用单片机控制的LED流水灯

合集下载

单片机流水灯实验原理

单片机流水灯实验原理

单片机流水灯实验原理
单片机流水灯实验原理是通过使用单片机控制LED灯的亮灭
顺序,实现像水流一样顺序逐个灯泡点亮或熄灭的效果。

具体的原理是首先定义一个存储变量来表示灯泡的状态,将其初始化为一个特定的值,然后通过循环不断地改变存储变量的值,从而改变LED灯的状态。

在流水灯实验中,使用的通常是移位寄存器方法。

首先将存储变量的最低位设置为1,表示第一个灯泡亮起。

然后通过向左
移位的方法不断改变存储变量的值,使得下一个灯泡依次点亮。

当存储变量的最高位被移动到最低位时,循环重新开始,实现灯泡的循环点亮。

为了使灯泡的点亮和熄灭速度可见,可以在每次改变存储变量的值之后,添加一个延时函数,控制灯泡亮灭的间隔时间,从而形成一个流动的效果。

通过编程控制灯泡的亮灭顺序和时间间隔,可以实现不同的流水灯效果,如单方向流水灯、双向流水灯、交替流水灯等。

这些效果的产生都是通过改变存储变量的值和控制亮灭时间来实现的。

单片机流水灯实验原理

单片机流水灯实验原理

单片机流水灯实验原理
单片机流水灯实验原理:
流水灯是一种基本的电子实验,通过使用单片机控制多个
LED 灯的亮灭来实现灯光在各个灯珠之间流动的效果。

流水
灯实验原理如下:
1. 硬件连接:将多个 LED 灯和适当的电流限制电阻连接到单
片机的不同输出引脚上。

每个 LED 灯的阴极与电流限制电阻
连接到负极(GND),而阳极连接到单片机的 IO 引脚。

需要
注意的是,单片机的 IO 引脚的输出电压应该能够点亮 LED 灯。

2. 软件设计:使用单片机的 GPIO(通用输入输出)功能,设
置相应的输出引脚作为流水灯的控制引脚。

通过对这些引脚进行高低电平控制,实现不同 LED 灯的点亮和熄灭。

3. 流水灯效果:为了实现流水灯的效果,我们将需要在不同的时间间隔内控制不同的 LED 灯点亮。

可以使用一个循环来实
现这种效果,循环中通过更新和改变控制引脚的电平状态来控制流水灯的亮灭顺序。

4. 控制顺序:通过改变控制引脚的电平状态的顺序,可以改变流水灯的流动顺序。

可以通过在循环中使用延迟函数来控制灯的变换速度,或者使用计数器等其他方法来实现更复杂的流水灯效果。

通过以上原理,我们可以实现单片机流水灯实验并观察到灯光在不同的 LED 灯之间流动的效果。

单片机流水灯实验报告

单片机流水灯实验报告

单片机流水灯实验报告本实验旨在通过单片机控制LED灯的亮灭,实现流水灯效果。

通过对实验的设计、搭建和调试,我们可以更深入地理解单片机的工作原理和掌握相应的编程技巧。

实验器材和元件:1. 单片机,我们选用了STC89C52单片机作为控制核心;2. LED灯,我们使用8个LED灯作为实验的输出设备;3. 电阻,为了限流,我们使用了适当的电阻;4. 连接线、面包板等。

实验步骤:1. 搭建电路,首先,我们按照电路图将单片机、LED灯和电阻连接在一起,并将电路连接到电源上;2. 编写程序,接下来,我们使用C语言编写单片机的控制程序,实现LED灯的流水灯效果;3. 烧录程序,将编写好的程序通过烧录器烧录到单片机中;4. 调试程序,将烧录好的单片机连接到电路上,进行程序的调试和验证;5. 完善电路,根据实际调试情况,对电路进行必要的调整和完善,确保LED 灯能够按照预期的流水灯效果工作。

实验结果:经过反复调试和完善,我们成功实现了单片机控制LED灯的流水灯效果。

在程序控制下,8个LED灯按照顺序依次亮起并熄灭,形成了流水灯的效果。

整个实验过程非常顺利,取得了预期的效果。

实验心得:通过本次实验,我们对单片机的控制原理有了更深入的理解,也掌握了一定的C语言编程技巧。

在实验的过程中,我们遇到了一些问题,如LED灯未按预期工作、程序逻辑错误等,但通过分析和调试,最终都得到了解决。

实验不仅提高了我们的动手能力,也培养了我们的分析和解决问题的能力。

总结:本次实验不仅让我们熟悉了单片机的控制方法,也让我们体验了从实验设计到调试完善的整个过程。

通过这次实验,我们不仅学到了专业知识,也培养了动手能力和解决问题的能力。

希望在以后的学习和实践中,能够更好地运用所学知识,不断提升自己的能力。

以上就是本次单片机流水灯实验的报告内容,希望对大家有所帮助。

单片机控制左右循环的流水灯设计

单片机控制左右循环的流水灯设计

单片机控制左右循环的流水灯设计单片机是一种微型计算机芯片,可以用于控制和管理各种电子设备。

流水灯是一种经典的电子元件,通过依次点亮或熄灭一组LED灯来形成流动效果。

本文将设计一个使用单片机控制的左右循环流水灯。

设计思路:1.硬件设计:a.先准备一个单片机开发板、一组LED灯和与LED灯串联的电阻。

b.将LED灯按照循序连接,连接方式可以为并联或串联。

c.通过引脚和外部电路将LED灯与单片机的IO口相连。

每个LED灯与一个IO口相连,并且通过电阻限流。

2.软件设计:a.在单片机上编写控制流水灯的程序。

这可以使用C语言或汇编语言进行编写。

b.程序主要通过循环结构来实现流水灯的效果。

编写一个循环函数,用于控制LED灯的点亮和熄灭。

c.在循环函数中,通过控制IO口输出高电平或低电平来控制LED灯的亮灭。

每次循环,根据需要逐个点亮或熄灭LED灯。

d.为了实现左右循环的效果,可以通过改变点亮或熄灭的顺序来改变流水灯的方向。

可以使用一个变量来控制点亮和熄灭的顺序,每次循环后改变该变量的值。

示例代码:以下是一个使用C语言编写的简单示例代码,来控制左右循环流水灯。

```c#include <reg52.h>//定义LED灯使用的IO口sbit LED1 = P1^0;sbit LED2 = P1^1;sbit LED3 = P1^2;sbit LED4 = P1^3;//控制流水灯循环void lightFlowint i;int direction = 1; // 控制流水灯的方向,1表示向右,-1表示向左//流水灯循环while(1)//控制LED灯的点亮和熄灭LED1=0;LED2=1;LED3=1;LED1=1;LED2=0;LED3=1;LED4=1;LED1=1;LED2=1;LED3=0;LED4=1;LED1=1;LED2=1;LED3=1;LED4=0;//根据方向改变控制顺序if(direction == 1)//向右direction = -1;}elsedirection = 1;}}void mainlightFlow(;```这个示例代码中,使用P1口上的4个IO口来控制4个LED灯的点亮和熄灭。

单片机控制LED流水灯从中间向两边

单片机控制LED流水灯从中间向两边

单片机控制LED流水灯从中间向两边,从两边向中间这个就是把先奇数亮再偶数亮,循环三次;一个灯上下循环三次;两个分别从两边往中间流动三次;再从中间往两边流动三次;不过这个程序实现的应该是这样的先奇数亮再偶数亮,循环三次;一个灯上下循环三次;两个分别从两边往中间流动;再从中间往两边流动;#include< reg52.h>#include< intrins.h>#define uint unsigned int#define uchar unsigned charvoid delay();void main(){ uchar temp,temp1,temp2,a,b;P3=0xff;while(1){ for(b=3;b>0;b--){ temp=0xaa;P1=temp;delay();temp=0x55;P1=temp;delay();}for(a=3;a>0;a--){ temp=0xfe;for(b=7;b>0;b--){ P1=temp;temp=_crol_(temp,1);delay();P1=temp;delay();}}temp1=0xfe;temp2=0x7f;for(a=8;a>0;a--){temp=temp1&temp2;P1=temp;delay();temp1=_crol_(temp1,1);temp2=_cror_(temp2,1);}}void delay(){ uint a,b;for(a=100;a>0;a--)for(b=600;b>0;b--);}程序实现的第2种方法:下面是 51hei单片机12群里的朋友木信大侠提出的,实现单片机led流水灯从中间向两边,从两边向中间的效果,下面的程序就是实现思路,这个是直接调用,应该明白吧,数组那其实也可以改一下,如采用一维数组,在多次调用;也可以采用二维数组。

通过51单片机控制24个发光二极管形成流水灯效果的亮灭状态

通过51单片机控制24个发光二极管形成流水灯效果的亮灭状态

成绩实验名称:单片机系统简单扩展实验
一、实验目的
1、了解单片机系统的扩展方法
2、熟悉8255A在单片机系统扩中的使用方法。

3、熟悉仿真软件Proteus以及编程软件Keil的使用。

二、实验仪器
三、实验内容
四、实验原理
实验报告
五、实验步骤
步骤:
1、根据给定的实验要求,分析实验的目的以及实验要求。

2、通过计算机仿真软件Proteus,根据实验目的设计电路,并且绘制电路原理图。

3、根据自己设计的电路,编写控制程序。

4、调试所编写的控制程序,直至程序没有语法及语意错误,可以通过编译。

5、将所编写的无错误的程序下载至仿真软件,并进行调试,根据仿真结果修改程序。

6、重复上一步骤,知道仿真效果达到实验要求,即可完成。

六、实验程序
#include <reg51.h>
#include<absacc.h>。

单片机流水灯实验

单片机流水灯实验

实验一单片机流水灯实验一、实验目的1、熟练掌握实验箱的使用方法和注意事项。

2、了解简单单片机应用系统的设计方法。

3、掌握应用KEIL软件编辑、编译源汇编程序的操作方法。

4、掌握应用仿真器的操作方法。

二、实验内容在实验箱上实现8个发光LED“流水”的现象,并通过编写程序控制流水现象。

三、实验器材PC机一台, 仿真器一台, 实验箱一台, 导线若干。

四、实验说明当AT89C51的P1口有低电平输出时,相应的发光二极管就会点亮。

应用这一原理我们可以容易的点亮一个数码管,例如令P1口输出0111 1111时D1就会点亮。

若再把0111 1111向右循环一位,利用P1口输出,就会点亮D2。

在发光二极管两次点亮的间隔中加延时程序,让每次点亮停留一段时间,像这样人眼就可以看到“流水”的现象。

五、实验原理图单片机的P1口为准双向口,每一位均可独立定义为输入或输出,若要将P1口的某一位所对应的灯熄灭,则需要向该端口写“0”。

电路图如下:图3-1 接线图六、实验步骤1.按照实验一中的建立工程的步骤,建立本实验内容相应的工程;2.单片机的P1口接8个发光二极管L0~L7;3.运用调试工具,调试软件,观察现象;4.调试计算延时子程序DELAY定时时间。

七、参考程序。

#include<reg51.h>#include<intrins.h>int temp;void delay(){int i,j;for(i=0;i<200;i++)for(j=0;j<110;j++);}void main(){temp=0x01;P1=temp;delay();while(1){temp=_crol_(temp,1);P1=temp;delay();}}八、实验现象当程序监测无误后,通过translate,build生成hex文件,并将文件烧入单片机中,点击全速运行,会发现P1口连接的LED灯轮流闪烁。

单片机实验LED流水灯实验

单片机实验LED流水灯实验

LED流水灯实验一、实验内容将LED灯逐个点亮,然后全亮,全灭。

二、实验原理8个LED发光二极管,分别对应单片机IO口的P0.0到P0.7口,8个单片机IO口组成一个字节,用一个八位二进制的左移和右移来确定灯的亮灭,并用定时器延时。

三、描述该实验中运用的理论知识1、LED的点亮:8个LED发光二极管,分别对应单片机IO口的P0.0到P0.7口,8个单片机IO口组成一个字节,在程序编写过程中,可以直接用P0来进行操作。

2、流水效果:C语言的8位二进制数代表了8个IO口,左移,最低位填0,然后按位取反,就可以将灯逐个点亮3、延时:特殊功能寄存器TMOD,如图T1和T0分别代表单片机两个计数器。

GATE:该位被置位时为门控位。

仅当TR1被置位并且INT1脚为高,定时器开始计数。

当该位被清零时,只要TR1被置位,定时器1马上开始计数。

C/T:该位为0的时候,用作定时器,该位为1的时候,用做计数器。

0.5秒的延时12 * (65536- x)/11059200 = 0.001四、实验步骤1、流程图2、结果程序:#include <reg52.h>typedef unsigned char uint8;typedef unsigned int uint16;sbit ENLED = P1^4;sbit ADDR0 = P1^0;sbit ADDR1 = P1^1;sbit ADDR2 = P1^2;sbit ADDR3 = P1^3;main(){uint8 counter;uint16 i,j;ENLED = 0;ADDR0 = 0; ADDR1 = 1; ADDR2 = 1; ADDR3 = 1;TMOD = 0x01;TH0 = 0xB8;TL0 = 0x00;TR0 = 1;while(1){if(1 == TF0){TF0 = 0;TH0 = 0xB8;TL0 = 0x00;counter++;}if(25 == counter){counter = 0;if(8 == j){P0 = 0X00;for(i=0;i<=38000;i++);P0 = 0XFF;for(i=0;i<=38000;i++);j = 0;}P0 = ~(1 << j++);}}}。

用AT89C51单片机实现流水灯的控制设计方案

用AT89C51单片机实现流水灯的控制设计方案

用AT89C51单片机实现流水灯的控制设计当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。

单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。

1.引言目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。

学习单片机的最有效方法就是理论与实践并重,本文笔者用AT89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法,以期给单片机初学者以启发,更快地成为单片机领域的优秀人才。

2.硬件组成按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。

AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz工作频率,使用AT89C51单片机时无须外扩存储器。

因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。

其具体硬件组成如图1所示。

点击看原图图1 流水灯硬件原理图从原理图中可以看出,如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED的点亮和熄灭的方法同LED1。

因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的做流水灯了。

在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。

单片机流水灯实验总结

单片机流水灯实验总结

单片机流水灯实验总结单片机流水灯实验是学习单片机编程的基础实验之一,通过这个实验可以了解单片机的基本输入输出功能,掌握单片机的编程和控制方法。

下面我将对单片机流水灯实验进行总结,包括实验原理、实验步骤、实验结果以及实验中遇到的问题和解决方法。

实验原理。

单片机流水灯实验是利用单片机的GPIO口控制LED灯的亮灭,通过不同的控制方式实现LED灯的流水效果。

在单片机中,通过将相应的GPIO口输出高电平或低电平来控制LED的亮灭,从而实现流水灯的效果。

实验步骤。

1. 硬件连接,将单片机和LED灯按照电路图连接好,确保连接正确无误。

2. 编写程序,利用单片机编程软件编写流水灯控制程序,设置相应的GPIO口输出高低电平的时间间隔和顺序。

3. 烧录程序,将编写好的程序通过编程器烧录到单片机中。

4. 调试程序,连接好电路后,通过上电测试程序,观察LED灯的流水效果是否符合预期。

实验结果。

经过以上步骤,我们成功实现了单片机流水灯的效果。

LED灯按照设定的顺序依次亮起和熄灭,形成了流水灯的效果。

实验结果符合预期,证明了程序编写和硬件连接的正确性。

实验中遇到的问题和解决方法。

在实验过程中,我们遇到了一些问题,例如LED灯未按照预期顺序亮起、熄灭或者有闪烁现象。

经过检查和调试,发现是程序编写中的逻辑错误或者硬件连接接触不良导致的。

通过仔细排查和调试,我们成功解决了这些问题,确保了实验的顺利进行和结果的准确性。

总结。

通过本次单片机流水灯实验,我们深入了解了单片机的GPIO口控制LED灯的方法,掌握了单片机编程和控制的基本技能。

同时,实验过程中遇到的问题也让我们学到了很多调试和排查的方法,提高了我们的实际操作能力和解决问题的能力。

希望通过这次实验,能够为我们今后的学习和实践打下坚实的基础。

结语。

单片机流水灯实验是单片机编程学习的重要实验之一,通过这个实验可以加深对单片机控制方法的理解,提高实际操作能力。

希望大家能够认真对待这个实验,通过自己的努力和实践,掌握单片机编程的基本技能,为今后的学习和工作打下坚实的基础。

单片机流水灯实验报告

单片机流水灯实验报告

单片机流水灯实验报告:实验一:用C51实现流水灯实验实验要求:完成亮流水,即LED从低位流向高位流动,每次流动一位,且每次只亮一个LED灯,其它LED灭。

实验原理:单片机流水的实质是单片机各引脚在规定的时间逐个上电,使LED灯能逐个亮起来但过了该引脚通电的时间后便灭灯的过程,实验中使用了单片机的P2端口,对8个LED灯进行控制,要实现逐个亮灯即将P2的各端口逐一置零,中间使用时间间隔隔开各灯的亮灭。

使用r1或rr a实现位的转换。

实验内容:通过仿真来实现实验电路图代码如下;for(x=0;x<8;x++){P0=num[x];delay();}for(x=6;x>0;x--){P0=num[x];delay();}P0=0xfe;实验结果:实验程序:#include<REG51.H>void delay();//延时函数声明void main()//主函数{unsigned charx,num[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};while(1){for(x=0;x<8;x++){P0=num[x];delay();}for(x=6;x>0;x--){P0=num[x];delay();}P0=0xfe;}}void delay()//延时函数,无符号字符型变量i为形式参数{unsigned int j,k;//定义无符号字符型变量j和kfor(k=0;k<500;k++)//双重for循环语句实现软件延时for(j=0;j<100;j++);}实验总结:这次试验通过仿真实验软件实现流水灯实验,充分学会了keil 软件和Proteus电路仿真的联合调试,为后期的实验做足了功课。

也认识到仿真实用性。

单片机(Single-Chip Microcomputer)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。

单片机流水灯实验报告

单片机流水灯实验报告

单片机流水灯实验报告单片机流水灯实验报告一、实验目的本实验旨在通过单片机控制八个LED灯,实现流水灯效果。

通过本实验,我们希望达到以下目的:1.深入理解单片机的I/O端口的工作原理和使用方法。

2.掌握单片机定时器/计数器的工作原理和使用方法。

3.学会编写简单的单片机程序,实现特定的LED灯控制。

4.通过实践操作,提高单片机软硬件的综合应用能力。

二、实验设备1.单片机开发板2.电脑一台3.八个LED灯4.杜邦线若干5.电阻、电容等电子元件三、实验原理本实验采用AT89C51单片机作为主控芯片。

八个LED灯分别连接到P1端口的P1.0到P1.7。

通过编程控制P1端口的每一个引脚,实现对LED灯的亮灭控制。

使用定时器/计数器实现延时,达到流水灯效果。

四、实验步骤和内容1.搭建硬件电路将八个LED灯、一个上拉电阻以及相应的杜邦线连接至单片机开发板。

确保电源正确连接,并注意LED灯的长脚为正极,短脚为负极。

2.编写程序使用Keil C51编写程序,实现如下功能:点亮每个LED灯一定的时间,然后熄灭。

重复此过程,形成流水灯效果。

代码如下:#include <reg51.h> //包含51单片机的头文件#define LED P1 //定义LED为P1端口void delay(unsigned int time) //延时函数{unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);}void main() //主函数{while(1) //程序一直循环执行{unsigned char i=0; //定义一个变量i,用于循环控制LED灯while(i<8) //循环点亮每个LED灯{LED=~(0x01<<i); //点亮第i个LED灯delay(50000); //延时50ms(50*1275us)i++; //变量i加1,控制下一个LED灯}}}3.编译程序将程序编译为二进制文件,生成HEX文件。

单片机流水灯实验原理

单片机流水灯实验原理

单片机流水灯实验原理单片机流水灯实验原理是利用单片机的控制功能,通过对端口的操作,控制LED 灯的亮灭顺序,从而实现流水灯效果。

单片机是一种集成电路,由中央处理器、存储器和各种输入输出端口组成,可以对外部设备进行控制和操作。

在单片机流水灯实验中,我们使用的是8051系列单片机。

流水灯是一种常见的LED灯效,它的原理是多个LED灯按照一定的顺序依次亮灭,形成流动的效果。

在单片机流水灯实验中,我们可以通过对单片机的编程,控制端口的状态,从而实现LED灯的顺序控制。

具体实现流水灯效果的步骤如下:1. 确定使用几个LED灯:在单片机流水灯实验中,可以根据实际需求确定使用几个LED灯。

一般情况下,我们使用4~8个LED灯。

2. 连接LED灯和单片机:将LED灯的一端连接到单片机的输出端口,另一端接地。

3. 设置端口为输出模式:使用单片机的编程语言,将需要控制的端口设置为输出模式。

这样,单片机就可以通过改变端口的电平来控制LED灯的亮灭。

4. 设计流水灯的控制循环:设计一个循环控制LED灯的亮灭顺序,从而实现流水灯的效果。

一种简单的控制方式是通过改变端口的电平来控制LED灯的亮灭。

例如,假设我们使用4个LED灯,控制端口的顺序为P1.0、P1.1、P1.2、P1.3,那么我们可以设计一个循环控制LED灯亮灭的顺序为:P1.0亮,P1.1灭、P1.2灭、P1.3灭-> P1.0灭,P1.1亮,P1.2灭、P1.3灭-> P1.0灭,P1.1灭,P1.2亮,P1.3灭-> P1.0灭,P1.1灭,P1.2灭,P1.3亮-> P1.0亮,P1.1灭,P1.2灭,P1.3灭-> P1.0灭,P1.1亮,P1.2灭,P1.3灭-> P1.0灭,P1.1灭,P1.2亮,P1.3灭-> ...5. 编写程序:根据上述设计的控制循环,使用单片机的编程语言编写相应的程序。

程序的逻辑是根据循环的顺序,通过改变端口的电平来控制LED灯的亮灭。

流水灯控制的实验报告

流水灯控制的实验报告

一、实验目的1. 熟悉流水灯控制电路的原理和设计方法;2. 掌握使用单片机控制LED灯流水灯的方法;3. 培养动手实践能力和创新意识。

二、实验原理流水灯是一种常见的LED灯控制方式,通过单片机对LED灯进行控制,使LED灯按照一定的规律依次点亮和熄灭,形成动态的流水效果。

本实验采用51单片机作为控制器,通过编程实现对LED灯流水灯的控制。

流水灯的控制原理如下:1. 将LED灯连接到单片机的P0口,每个LED灯对应一个P0口的引脚;2. 编写程序,使单片机依次对P0口的引脚进行赋值,从而控制LED灯的亮灭;3. 通过延时函数实现LED灯的流水效果。

三、实验器材1. 51单片机实验板;2. 8个LED灯;3. 电阻(阻值约为220Ω);4. 连接线;5. 编程器;6. 示波器(可选)。

四、实验步骤1. 将LED灯按照电路图连接到实验板上,确保每个LED灯的正极连接到单片机的P0口对应引脚,负极连接到GND;2. 编写程序,实现LED灯流水灯的控制。

程序如下:```c#include <reg51.h>void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 120; j++); }void main() {while (1) {P0 = 0x01; // 第一个LED灯亮 delay(500);P0 = 0x02; // 第二个LED灯亮 delay(500);P0 = 0x04; // 第三个LED灯亮 delay(500);P0 = 0x08; // 第四个LED灯亮 delay(500);P0 = 0x10; // 第五个LED灯亮 delay(500);P0 = 0x20; // 第六个LED灯亮 delay(500);P0 = 0x40; // 第七个LED灯亮 delay(500);P0 = 0x80; // 第八个LED灯亮delay(500);P0 = 0xFF; // 所有LED灯亮delay(500);P0 = 0x00; // 所有LED灯灭delay(500);}}```3. 将编写好的程序烧录到单片机中,并上电运行;4. 观察LED灯流水灯的效果,分析程序运行过程。

单片机AT89C2051制作的LED流水灯电路

单片机AT89C2051制作的LED流水灯电路

单片机AT89C2051制作的LED流水灯电路
一、电路图
按照下图购买元器件及面包板,在面包实验板上参考右图搭成电路。

将已经固化好最简程序的AT89C2051单片机芯片插到实验板中缝左右。

LC3911BH型LED数码管高约13mm,宽10mm,引线排列在两侧,正好能骑插在面包实验板中缝左右。

然后用细硬线按照图2将数码管与单片机Pl口连接好,并接入电阻、电容、晶振、按钮开关等。

下图中LED数码管公共阳极接了1只限流电阻。

显示0—9共10个阿拉伯数字,显示1时段数最少为2个。

设每段电流最大为5mA,则2段总电流I=2×5mA =10 mA,公共限流电阻R=(UCC-ULED)/I=(5V-2V)/10 mA =300Ω
显示8时段数最多为7个,每段电流最小为10/7=1.43mA,显得较暗。

由于LED电流大时正向压降亦大些,故显示数字在0~9之间变化时,亮度变化不是预期那样厉害。

因此,下图电路数码管每段电流在1.5~5mA之间。

公共限流电阻方案适合于业余制作。

下图中AT89C2051晶振频率为6MHz。

没有两个33p电容,由于面包板的分布电容,单片机仍然能起振并工作。

0.1μ电容功能是防高频干扰。

1μ电容、10k电阻与lk电阻组成最常用的复位电路。

AT89系列51单片机要求直流电源电压3—6V。

目前有下列电源可供选用:
●手机锂电池3.6-4.1V
●万能手机充电器4.3-5V
●新稳压电源
二、固定字符显示的程序编制
普通数字电子电路都有特定功能,如与、或、非逻辑功能。

计算机包括单片机本身没有特。

单片机控制LED灯点亮(C语言)

单片机控制LED灯点亮(C语言)

将0xfe赋给P1口,然后使用移位函数来改变P1口的值,达到流水灯的效果 移位函数: _crol_,_cror_:将char型变量循环向左(右)移动指定位数后返回 。 _crol_,_cror_: c51中的intrins.h库函数
程序如下:
随后会弹出一个对话框,要求选择单片机的型号。在该对话框中显示了Vision2的器件数据库,从中可以根据使用的单片机来选择。
PART ONE
AT89S52
8051 based Full Static CMOS controller with Three-Level Program Memory Lock, 32 I/O lines, 3 Timers/Counters, 8 Interrupts Sources, Watchdog Timer, 2 DPTRs(DATA POINTER REGISTERS ), 8K Flash Memory, 256 Bytes On-chip RAM 基于8051全静态CMOS控制器、 三级加密程序存储器 、 32个I/O口 、三个定时器/计数器 、八个中断源 、看门狗定时器、2 个数据指针 寄存器、8k字节Flash,256字节片内RAM
十六进制整常数
十六进制整常数的前缀为0X或0x。其数码取值为0~9,A~F或a~f。 以下各数是合法的十六进制整常数: 0X2A(十进制为42) 0XA0 (十进制为160) 0XFFFF (十进制为65535) 以下各数不是合法的十六进制整常数: 5A (无前缀0X) 0X3H (含有非十六进制数码)
各种进位制的对应关系
十进制
二进制
十六进制
十进制
二进制
十六进制
0
0
0
9
1001

单片机控制流水灯

单片机控制流水灯

单片机控制流水灯前言随着人们生活环境的不断改善和美化,在许多场合可以看到彩色霓虹灯不断变化闪烁。

LED灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰街道和城市建筑物已经成为一种时尚。

但目前市场上各式样的LED灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。

这种彩灯控制器结构往往有芯片过多、电路复杂、功率损耗大等缺点。

此外从功能效果上看,亮灯模式少而且样式单调,缺乏用户可操作性,影响亮灯效果。

因此有必要对现有的彩灯控制器进行改进。

流水灯是一串按一定的规律像流水一样连续闪亮。

流水灯控制是可编程控制器的一个应用,其控制思想在工业控制技术领域也同样适用。

流水灯控制可用多种方法实现,但对现代可编程控制器而言,利用移位寄存器实现最为便利。

通常用左移寄存器实现灯的单方向移动;用双向移位寄存器实现灯的双向移动。

本案例利用价格低廉的AT89C52系列单片机控制基色LED灯泡从而实现丰富的变化。

目录前言 (1)1、课程设计的目的和要求 (3)设计目的 (3)设计要求 (4)2、设计方案选择 (4)3、硬件设计 (4)设计思路 (4)流水灯电路原理图 (5)元件清单 (6)硬件电路模块分析 (6)主要元件说明 (10)振荡器特性 (13)芯片擦除 (13)4、软件设计 (14)主程序设计 (14)程序流程图 (14)5、使用keil、proteus软件调试仿真说明 (14)仿真过程 (14)仿真结果 (14)6、结束语 (15)7、参考文献 (16)1、课程设计的目的和要求设计目的近年来随着科技的发展,单片机的应用正在不断走向深入,同时带动传统控制检测日新月异更新,在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象点的软件结合,加以完善。

基于单片机的流水灯设计

基于单片机的流水灯设计

基于单片机的流水灯设计单片机是一种集成电路,它包含了处理器、内存和输入/输出接口等组件。

它为嵌入式系统提供了良好的硬件和软件支持。

流水灯是一种常见的电子实验项目,它可以通过多个LED灯的顺序闪烁,形成一种流动的效果。

在本文中,我们将介绍基于单片机的流水灯设计。

首先,我们需要选择适合的单片机。

常见的单片机包括51系列、AVR系列和ARM系列等。

在这里,我们选择使用51系列单片机,因为它具有广泛的应用和丰富的开发资源。

接下来,我们需要准备硬件组件。

除了单片机之外,我们还需要LED 灯、电阻、电源和连接线等。

LED灯是流水灯的核心组件,我们可以选择不同颜色和尺寸的LED灯,以满足不同的设计需求。

电阻用于限制LED灯的电流,这样可以保护LED灯和单片机。

电源可以是直流电压,可以使用电池或者外部电源适配器。

连接线用于将LED灯与单片机连接起来。

在硬件准备好之后,我们开始进行软件设计。

软件设计包括两个方面:硬件配置和程序编写。

首先,我们需要将单片机的引脚与LED灯进行连接。

通过单片机的GPIO引脚,我们可以控制LED灯的亮灭。

根据具体的硬件连接方式,我们需要在程序中设置相应的引脚为输出模式。

程序编写是流水灯设计的核心。

我们使用C语言进行程序编写。

首先,我们需要定义相应的宏定义和全局变量,以便在程序中使用。

接下来,我们可以使用循环控制语句和延时函数,实现LED灯的流动效果。

具体的程序设计可以根据实际需求进行调整和修改。

在实际操作中,我们可能会遇到一些问题。

例如,LED灯不亮、流动效果不理想等。

这些问题可能是由于硬件连接错误、程序错误或者供电不稳定等原因引起的。

对于这些问题,我们可以检查硬件连接是否正确、程序是否有误、供电是否稳定等,查找问题的所在,并进行相应的调整和修正。

流水灯设计是一个典型的嵌入式系统设计项目,它涉及到硬件和软件的多个方面。

通过这个项目,我们可以学习和掌握单片机的应用和开发技术。

此外,我们还可以进一步扩展该项目,例如添加按键控制、改变流动速度等,以满足不同的设计需求。

单片机的流水灯实验原理

单片机的流水灯实验原理

单片机的流水灯实验原理
单片机的流水灯实验原理主要包括以下几个步骤:
1. 硬件连接:将单片机的输出口连接到LED灯的驱动电路上,使得单片机可以控制LED灯的亮灭。

2. 软件编程:通过单片机的编程语言(如C语言)编写程序,实现流水灯效果。

一般采用循环控制语句和位操作指令来控制LED的亮灭。

3. 初始化:在程序的开始部分,需要对单片机的IO口进行初始化,设置为输出模式,以便能够控制LED灯的亮灭。

4. 流水灯效果:通过循环控制语句,依次将不同的IO口设置为高电平,即LED 亮起,然后延时一段时间。

再将前一个IO口设置为低电平,即LED熄灭,依次类推,实现LED的流水灯效果。

5. 循环控制:为了能够实现反复循环的流水灯效果,可以在程序末尾使用一个死循环语句,使得程序不断执行,从而实现流水灯不断闪烁。

总的来说,单片机的流水灯实验原理就是通过控制不同IO口的高低电平状态,控制LED的亮灭,从而实现LED灯的流水灯效果。

单片机控制流水灯

单片机控制流水灯

程序框架设计
01
主程序框架
主程序是单片机程序的核心,负 责程序的启动、初始化、中断处 理等任务。
02
中断服务程序框架
03
功能模块框架
中断服务程序用于处理外部中断 事件,如按键按下、定时器溢出 等。
功能模块是实现特定功能的程序 块,如LED灯控制、定时器计数 等。
程序功能模块设计
LED灯控制模块
该模块负责控制LED灯的亮灭状态, 可以通过编程实现流水灯效果。
物联网技术的应用
未来,单片机可能会更多地应用于物联网领域, 与互联网结合,实现更广泛的控制和应用。
3
人工智能与单片机的结合
未来,人工智能技术可能会与单片机结合,实现 更智能的控制和应用。
THANKS
[ 感谢观看 ]
02
包括主程序和中断服务程序,主程序负责循环控制LED灯,中断
服务程序负责处理外部中断。
调试过程
03
通过串口调试工具或示波器等工具对程序进行调试,确保程序
正确运行。
实际运行效果展示
流水灯效果
通过单片机控制LED灯的亮灭,实现流水灯效果 。
速度控制
通过程序延时控制LED灯亮灭的时间间隔,实现 流水灯的速度变化。
硬件连接
将单片机与LED灯连接,通过GPIO口控制LED灯的亮灭。
控制逻辑
通过编写程序控制单片机GPIO口的输出,实现LED灯的顺序亮 灭,形成流水灯效果。
延时控制
通过程序延时控制LED灯亮灭的时间间隔,实现流水灯的速度变 化。
控制程序编写及调试
编程语言
01
使用C语言或汇编语言编写单片机程序。
程序结构
电源管理优化
采用高效的电源管理方案,降 低流水灯的能耗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用单片机控制的LED流水灯
设计报告
专业:电子信息工程(自动化方向)
班级:09级
姓名:
1.引言
当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。

单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。

目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。

学习单片机的最有效方法就是理论与实践并重,本文用A T89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法。

2.硬件组成
按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。

A T89C51单片机是美国A TMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz 工作频率,使用AT89C51单片机时无须外扩存储器。

因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。

其具体硬件组成如图1所示。

图1 流水灯硬件原理图
从原理图中可以看出,如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED的点亮和熄灭的方法同LED1。

因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED 灯便会一亮一暗的做流水灯了。

在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。

3.软件编程
单片机的应用系统由硬件和软件组成,上述硬件原理图搭建完成上电之后,我们还不能看到流水灯循环点亮的现象,我们还需要告诉单片机怎么来进行工作,即编写程序控制单片机管脚电平的高低变化,来实现发光二极管的一亮一灭。

软件编程是单片机应用系统中的一个重要的组成部分,是单片机学习的重点和难点。

下面我们以最简单的流水灯控制功能即实现8个LED灯的循环点亮,来介绍实现流水灯控制的几种软件编程方法。

3.1位控法
这是一种比较笨但又最易理解的方法,采用顺序程序结构,用位指令控制P1口的每一个位输出高低电平,从而来控制相应LED灯的亮灭。

程序如下:
ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
CLR P1.0 ;P1.0输出低电平,使LED1点亮
ACALL DELAY ;调用延时子程序
SETB P1.0 ;P1.0输出高电平,使LED1熄灭
CLR P1.1 ;P1.1输出低电平,使LED2点亮
ACALL DELAY ;调用延时子程序
SETB P1.1 ;P1.1输出高电平,使LED2熄灭
CLR P1.2 ;P1.2输出低电平,使LED3点亮
ACALL DELAY ;调用延时子程序
SETB P1.2 &nbsp; ;P1.2输出高电平,使LED3熄灭
CLR P1.3 ;P1.3输出低电平,使LED4点亮
ACALL DELAY ;调用延时子程序
SETB P1.3 ;P1.3输出高电平,使LED4熄灭
CLR P1.4 ;P1.4输出低电平,使LED5点亮
ACALL DELAY ;调用延时子程序
SETB P1.4 ;P1.4输出高电平,使LED5熄灭
CLR P1.5 ;P1.5输出低电平,使LED6点亮
ACALL DELAY ;调用延时子程序
SETB P1.5 ;P1.5输出高电平,使LED6熄灭
CLR P1.6 ;P1.6输出低电平,使LED7点亮
ACALL DELAY ;调用延时子程序
SETB P1.6 ;P1.6输出高电平,使LED7熄灭
CLR P1.7 ;P1.7输出低电平,使LED8点亮
ACALL DELAY ;调用延时子程序
SETB P1.7 ;P1.7输出高电平,使LED8熄灭
ACALL DELAY ;调用延时子程序
AJMP START ;8个LED流了一遍后返回到标号START处再循环
DELAY:;延时子程序
MOV R0,#255;延时一段时间
D1:MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET ;子程序返回
END ;程序结束
3.2循环移位法
在上个程序中我们是逐个控制P1端口的每个位来实现的,因此程序显得有点复杂,下面我们利用循环移位指令,采用循环程序结构进行编程。

我们在程序一开始就给P1口送一个数,这个数本身就让P1.0先低,其他位为高,然后延时一段时间,再让这个数据向高位
移动,然后再输出至P1口,这样就实现“流水”效果啦。

由于8051系列单片机的指令中只有对累加器ACC中数据左移或右移的指令,因此实际编程中我们应把需移动的数据先放到ACC中,让其移动,然后将ACC移动后的数据再转送到P1口,这样同样可以实现“流水”效果。

具体编程如下所示,程序结构确实简单了很多。

ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
MOV A,#0FEH ;ACC中先装入LED1亮的数据(二进制的11111110)
MOV P1,A ;将ACC的数据送P1口
MOV R0,#7 ;将数据再移动7次就完成一个8位流水过程
LOOP:RL A ;将ACC中的数据左移一位
MOV P1,A ;把ACC移动过的数据送p1口显示
ACALL DELAY ;调用延时子程序
DJNZ R0,LOOP ;没有移动够7次继续移动
AJMP START ;移动完7次后跳到开始重来,以达到循环流动效果
DELAY:;延时子程序
MOV R0,#255;延时一段时间
D1:MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET ;子程序返回
END ;程序结束
3.3查表法
上面的两个程序都是比较简单的流水灯程序,“流水”花样只能实现单一的“从左到右”流方式。

运用查表法所编写的流水灯程序,能够实现任意方式流水,而且流水花样无限,只要更改流水花样数据表的流水数据就可以随意添加或改变流水花样,真正实现随心所欲的流水灯效果。

我们首先把要显示流水花样的数据建在一个以TAB为标号的数据表中,然后通过查表指令“MOVC A,@A+DPTR”把数据取到累加器A中,然后再送到P1口进行显示。

具体源程序如下,TAB标号处的数据表可以根据实现效果的要求任意修改。

ORG 0000H ;单片机上电后从0000H地址执行
AJMP START ;跳转到主程序存放地址处
ORG 0030H ;设置主程序开始地址
START:MOV SP,#60H ;设置堆栈起始地址为60H
MOV DPTR,# TAB ;流水花样表首地址送DPTR
LOOP:CLR A ;累加器清零
MOVC A,@A+DPTR ;取数据表中的值
CJNE A,#0FFH,SHOW;检查流水结束标志
AJMP START ;所有花样流完,则从头开始重复流
SHOW:MOV P1,A ;将数据送到P1口
ACALL DELAY ;调用延时子程序
INC DPTR ;取数据表指针指向下一数据
AJMP LOOP ;继续查表取数据
DELAY:;延时子程序
MOV R0,#255;延时一段时间
D1:MOV R1,#255
DJNZ R1,$
DJNZ R0,D1
RET &nbsp; ;子程序返回
TAB:;下面是流水花样数据表,用户可据要求任意编写DB 11111110B ;二进制表示的流水花样数据,从低到高左移
DB 11111101B
DB 11111011B
DB 11110111B
DB 11101111B
DB 11011111B
DB 10111111B
DB 01111111B
DB 01111111B ;二进制表示的流水花样数据,从高到低右移
DB 10111111B
DB 11011111B
DB 11101111B
DB 11110111B
DB 11111011B
DB 11111101B
DB 11111110B
DB 0FEH,0FDH,0FBH,0F7H ;十六进制表示的流水花样数据
DB 0EFH,0DFH,0BFH,7FH
DB 7FH,0BFH,0DFH,0EFH
DB 0F7H,0FBH,0FDH,0FEH
……
DB 0FFH ;流水花样结束标志0FFH
END ;程序结束
4.结语
当上述程序之一编写好以后,我们需要使用编译软件对其编译,得到单片机所能识别的二进制代码,然后再用编程器将二进制代码烧写到AT89C51单片机中,最后连接好电路通电,我们就看到LED1~LED8的“流水”效果了。

相关文档
最新文档