第4章-面板数据模型与应用

合集下载

面板数据模型与应用

面板数据模型与应用
详细描述
经济增长的面板数据模型分析通常涉及对国家或地区GDP、人均GDP、工业增加值等经济指标的时间序列数 据进行建模,以揭示经济增长的规律和趋势。通过面板数据模型,可以分析不同国家或地区经济增长的差异
及其原因,探究经济增长与投资、劳动力、技术进步等变量之间的关系,为政策制定提供科学依据。
案例二:劳动力市场的面板数据模型分析
面板数据模型的改进与创新
模型优化
针对现有面板数据模型的不足,未来将不断对其进行 优化,以提高模型的预测精度和稳定性。
新型面板数据模型的提出
随着统计分析技术的发展,将会有更多新型的面板数据 模型被提出,以满足不同领域的数据分析需求。
面板数据模型的应用拓展
跨学科应用
面板数据模型将在更多学科领域得到应用, 如经济学、社会学、生物学等,以解决各学 科领域的实际问题。
特点
面板数据模型能够同时考虑时间和个 体效应对数据的影响,提供更全面的 分析视角,有助于揭示数据背后的复 杂关系。
面板数据模型的适用场景
1 2 3
经济领域
面板数据模型在经济领域应用广泛,如分析国家 、地区或行业的经济增长、消费、投资等数据。
社会学领域
社会学研究常涉及长时间跨度和多个观察对象的 数据,面板数据模型适用于分析社会现象和趋势 。
面板数据模型与应 用
contents
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的应用领域 • 面板数据模型的应用案例 • 面板数据模型的未来发展与展望
01
CATALOGUE
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的结合 ,即同时包含多个个体在一段时间内 的数据。

面板数据讲义

面板数据讲义

面板数据模型与应用1.面板数据定义panel data的中译:面板数据、桌面数据、平行数据、纵列数据、时间序列截面数据、混合数据(pool data)、固定调查对象数据。

面板数据定义(1)面板数据定义为相同截面上的个体在不同时点的重复观测数据。

(2)称为纵向(longitudinal)变量序列(个体)的多次测量。

面板数据从横截面(cross section)看,是由若干个体(entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitudinal section)看每个个体都是一个时间序列。

1图1 N=7,T=50的面板数据示意图2面板数据用双下标变量表示。

例如y i t, i = 1, 2, …, N; t = 1, 2, …, Ti对应面板数据中不同个体。

N表示面板数据中含有N个个体。

t对应面板数据中不同时点。

T表示时间序列的最大长度。

若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。

2. 面板数据模型面板数据模型是利用面板数据构建的模型。

面板数据系一组个体在一段时间内的观测值形成的数据集,这里“个体”可以是个人、家庭、企业、行业、地区3或国家(Baltagi,2008)。

1966年,Balestra & Nerlove发表了第一篇利用面板数据模型研究天然气需求估计的论文,此后,面板数据模型这一新的计量分析方法在理论和应用上得到迅速发展,已形成现代计量经济学的一个相对独立的分支。

面板数据模型由于同时使用了截面数据(cross-sectional data)和时间序列数据(time series data),因而可以控制个体的异质性,识别、测量单纯使用这两种数据无法估计的效应;并且具有包含更多的信息、更大的变异和自由度、变量间的共线性也更弱的特性,可得到更精确的参数估计(Hsiao,2003、2008)。

面板数据模型与stata软件应用

面板数据模型与stata软件应用

政治学领域
政治学研究中,面板数据模型可用于分析国 家治理、政策效果评估等。
环境科学领域
环境科学研究中,面板数据模型可用于分析 环境变化、生态保护等。
面板数据模型与OLS模型的比较
OLS模型
OLS模型是经典回归分析方法,适用于横截面数据,通过最小化残差平方和来估计参数。OLS模型简单易用,但 无法控制个体和时间固定效应,可能导致估计偏误。
04
Stata软件在面板数据模型中的 应用
数据导入与整理
导入数据
使用`import delimited`命令将数据导入 Stata中,支持多种文件格式,如CSV、 Excel等。
数据清洗
检查数据中的缺失值、异常值和重复值,并进行相 应的处理。
数据转换
对变量进行必要的转换,如对数转换、标准 化等。
面板数据模型的估计
模型选择
01
根据研究目的和数据特点选择合适的面板数据模型,如固定效
应模型、随机效应模型等。
模型估计
02
使用Stata提供的命令(如`xtreg, fe`或`xtreg, re`)对模型进行
估计。
结果解读
03
解释模型估计结果,包括系数、显著性水平等。
模型诊断与检验
异方差性检验
使用Stata提供的命令(如`estat hettest`)对模型进行异方差性 检验。
面板数据模ห้องสมุดไป่ตู้与Stata软件应 用
• 面板数据模型概述 • Stata软件介绍 • 面板数据模型的估计方法 • Stata软件在面板数据模型中的应用 • 面板数据模型的案例分析 • Stata软件在面板数据模型中的进阶
应用
01
面板数据模型概述

面板数据模型.讲课文档

面板数据模型.讲课文档

其中,
称为复合误差(composite error)。
这一结果与1987年数据的横截面OLS回归结果不一 样。注意,使用混合OLS并不解决遗漏变量问题。
两时期面板数据分析(续4)
另一种方法,考虑了非观测效应与解释变量相关性。
(面板数据模型主要就是为了考虑非观测效应与解 释变量相关性的情形)例如在犯罪方程中,让ai中
为两类:一类是恒常不变的;另一类则随时间而变。
d2t表示当t=1时等于0而当t=2时等于1的一个虚拟变 量,它不随i而变。ai概括了影响yit的全部观测不到 的、在时间上恒定的因素,通常称作非观测效应, 也称为固定效应,即ai在时间上是固定的。特质误 差uit表示随时间变化的那些非观测因素。
两时期面板数据分析(续2)
第三,Panel Data Model可以通过设置虚拟变量对 个别差异(非观测效应)进行控制;即面板数据模 型可以用来有效处理遗漏变量(omitted varaiable) 的模型错误设定问题。
遗漏变量
使用面板数据的一个主要原因是,面板数据可以用 来处理某些遗漏变量问题。
例如,遗漏变量是不随时间而变化的表示个体异质 性的一些变量,如国家的初始技术效率、城市的历 史或个人的一些特征等。这些不可观测的不随时间 变化的变量往往和模型的解释变量相关,从而产生 内生性,导致OLS估计量有偏且不一致。
2000 4203.555 8206.271 5522.762 4361.555 3890.580 4077.961 5317.862 3612.722 4360.420 3877.345 5011.976 8651.893 3793.908 6145.622 6950.713
2001 4495.174 8654.433 6094.336 4457.463 4159.087 4281.560 5488.829 3914.080 4654.420 4170.596 5159.538 9336.100 4131.273 6904.368 7968.327

面板数据模型

面板数据模型

面板数据模型面板数据模型是一种用于描述面板数据结构和分析的统计模型。

它是一种多层次的数据结构,包含了不同时间点和不同个体的观测数据。

面板数据模型广泛应用于经济学、社会学、医学等领域的研究中。

面板数据模型的标准格式如下:1. 面板数据的基本信息:- 面板数据的来源和采集方法;- 面板数据的时间范围和频率;- 面板数据的样本规模和样本特征。

2. 面板数据的变量定义:- 面板数据中所包含的变量名称和含义;- 面板数据中的自变量和因变量的定义;- 面板数据中可能存在的缺失值和异常值处理方法。

3. 面板数据模型的建立:- 面板数据模型的理论基础和假设前提;- 面板数据模型的数学表达式和形式;- 面板数据模型的参数估计方法和模型诊断。

4. 面板数据模型的应用:- 面板数据模型在实际研究中的应用案例;- 面板数据模型的结果解释和推断方法;- 面板数据模型的政策效果评估和预测分析。

5. 面板数据模型的优缺点:- 面板数据模型相比其他统计模型的优势;- 面板数据模型的局限性和应用条件;- 面板数据模型的改进和发展方向。

6. 面板数据模型的软件实现:- 面板数据模型的常用软件工具和编程语言;- 面板数据模型的软件实现步骤和代码示例;- 面板数据模型的软件可视化和结果输出。

总结:面板数据模型是一种强大的分析工具,可以用于描述和分析面板数据结构。

它能够捕捉到时间和个体之间的变化和相关性,为研究者提供了丰富的数据信息。

然而,面板数据模型也存在一些局限性,如样本选择偏差和模型假设的限制等。

因此,在应用面板数据模型时,需要根据具体研究问题和数据特点进行合理的模型选择和分析方法。

面板数据模型与应用-张晓峒课件

面板数据模型与应用-张晓峒课件

8.4
8.6
8.8
9.0
9.2
9.4
9.6
LOG(IPCROSS)
图6
对数的人均消费对收入的面板数据散点图
图 7 对数的人均消费对收入的面板数据散点图
3
CP_IAH CP_IBJ CP_IFJ CP_IHB CP_IHLJ
CP_IJL CP_IJS CP_IJX CP_ILN CP_INMG
11000 CP_ISD CP_ISH 10000 CP_ISX 9000 CP_ITJ CP_IZJ 8000 7000 6000 5000 4000 3000 2000 2000 4000 6000 8000 10000 12000 IP_I 14000
1996
(每条连线表示同一年度 15 个地区的收入值)
1999
9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 8.0
LOG(CP1996) LOG(CP1997) LOG(CP1998) LOG(CP1999)
LOG(CP2000) LOG(CP2001) LOG(CP2002)
8.2
为了观察得更清楚,图 8 给出北京和内蒙古 1996-2002 年消费对收入散点图。从图中可 以看出,无论是从收入还是从消费看内蒙古的水平都低于北京市。内蒙古 2002 年的收入与 消费规模还不如北京市 1996 年的大。 图 9 给出该 15 个省级地区 1996 和 2002 年的消费对收 入散点图。6 年之后 15 个地区的消费和收入都有了相应的提高。
安徽 1996
14000 12000 10000 8000 6000 4000 浙江 山西 山东 辽宁 2000 江苏 黑龙江 2000 2002 0

面板数据模型

面板数据模型

面板数据模型面板数据模型,又称固定效应模型,是计量经济学中常用的一种数据分析方法。

它适用于时间序列和截面数据的联合分析,具有较高的灵活性和强大的解释能力。

本文将对面板数据模型的基本原理、应用场景以及估计方法进行介绍,并通过实例说明其实际运用。

第一部分:面板数据模型的基本原理面板数据模型基于以下假设:每个个体(又称单位)在不同时间点都有观测值,并且个体之间的观测值具有相关性。

面板数据模型通常由固定效应模型和随机效应模型两种形式。

固定效应模型假设个体特定的不变因素对观测值产生了影响,这些不变因素可能包括个体的性别、年龄、学历等。

固定效应模型可以通过引入个体固定效应变量来捕捉这些影响因素,并以此来解释观测值的变动。

第二部分:面板数据模型的应用场景面板数据模型在经济学、金融学、社会学等领域得到了广泛的应用。

例如,在经济学中,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长情况,探讨政策对经济发展的影响;在金融学领域,研究人员可以运用面板数据模型来研究股票价格的波动和影响因素。

第三部分:面板数据模型的估计方法面板数据模型有多种估计方法,常见的有固定效应模型估计和随机效应模型估计。

固定效应模型估计通常采用最小二乘法,即通过对个体固定效应进行回归分析来求解模型参数。

随机效应模型估计则假设个体固定效应是误差项的一部分,通过对固定效应进行随机化处理得到模型的估计结果。

实例应用:假设我们需要研究不同地区的教育水平对经济增长的影响,我们可以使用面板数据模型来分析这个问题。

我们收集了10个地区在2010年到2020年的经济增长率和教育水平数据。

我们可以利用固定效应模型来探究教育水平对经济增长的影响。

首先,我们创建一个包含个体固定效应的面板数据模型,并使用最小二乘法来估计参数。

然后,我们通过分析模型的显著性水平、参数估计结果以及模型拟合程度来得出结论。

通过面板数据分析,我们可以发现教育水平对经济增长确实存在显著的正向影响。

面板数据模型经典PPT

面板数据模型经典PPT
02
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方

面板数据模型与应用

面板数据模型与应用

(4)
1, 如果属于第i个个体,i = 1, 2, ..., N , 其他, 0,
个体固定效应模型(3)还可以用多方程表示为
5
y1t = α1 + X1t 'β +ε1t,
i = 1(对于第 1 个个体或时间序列) ,t = 1, 2, …, T
i = 2(对于第 2 个个体或时间序列) ,t = 1, 2, …, T y2t = α2 + X2t 'β +ε2 t, … yN t = αN + XN t 'β+ε N t, i = N(对于第 N 个个体或时间序列) ,t = 1, 2, …, T 注意: (1)在 EViews 输出结果中αi 是以一个不变的常数部分和随个体变化的部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中填不填 c 输出结 果都会有固定常数项。 对于个体固定效应模型,个体效应αi 未知,E(αi Xit)随 Xit 而变化,但不知怎样与 Xit 变 化,所以 E(yit Xit)不可识别。对于短期面板数据,个体固定效应模型是正确设定的,β的混 合 OLS 估计量不具有一致性。相应解释见 3.1 小节。但是对个体固定效应模型可以识别边 际效应。 β = ∂ E(yit αi, Xit)/∂ Xit 个体固定效应模型的估计方法有多种,首先设法除去αi 的影响,从而保证β估计量的一 致性。 (详见第 3 节,面板数据模型估计方法。 ) 下面解释设定个体固定效应模型的原因。假定有面板数据模型 (5) yit = β0 + β1 xit +β2 zi +εit, i = 1, 2, …, N; t = 1, 2, …, T 其中β0 为常数,不随时间、截面变化;zi 表示随个体变化,但不随时间变化的难以观测的变 量。 以案例 1 为例,省家庭平均人口数就是这样的一个变量。对于短期面板来说,这是一个 基本不随时间变化的量,但是对于不同的省份,这个变量的值是不同的。 上述模型可以被解释为含有 N 个截距,即每个个体都对应一个不同截距的模型。令αi = β0 +β2 zi,于是(5)式变为 yit = αi + β1 xit +εit, i = 1, 2, …, N; t = 1, 2, …, T (6) 这正是个体固定效应模型形式。对于每个个体回归函数的斜率相同(都是β1) ,截距αi 却因 可见个体固定效应模型中的截距项αi 中包括了那些随个体变化, 但不随时 个体不同而变化。 间变化的难以观测的变量的影响。αi 是一个随机变量。因为 zi 是不随时间变化的量,所以当 对个体固定效应模型中的变量进行差分时, 可以剔除那些随个体变化, 但不随时间变化的难 以观测变量的影响,即剔出αi 的影响。 以案例 1(file:5panel02)为例得到的个体固定效应模型估计结果如下:

第4章-面板数据模型(张晓峒2012年2月)

第4章-面板数据模型(张晓峒2012年2月)

11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000
CP_IAH CP_IFJ CP_IHLJ CP_IJS CP_ILN CP_ISD CP_ISX CP_IZJ
CP_IBJ CP_IHB CP_IJL CP_IJX CP_INMG CP_ISH CP_ITJ
file:5panel02 file:6panel02 file:5panel02a
Cheng Hsiao
Baltagi
白仲林著
Baltagi著 白仲林主译
《面板数据的计量经济分析》 白仲林著,张晓峒主审, 南开大学出版社,2008, 书号ISBN978-7-310-02915-0
1.面板数据定义 时间序列数据或截面数据都是一维数据。时间序列数据是变量按时间得到 的数据;截面数据是变量在固定时点的一组数据。面板数据是同时在时间和截 面上取得的二维数据。所以,面板数据(panel data)也称作时间序列与截面混 合数据(pooled time series and cross section data) 。面板数据是截面上个体在不 同时点的重复观测数据。 panel 原指对一组固定调查对象
1, 如果属于第i个个体,i 1, 2, ..., N , 其中 Di = 其他, 0,
个体固定效应模型(3)还可以用多方程表示为 y1t = 1 + X1t ' + 1t, y2t = 2 + X2t ' + 2 t, …
注意: (1)在 EViews 输出结果中i 是以一个不变的常数部分和随个体变化的部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中填不填 c 输出结 果都会有固定常数项。

金融计量经济第四讲面板数据(PanelData)模型

金融计量经济第四讲面板数据(PanelData)模型
(4.2)零,方差为 u
• 因为是面板数据,涉及截面与时间,与一般的单方 程模型有所不同。模型(4. 1)实际上代表几种情形。 常用的有如下三种情形: • 情形1: i j , i j , • 情形2: i j , i j , • 情形3: i j , i j , • 理论上讲,根据截距或斜率是否可变,排列组合有 四种情形,上面三种未列出截距相同斜率不同的情 形。这三种是代表性的。 • 由截距和斜率的统计关系,情形2又可分为确定效 应模型与随机效应模型。
二、面板数据模型的检验
• 面板数据模型的检验主要是考虑截距项和斜率项在 不同截面不同时间下是否一致,所以检验的第一个 假设为: • H2: yit X it u, it 即斜率截距相同。 • 如果H2不能成立,则检验H1:yit i X it uit • 如果上面二个假设都不成立,则是斜率和截距都不 相同(情形3)的模型: yit i X it i uit • 一般不考虑截距相同而斜率不同的情况,实际应用 中这种情况没有意义。 • 面板数据模型的检验
• 平行数据或面板数据(panel data),我们也称这 些数据为联合利用时间序列/截面数据(Pooled time series,cross section)指在时间序列上取 多个截面,在这些截面上同时选取样本观测值所 构成的样本数据。面板数据计量经济学模型是近 20年来计量经济学理论方法的重要发展之一,具 有很好的应用价值。 • 适用问题如:生产分析中技术进步与规模影响; 开放式基金赎回影响;上市公司股权结构影响; 投资收益基本面影响等。
(二)截距斜率固定模型
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

面板数据模型

面板数据模型

面板数据模型引言概述:面板数据模型是一种经济学和统计学中常用的数据分析方法。

它适合于具有时间和个体维度的数据,可以匡助研究人员更好地理解个体之间的关系以及时间的变化趋势。

本文将详细介绍面板数据模型的概念、应用领域、优势和限制,并提供一些实际案例来说明其实际价值。

正文内容:1. 面板数据模型的概念1.1 面板数据模型的定义面板数据模型是一种同时考虑时间和个体维度的数据分析方法。

它将个体的观察结果按照时间顺序罗列,形成一个面板数据集,以便分析个体之间的关系和时间的变化趋势。

1.2 面板数据模型的分类面板数据模型可以分为固定效应模型和随机效应模型。

固定效应模型假设个体之间的差异是固定的,而随机效应模型则允许个体之间的差异是随机的。

2. 面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域得到广泛应用。

例如,研究人员可以利用面板数据模型来分析不同国家或者地区的经济增长率、失业率和通货膨胀率之间的关系,以及企业的生产效率和市场竞争程度之间的关系。

2.2 社会科学领域面板数据模型也在社会科学领域具有重要意义。

研究人员可以利用面板数据模型来研究教育、健康、就业等社会问题,并分析个体特征对这些问题的影响。

2.3 金融领域面板数据模型在金融领域的应用也非常广泛。

例如,研究人员可以利用面板数据模型来分析不同股票的收益率之间的关系,以及股票市场的波动与宏观经济指标之间的关系。

3. 面板数据模型的优势3.1 控制个体固定效应面板数据模型可以通过固定效应来控制个体固有的差异,从而更准确地分析个体之间的关系。

3.2 利用时间维度的信息面板数据模型可以利用时间维度的信息,分析个体随时间的变化趋势,更好地理解时间的影响。

3.3 提高数据的效率面板数据模型可以利用面板数据集中的交叉个体和时间信息,提高数据的效率,减少估计的方差。

4. 面板数据模型的限制4.1 数据缺失问题面板数据模型在面对数据缺失问题时可能会浮现一些难点,需要采取一些特殊的处理方法。

面板数据理论与应用eviews

面板数据理论与应用eviews
EViews支持变量命名、类型设置、编码转换等 变量管理功能,方便用户进行数据处理。
ABCD
数据清洗与整理
EViews提供了数据清洗和整理工具,帮助用户 处理缺失值、异常值等问题。
图表制作
EViews提供了丰富的图表类型和工具,用户可 以轻松制作各种图表和图形。
EViews软件的进阶应用
高级统计分析
06 面板数据研究的挑战与展 望
面板数据研究的挑战
数据获取与处理
面板数据涉及到大量的个体和时间序列数据,数据的获取、清洗和整理需要耗费大量时 间和精力。
模型选择与设定
面板数据模型的选择和设定需要根据研究目的和研究问题来决定,需要考虑个体、时间 和其他相关因素对数据的影响。
异方差性和自相关问题
面板数据可能存在异方差性和自相关问题,这会影响模型的估计和推断,需要采取适当 的处理方法。
感谢您的观看
THANKS
面板数据的回归分析
总结词
回归分析是面板数据中常用的分析方法,用于研究解释变量与被解释变量之间的数量关系。
详细描述
通过设定合适的回归模型(如固定效应模型、随机效应模型等),分析解释变量对被解释变量的影响 程度和方向,并可进行模型的诊断和检验。
面板数据的单位根检验
总结词
单位根检验是检验面板数据平稳性的重 要方法,用于判断是否存在单位根,即 是否存在时间趋势。
面板数据理论与应用 EViews
目录
CONTENTS
• 面板数据理论概述 • EViews软件介绍 • 面板数据分析方法 • 面板数据模型的应用 • EViews在面板数据分析中的应用 • 面板数据研究的挑战与展望
01 面板数据理论概述
面板数据的定义与特点

第4章 面板数据模型

第4章 面板数据模型

分别计算出 β 受约束与无约束回归方程 的残差平方和,利用 F 检验统计量进行。 注意对式(6-51)进行估计时, 可能存在自由度过小的问题。 例 6-5 利用表 6-3 给出的数据,在本例中, 公司(个体)的数量 N 为 6,观测期 T 为 3, 也就是说对于 6 个不同的公司得到观测期为 3 的样本值。Y 表示销售额(亿元), L 表示职工人数,K 表示下设分店的个数。 在分析固定效应时,不同公司对应不同的常数项, 为了检验常数项的显著性需要利用虚拟变量, 表 6-3 中没有给出虚拟变量的取值。 用 EViews 软件进行估计时,按照表 6-3 估计的顺序, 依次输入第一个公司、第二个公司、第三个公司的数据, 同时也要输入相应的虚拟变量, 然后只需要利用最小二乘法作估计即可。样本容量为 N × T 。 不包含个体效应的式(6-45)的估计结果由下式给出:
模型自由度过小,不一定满足固定效应模型 参数估计的基本要求。同时对于数千个常数项的估计, 其含义从整体上分析也是不可能的。 在研究长期固定观测数据时,通常使用 对误差项进行分析的方法,称为随机效应分析 在随机效应模型中,不同的个体具有相同 的回归方程,个体之间的差异通过参数 α i (随机的) 来刻画,换言之,个体间的差异由 随机变量 α i 的差异来描述。设
ˆ = −53 + 0.40 L + 0.74 K Y (−2.1) (4.9) (2.1)
R 2 = 0.91, RSS = 19528.8
表示个体效应的常数项虚拟变量加入方程后,
其估计结果如下:
ˆ = 0.83L − 0.06 K Y (4.4) (−0.17)
R 2 = 0.98, RSS = 3726.9
yit =α1D1+ +αNDNi +βxit +εit i α2D2i +L

面板数据模型与应用

面板数据模型与应用

面板数据模型初步在经济学研究和实际应用中,经常会遇到时间序列与横截面相结合的二维数据。

例如,在居民家庭消费分析中,会遇到不同省市地区的居民家庭人均消费和居民家庭人均收入的年度时间序列数据;在生产函数分析中,会遇到不同企业的产出、资本、劳动等年度或季度时间序列数据。

这种具有时间序列与横截面信息的二维数据称为面板数据(Panel Data ),也可称为平行数据、时间序列与截面混合数据(Pooled Time Series and Cross Section Data )。

面板数据从横截面上看,是由若干个体,比如个人、家庭、企业或国家等,在某一时间构成的截面观测值,从纵剖面上看每个个体都是一个时间序列。

经典计量经济学在分析实际问题时,只利用了时间序列或截面数据进行建模,在很多情况下是不能满足人们分析问题的需要。

例如,在分析企业生产成本问题,若只选用截面数据,即选择同一时间上不同规模的企业数据作为样本观测,可以分析生产成本与企业规模的关系,但是不能分析技术革新对生产成本的影响;若只采用时间序列数据,即选择某个企业在不同时间上的数据作为样本观测,可以分析生产成本与技术革新的关系,但是不能分析企业规模对生产成本的影响;然而利用面板数据,即在不同的时间上选择不同规模的企业数据作为样本观测,就可以同时分析企业规模和技术革新对生产成本的影响。

因此,面板数据含有更多的信息,能更好构造和检验真实的、复杂的行为模型,同时它还能够增加模型的自由度,降低解释变量之间的多重共线性程度,更高的估计效率,正是由于面板数据具有诸多的优点,Panel Data 模型是近年来非经典计量经济学的一个重要发展之一,在经济学领域得到大量广泛的应用,比如在宏观经济领域,它被广泛应用于经济增长、技术创新、金融、税收政策等领域;在微观经济领域,它被大量应用于就业、家庭消费、入学、市场营销等领域。

但是,由于面板数据自身的特点,Panel Data 模型的设定和估计都存在一定的假设条件,如果应用不当的话,将会产生较大偏误,估计结果与实际相差甚远。

面板数据模型与应用

面板数据模型与应用
2.2 固定效应模型(fixed effects model)。
固定效应模型分为3种类型,即个体固定效应模型、时点固定效应模型和 个体时点双固定效应模型。下面分别介绍。
2.2.1个体固定效应模型(entity fixed effects model)
如果一个面板数据模型定义为,
yit = i + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T
1.面板数据定义
面板数据(panel data)也称作时间序列与截面混合数据(pooled time series and cross section data)。面板数据是截面上个体在不同时点的 重复观测数据。
panel 原指对一组固定调查对象的多次观测,近年来panel data已经成 为专业术语。
量)。则称此模型为混合回归模型。混合回归模型的特点是无论对任何
个体和截面,回归系数和都相同。
如果模型是正确设定的,解释变量与误差项不相关,即Cov(Xit,it) = 0。
那么无论是N,还是T,模型参数的混合最小二乘估计量 (Pooled OLS)都是一致估计量。
2.面板数据模型分类
i = 0 +2 zi,于是变为 yit = i + 1 xit +it, i = 1, 2, …, N; t = 1, 2, …, T
以家庭消费性支出与可支配收入关系为例,省家庭平均人口数就是这样 的一个变量,即对于短期面板,这是一个基本不随时间变化的量,但是 对于不同的省份,这个变量的值是不同的。 因为 zi 是不随时间变化的量,所以当对个体固定效应模型中的变量进行 差分时,可以剔除那些随个体变化,但不随时间变化的 zi 的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 固定效应模型(fixed effects model) 。
解释设定个体固定效应模型的原因。假定有面板数据模型 yit = 0 + 1 xit +2 zi +it, i = 1, 2, …, N; t = 1, 2, …, T 其中0 为常数, 不随时间、 截面变化;每个个体回归函数的斜率1 相同; zi 表示随个体变化,但不随时间变化的难以观测的变量。上述模型可以 被解释为含有 N 个截距,即每个个体都对应一个不同截距的模型。令 i = 0 +2 zi,于是变为 yit = i + 1 xit +it, i = 1, 2, …, N; t = 1, 2, …, T 以家庭消费性支出与可支配收入关系为例, 省家庭平均人口数就是这样 的一个变量,即对于短期面板,这是一个基本不随时间变化的量,但是 对于不同的省份,这个变量的值是不同的。 因为 zi 是不随时间变化的量, 所以当对个体固定效应模型中的变量进行 差分时,可以剔除那些随个体变化,但不随时间变化的 zi 的影响。
3.2 平均数(between)OLS 估计
平均数 OLS 估计法的步骤是首先对面板数据中的每个个体求平均数,共得到 N 个平均数(估计值) 。然后利用 yit 和 Xit 的 N 组观测值估计参数。以个体固 定效应回归模型 yit = i + Xit ' +it 为例,首先对面板中的每个个体求平均数,从而建立模型
yi = i + X i ' + i , i = 1, 2, …, N
变换上式: yi = + X i ' +( i - + i ), i = 1, 2, …, N
N=30,T=50的面板数据示意图
中国各省级地区消费性支出占可支配收入比例走势图
1.面板数据定义
面板数据分两种特征:(1)个体数少,时间长。(2)个体数多,时间 短。面板数据主要指后一种情形。 面板数据用双下标变量表示。
yi t, i = 1, 2, …, N; t = 1, 2, …, T
i对应面板数据中不同个体。N表示面板数据中含有N个个体。t对应面板 数据中不同时点。T表示时间序列的最大长度。
3. 面板数据模型估计方法
• 混合最小二乘(Pooled OLS)估计 (适用于混合模型) • 平均数(between)OLS估计 (适用于混合模型和个体随机效应模型) • 离差变换(within)OLS估计
(适用于个体固定效应回归模型)
• 一阶差分(first difference)OLS估计 (适用于个体固定效应模型)
2.2.3 个体时点固定效应模型
如果一个面板数据模型定义为, yit = 0 +i +t + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T 其中 yit 为被回归变量(标量) ;i 是随机变量,表示对于 N 个个体有 N 个不同的截距项,且其变化与 Xit 有关系;t 是随机变量,表示对于 T 个截面(时点)有 T 个不同的截距项,且其变化与 Xit 有关系;Xit 为 k 1 阶回归变量列向量(包括 k 个回归量) ;为 k 1 阶回归系数 列向量;it 为误差项(标量)满足通常假定(it Xit, i, t) = 0;则称此 模型为个体时点固定效应模型。 如果模型形式是正确设定的,并且满足模型通常的假定条件,对模型 进行混合 OLS 估计,全部参数估计量都是不一致的。正如个体固定 效应回归模型可以得到一致的、甚至有效的估计量一样,一些计算方 法也可以使个体时点双固定效应模型得到更有效的参数估计量。
2.面板数据模型分类
2.2 固定效应模型(fixed effects model)。
固定效应模型分为3种类型,即个体固定效应模型、时点固定效应模型和 个体时点双固定效应模型。下面分别介绍。
2.2.1个体固定效应模型(entity fixed effects model)
如果一个面板数据模型定义为,
2.2 固定效应模型(fixed effects model) 。
个体固定效应模型的强假定条件是, E(iti, Xit) = 0, i = 1, 2, …, N
i 作为随机变量描述不同个体建立的模型间的差异。 因为i 是不可观测
的,且与可观测的解释变量 Xit 的变化相联系,所以称为个体固定效应 模型。 注意: (1) 在 EViews 输出结果中i 是以一个不变的常数部分和随个体变化的 部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中 填不填 c 输出结果都会有固定常数项。 (3)个体固定效应回归模型的估计方法有多种,首先设法除去i 的影 响,从而保证估计量的一致性。
yit = i + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T
其中i是随机变量,表示对于i个个体有i个不同的截距项,且其变化与Xit 有关系;Xit为k 1阶回归变量列向量(包括k个回归量),为k 1阶回归 系数列向量,对于不同个体回归系数相同,yit为被回归变量(标量),it 为误差项(标量),则称此模型为个体固定效应模型。
2.2.2 时点固定效应模型(time fixed effects model)
设定时点固定效应模型的原因。假定有面板数据模型 yit = 0 + 1 xit +2 zt +it, i = 1, 2, …, N; t = 1, 2, …, T 其中0 为常数,不随时间、截面变化;对于 T 个截面有 T 个不同的 截距项,zt 表示随不同截面(时点)变化,但不随个体变化的难以 观测的变量。令t = 0 +2 zt,上式变为 yit = t + 1 xit +it, i = 1, 2, …, N; t = 1, 2, …, T 这正是时点固定效应模型形式。对于每个截面,回归函数的斜率 相同(都是1) ,t 却因截面(时点)不同而异。可见时点固定效应 模型中的截距项t 包括了那些随不同截面(时点)变化,但不随个 体变化的难以观测的变量的影响。t 是一个随机变量。 以家庭消费性支出与可支配收入关系为例, “全国零售物价指数” 就是这样的一个变量。对于不同时点,这是一个变化的量,但是对 于不同省份(个体) ,这是一个不变化的量。
2.3 随机效应模型
对于面板数据模型 yit = i + Xit' +it, i = 1, 2, …, N; t = 1, 2, …, T 如果i 为随机变量,其分布与 Xit 无关; Xit 为 k 1 阶回归变量列向 量(包括 k 个回归量) ,为 k 1 阶回归系数列向量,对于不同个体回 归系数相同,yit 为被回归变量(标量) ,it 为误差项(标量) ,这种模 型称为个体随机效应回归模型(随机截距模型、随机分量模型) 。其 假定条件是 i iid(, 2) it iid(0, 2) 都被假定为独立同分布,但并未限定何种分布。 同理也可定义时点随机效应回归模型和个体时点随机效应回归模型, 但个体随机效应回归模型最为常用。
2.3 随机效应模型
对于个体随机效应模型,E(i Xit) = ,则有,E(yit xit) = + Xit', 对 yit 可以识别。所以随机效应模型参数的混合 OLS 估计量具有一致 性,但不具有有效性。 注意:术语“随机效应模型”和“固定效应模型”用得并不十分恰当。 其实固定效应模型应该称之为“相关效应模型” ,而随机效应模型应 该称之为“非相关效应模型” 。因为固定效应模型和随机效应模型中 的i 都是随机变量。
利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加 估计量的抽样精度。(2)对于固定效应回归模型能得到参数的一致估 计量,甚至有效估计量。(3)面板数据建模比单截面数据建模可以获 得更多的动态信息。
2.面板数据模型分类
用面板数据建立的模型通常有3种,即混合模型、固定效应模型和随机 效应模型。
第 4 章 面板数据模型与应用
1.面板数据定义 2.面板数据模型分类 3.面板数据模型估计方法 4.面板数据模型检验与设定方法 5.面板数据建模案例分析 6.面板数据的单位根检验 7.EViwes 应用 8.面板数据模型的协整检验
file:5panel02 file:5panel01
《面板数据的计量经济分析》,白仲林著,张晓峒主审, 南开大学出版社,2008,书号ISBN978-7-310-3.1 混合最小二乘(Pooled OLS)估计 如果模型存在个体固定效应,即i 与 Xit 相关,那么对模型应用混合 OLS 估计方法,估计量不再具有一致性。 假定模型实为个体固定效应模型 yit = i + Xit ' +it,但却当作混 合模型来估计参数,则模型写为 yit = + Xit ' + (i - +it) = + Xit ' + uit 其中 uit = (i - +it)。因为i 与 Xit 相关,也即 uit 与 Xit 相关,所以个 体固定效应模型的参数若采用混合 OLS 估计,估计量不具有一致性。
2.1 混合模型(Pooled model)。
如果一个面板数据模型定义为,
yit = + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T
其中yit为被回归变量(标量),表示截距项,Xit为k 1阶回归变量列 向量(包括k个回归量),为k 1阶回归系数列向量,it为误差项(标 量)。则称此模型为混合回归模型。混合回归模型的特点是无论对任何 个体和截面,回归系数和都相同。 如果模型是正确设定的,解释变量与误差项不相关,即Cov(Xit,it) = 0。 那么无论是N,还是T,模型参数的混合最小二乘估计量 (Pooled OLS)都是一致估计量。
相关文档
最新文档