的定义域为 R ,∴任取x 1,x 2∈R ,且x 2>x 1, ∴f (x 2)-f (x 1)=1−2a 21+2a 2−1−2a 11+2a 1=2(2a 1−2a 2)(1+2a 1)(1+2a 2),∵x 2>x 1,∴2a 2>2a 1>0,∴a(a2)−a(a1)<0即f(x2)<f(x1),∴函数f(x)为R上的减函数;(3)由(2)知,函数f(x)在[0,2]上为减函数,∴f(2)≤f(x)≤f(0),即−35≤f(x)≤0,即函数的值域为[-35,0].【解析】本题主要考查函数奇偶性的应用以及函数单调性和值域的求解,利用定义法是解决本题的关键.(1)根据条件建立方程关系即可求a的值;(2)根据函数单调性的定义判断并证明函数f(x)的单调性;(3)结合函数的单调性即可求f(x)在[0,2]上的值域.61.【答案】解:(Ⅰ)∵t=2x在x∈[−12,12]上单调递增,∴t∈[√22,√2] ;(Ⅱ)函数可化为:f(x)=g(t)=t2-2t+3 ,∵g(t)在[√22,1]上单减,在[1,√2]上单增,比较得g(√22)<g(√2),∴f(x)min=g(1)=2,f(x)max=g(√2)=5-2√2,∴函数的值域为[2,5-2√2].【解析】本题考查了指数函数的值域的求法,指数函数与一元二次函数组成的复合函数的值域的求法,属于基础题.解题的关键是熟练掌握指数函数的性质与二次函数的性质,本题的重点在第二小题,将求复合函数的值域转化为求两个基本函数的值域,先求内层函数的值域再求外层函数的值域,即可得到复合函数的值域,求复合函数的值域问题时要注意此技能使用.(Ⅰ)由题意,可先判断函数t=2x,x∈[−12,12]单调性,再由单调性求出函数值的取值范围,易得;(Ⅱ)由于函数f(x)=4x-2x+1+3是一个复合函数,可由t=2x,将此复合函数转化为二次函数g(t)=t2-2t+3,此时定义域为t∈[√22,√2],求出二次函数在这个区间上的值域即可得到函数f(x)的值域.62.【答案】解:由a2x-7>a4x-1知需要进行分类,具体情况如下:当a>1时,∵y=a x在定义域上递增,∴2x-7>4x-1,解得x<-3;当0<a<1时,∵y=a x在定义域上递减,∴2x-7<4x-1,解得x>-3;综上得,当a>1时,x的取值范围为(-∞,-3);当0<a<1时,x的取值范围为(-3,+∞).【解析】根据不等式需要对a进行分两类:a>1时和0<a<1时,再分别利用指数函数的单调性列出不等式求解,最后要把结果分开表示.本题考查了利用指数函数的单调性求有关指数不等式的解,关键是根据底数判断函数的单调性,考查了分类讨论思想.63.【答案】解:(1)根据题意,a(a)=(12a−1+12)a,则有2x-1≠0,解可得x≠0,则函数的定义域为{x|x≠0},(2)设任意x≠0,∵a(−a)=(12−a−1+12)(−a)=(2a1−2a+12)(−a)=(2a−1+11−2a+12)(−a)=(11−2a−1 2)(−a)=(12a−1+12)a=a(a).∴f(x)为偶函数;(3)根据题意,f(x)为偶函数,f(-x)=f(x),当x>0时,2x-1>0,则a(a)=(12a−1+12)a>0,又由f(x)为偶函数,则当x<0时,f(x)>0,综合可得:f(x)>0.【解析】本题考查函数奇偶性与单调性的综合应用,判定函数的奇偶性时要先分析函数的定义域.(1)根据题意,由函数的解析式可得2x-1≠0,解可得x的范围,即可得答案;(2)由(1)的结论,进而分析f(-x)=f(x),结合函数奇偶性的定义即可得答案;(3)根据题意,当x>0时,分析易得a(a)=(12a−1+12)a>0,结合函数的奇偶性分析可得答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数指数幂运算与指数函数(一)指数与指数幂运算 1、双层根好开方246347625---++2、用分数指数幂表示下列各式(1)43a a ⋅; (2)a a a (3)322b a ab + (4)4233)(b a +3、化简(1) )31()3()(656131212132b a b a b a ÷-⋅(2) )221(2323131---x x x(3))0,0()(3131421413223>>-b a ba b a ab b a4、求值(1)33125.0833416--(2)552)()(a b b a -+-(3)5.02120)01.0()412(2)532(-⨯+--)(4)c b a b a b a 2413212()4()(-----÷-⋅5、有附加条件的计算问题化简求值是考试中的常见问题,先化简,再求值是常用的解题方法,化简包括对已知条件和所求式子的化简,如果只对所求式子化简有时也很难用上已知条件,所以有些题目经常对已知条件进行化简处理。
化简时注意以下公式: ))((2233b ab a b a b a +±=± 例:(1)已知122+=na ,求nn n n aa a a --++33的值(2)已知a xx=+-22(a 为常数),求xx -+88的值(3)已知y x xy y x <==+且9,12,求21212121yx y x +-的值(4)、已知,31=+-a a 则2121-+a a =( )(5)已知331,31==y x ,求232121223])()([----⋅⋅x xy y x的值(6)设32121=+-xx ,求22222323++++--x x x x 的值(二)指数函数题型一.应用定义求参数的值例1.若函数2(23)xy a a a =-+是指数函数,则a 的值为 . 2.a =1. 若函数2(44)xy a a a =-+⋅是指数函数,则a = .答案: 3.a =题型二.求指数函数的定义域、值域 例.求下列函数的定义域值域 ⑴221()2x x y -=;⑵y = (3)y x x =--1511⑴ 1,2⎡⎫+∞⎪⎢⎣⎭.⑵[)1,+∞.练习1、已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________.答案:(0,1) 2.函数211()2x y -=的值域为 .答案:(]0,2.3、求函数y [)01,.4、当x ∈[-1,1]时,f (x )=3x -2的值域为________.答案:⎣⎡⎦⎤-53,1 5.已知2x ≤(14)x -3,求函数y =(12)x 的值域.值域为[14,+∞).6、14.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性. 题型三.比较大小问题例.将下列各数从小到大排列起来:23(3)- ,122()3 ,132()3 ,232()3-- ,13(3)- ,31()3- ,433()2,21()2-- .答案:13(3)-<31()3-<122()3<132()3<232()3--<433()2<23(3)-<21()2--.练习.1、比较0.20.4 ,0.20.2,0.22, 1.62的大小.答案:0.20.2<0.20.4<0.22< 1.62.2、下列三个实数的大小关系正确的是( )A .(12011)2<212011<1B .(12011)2<1<212011C .1<(12011)2<212011D .1<212011<(12011)2解析:选B.3.设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则( ) A .f (-1)>f (-2) B .f (1)>f (2) C .f (2)<f (-2) D .f (-3)>f (-2) 解析:选D.题型四.求指数函数的单调区间 例.求函数2321()3x x y -+=的单调区间.练习.1、若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8) 解析:选D..2、函数y =(12)1-x 的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 解析:选A. 3、.函数14()5x y -=的单调减区间是 ;单调增区间是 减区间是[1,);+∞增区间是(,1]-∞.4、讨论y =(13)x 2-2x 的单调性.原函数在(-∞,1]上是增函数,在(1,+∞)上是减函数.5、函数22)21(++-=x x y 得单调递增区间是( )A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[题型五.求解有关指数不等式1、已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.14⎛⎫+ ⎪⎝⎭,∞. 2、设01a <<,解关于x 的不等式22232223xx xx a a -++->。
3、若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。
题型六.最值问题练、1、函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.3或13.2.若函数f (x )=e -(x -u )2的最大值为m ,且f (x )是偶函数,则m +u =________.1题型七.解指数方程例 解方程223380x x +--=.2x =. 题型八.图象变换及应用问题例6 为了得到函数935xy =⨯+的图象,可以把函数3x y =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C . 向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度(C ).练习.画出函数 ()||32x f x -⎛⎫= ⎪⎝⎭的图像,并指出值域和单调区间。
题型九.指数复合函数类型一1、求函数 |1|21-⎪⎭⎫⎝⎛=x y 的定义域、值域.2、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
3、函数22811(31)3x x y x --+⎛⎫=- ⎪⎝⎭≤≤的值域是 。
类型二1、函数1241++=+x x y 的值域是 .2、已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.3、设20≤≤x ,求函数523421+∙-=-x x y 的最大值和最小值。
4、已知[]3,2x ∈-,求11()142xx f x =-+的最小值与最大值。
题型十.指数函数定点当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 题型十一方程函数思想 方程223xx -+=的实数解的个数为________________题型十二指数函数对应的抽象性质函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( )A.()()()f xy f x f y = B.()()()f xy f x f y =+C.()()()f x y f x f y +=D.()()()f x y f x f y +=+习题1、比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与 ;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2曲线 分别是指数函数,和的图象,则与1的大小关系是 ( ).(分析:首先可以根据指数函数单调性,确定,在轴右侧令 ,对应的函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3 求下列函数的定义域与值域.(1)y =231 x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x+2x+1+1的定义域为R.∵2x>0,∴y =4x+2x+1+1=(2x )2+2·2x+1=(2x+1)2>1. ∴y =4x+2x+1+1的值域为{y |y>1}.4 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
5、设,求函数的最大值和最小值.分析:注意到,设,则原来的函数成为,利用闭区间上二次函数的值域的求法,可求得函数的最值.解:设,由知,,函数成为 , ,对称轴 ,故函数最小值为,因端点较距对称轴远,故函数的最大值为.6(9分)已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值..解:)1(122>-+=a a a y x x , 换元为)1(122a t at t y <<-+=,对称轴为1-=t .当1>a ,a t =,即x =1时取最大值,略解得 a =3 (a = -5舍去)7.已知函数 (且) (1)求 的最小值; (2)若,求 的取值范围..解:(1),当即时,有最小值为(2) ,解得当 时,;当时,.8(10分)(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无解?有一解?有两解?解: (1)常数m =1(2)当k <0时,直线y =k 与函数|13|-=x y的图象无交点,即方程无解;当k =0或k ≥1时, 直线y =k 与函数|13|-=xy 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x y的图象有两个不同交点,所以方程有两解。