中考复习:三角形和多边形
中考数学复习专题17:三角形及其性质(含中考真题)
专题17 三角形及其性质☞解读考点知识点名师点晴三角形的重要线段中线、角平分线、高线理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线三角形的中位线理解并掌握三角形的中位线的性质三角形的三边关系两边之和大于第三边,两边之差小于第三边理解三角形的三边关系,并能确定三角形第三边的取值范围三角形的内角和定理三角形的内角和等于180°掌握三角形的内角和定理,并会证明三角形的内角和定理三角形的外角三角形的外角的性质能利用三角形的外角进行角的有关计算与证明☞2年中考【题组】1.(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.2.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D .考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0) 【答案】A . 【解析】试题分析:A .∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确; B .∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误; C .∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误; D .∵4a+4a=8a ,∴三条线段不能构成三角形,故本选项错误. 故选A .考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( ) A .9 B .12 C . 7或9 D .9或12 【答案】B . 【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12; 当腰长为2时,根据三角形三边关系可知此情况不成立; 所以这个三角形的周长是12. 故选B .考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 【答案】B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A .118°B .119°C .120°D .121° 【答案】C . 【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE ,CD 是∠B 、∠C 的平分线,∴∠CBE=21∠ABC ,∠BCD=21∠BCA ,∴∠CBE+∠BCD=21(∠ABC+∠BCA )=60°,∴∠BFC=180°﹣60°=120°,故选C . 考点:三角形内角和定理.8.(广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或10 【答案】B .考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的( ) A .内心 B .外心 C .中心 D .重心 【答案】D . 【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D . 考点:三角形的重心.10.(百色)下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形 【答案】A . 【解析】试题分析:∵三角形具有稳定性,∴A 正确,B .C 、D 错误.故选A .考点:三角形的稳定性.11.(百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .6 【答案】B . 【解析】试题分析:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ,b=212S ,c=2S h ,又∵a ﹣b <c <a+b ,∴22222412412S S S S Sh -<<+,即2233S S Sh <<,解得3<h <6,∴h=4或h=5,故选B .考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .【答案】D .考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形 【答案】D . 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 【答案】A . 【解析】试题分析:为△ABC 中BC 边上的高的是A 选项.故选A . 考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A.17 B .16 C.15 D.14【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB ∥CD ,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB ∥CD ,AD 与BC 交于点E .若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是 .【答案】1<c <5. 【解析】试题分析:由题意得,290a -=,20b -=,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c <5.故答案为:1<c <5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根. 20.(南充)如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B=40°,则∠ACE 的大小是 度.【答案】60. 【解析】试题分析:∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE 平分∠ACD ,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有 个. 【答案】10. 【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10. 考点:三角形三边关系.22.(广东省)如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若ABC 12S =△,则图中阴影部分的面积是 .【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .【答案】5. 【解析】试题分析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE=22BC CE +=2243+=5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】53 2.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O ,则OBOD = .【答案】2. 【解析】试题分析:∵△ABC 的中线BD 、CE 相交于点O ,∴点O 是△ABC 的重心,∴OBOD =2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A ⊥l2,A 为垂足,C2,C3是l1上任意两点,点B 在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简2221432a a a a a a +⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【答案】13a -,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.n 3 4 5 6m 1 0 1 1【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=12∠ABC=12×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=12(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=12(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB=4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A. 120° B. 135° C. 150° D. 180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A55255225105【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵55,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=55BEAB,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】1 5.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5两种,故取出的三条线段为边能构成钝角三角形的概率是21105 . 考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An 在射线OA 上,点B1,B2,B3,…,Bn ﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥An ﹣1Bn ﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn ﹣1,△A1A2B1,△A2A3B2,…,△An ﹣1AnBn ﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】12;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知2132A B A B =212323A B B A B B S S=12,2233A B A B =212323A B B A B B SS=12,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
2023中考数学一轮复习资料(全国通用):多边形内角和定理的应用(教师版)
专题20 多边形内角和定理的应用1.了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.2.会用多边形的内角和与外角和公式解决计算问题;3.能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n-2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【特别提醒】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.例1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°【答案】A【解析】解:∠五边形的内角和等于540°,∠A+∠B+∠E=300°,∠∠BCD+∠CDE=540°﹣300°=240°,∠∠BCD、∠CDE的平分线在五边形内相交于点O,∠∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∠∠P=180°﹣120°=60°.故选:A.二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【特别提醒】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.例2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.1.(2022·北京清华附中朝阳学校)若正多边形的一个外角是60︒,则该正多边形的边数是( ) A .3 B .4 C .5 D .6【答案】D 【分析】利用外角和360°÷外角的度数即可得到边数. 【详解】 解:360°÷60°=6. 故该正多边形的边数为6. 故选:D .2.(2022·仪征市实验初中)正六边形的半径为3,则该正六边形的边长是( ) A .3 B .2 C .3 D .23【答案】A 【分析】设正六边形的中心是O ,一边是AB ,过O 作OG AB ⊥于G ,在直角OAG △中,即可求得边长AB . 【详解】解:如图,∠这个多边形为正六边形, ∠这个多边形的一个内角的度数为()621801206-⨯=,∠∠OAB =60°, ∠∠AOG =30°,在Rt AOG 中,3OG =, ∠1322AG AO ==, ∠23AB AG == 故选A .3.(2022·重庆字水中学九年级)一个多边形的每个外角都是36° ,则该多边形的内角和为( )A .900°B .1800°C .1440°D .1080°【答案】C 【分析】利用外角和除以外角的度数可得正多边形的边数,再利用内角和公式可得正多边形的内角和. 【详解】解:多边形的边数:360÷36=10, 内角和:180°×(10-2)=1440°, 故选:C .4.(2022·云南昭通·)如图,在学习折叠时,嘉嘉惊奇地发现将等边三角形ABC 的,A ∠沿着与A ∠两边相交的一条直线折叠,无论折痕在哪里,只要A ∠落到内ABC ,12∠+∠都是( )A .60B .90C .120D .140【答案】C 【分析】设折痕EF 交AB 于点E ,交AC 于点F ,点A 的对应点落在点D 处,根据∠ABC 为等边三角形,可得60D A ︒∠=∠= ,DEF AEF ∠=∠ ,DFE AFE ∠=∠ ,再利用四边形的内角和定理,可求出240AFD AED ︒∠+∠=,最后利用邻补角的定义,即可求解.【详解】解:如图,设折痕EF 交AB 于点E ,交AC 于点F ,点A 的对应点落在点D 处,∠∠ABC 为等边三角形,∠60D A ︒∠=∠= ,DEF AEF ∠=∠ ,DFE AFE ∠=∠ ,在四边形AEDF 中,∠360240AFD AED A D ︒︒∠+∠=-∠-∠= , ∠2180AED ︒∠+∠= ,1180AFD ︒∠+∠= , ∠12360AFD AED ︒∠+∠+∠+∠=,∠12360()360240120AFD AED ︒︒︒︒∠+∠=-∠+∠=-=. 故选:C .5.(2022·全国)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A 【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数. 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∠180,OAB B AOB ∠+∠+∠=︒ ∠180,AOB B OAB ∠=︒-∠-∠同理得180,AOC OAC C ∠=︒-∠-∠ ∠360,AOB AOC BOC ∠+∠+∠=︒ ∠360BOC AOB AOC ∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠ 107,B C BAC =∠+∠+∠=︒∠72,BED ∠=︒∠180108,DEO BED ∠=︒-∠=︒ ∠360DFO D DEO EOF ∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∠180********DFC DFO ∠=︒-∠=︒-︒=︒, 故选:A .6.(2022·内蒙古呼和浩特·中考真题)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d ,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d 及π的值都正确的是( )A .8(21)sin 22.5d -=︒,8sin 22.5π≈︒B .4(21)sin 22.5d -=︒,4sin 22.5π≈︒C .4(21)sin 22.5d -=︒,8sin 22.5π≈︒D .8(21)sin 22.5d -=︒,4sin 22.5π≈︒【答案】C 【分析】根据勾股定理求出多边形的边长,利用多边形内角和求解内角度数,再根据锐角三角函数求值即可. 【详解】解: 设剪去∠ABC 边长AC =BC =x ,可得: 22=4x x ,解得x=4-则BD=4,∠正方形剪去四个角后成为一个正八边形,根据正八边形每个内角为135度,∴∠=∠=︒,45CAB CBA则∠BFD=22.5°,∠外接圆直径d=BF,根据题意知π≈周长÷d=()323÷=8sin22.5︒,故选:C.7.(2022·辽宁鞍山市·九年级期末)中心角为30°的正多边形边数为_____.【答案】12【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【详解】解:因为360°÷30°=12.所以这个正多边形的边数为12.故答案为:12.8.(2022·济南市章丘区实验中学九年级月考)一个正多边形的内角和等于720°,则它的边数是_____.【答案】6【分析】根据正多边形的内角和公式(n−2)×180°列方程求解.【详解】解:(n−2)×180°=720°,n−2=4,∠n=6.故答案为:6.9.(2022·河北)(1)填表:(2)猜想给定一个正整数n,凸n边形最多有m个内角等于135°,则m与n之间有怎样的关系?(3)取n=7验证你的猜想是否成立?如果不成立,请给出凸n边形中最多有多少个内角等于135°?并说明理由.【答案】(1)1,2,3;(2)m=n﹣2;(3)不成立,当3≤n≤5时,凸n边形最多有n﹣2个内角等于135°;当6≤n≤7时,凸n边形最多有n﹣1个内角等于135°;当n=8时,凸n边形最多有8个内角等于135°;当n>8时,凸n边形最多有7个内角等于135°,理由见解析【分析】(1)根据三角形、四边形、五边形的内角和,可求得答案;(2)根据(1)可猜想凸n边形中角度等于135°的内角个数的最大值为:n﹣2;(3)设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,由凸n边形的n个外角和为360°,分类讨论,可确定凸n边形中最多有多少个内角等于135°.【详解】解:(1)∠三角形中只有一个钝角,∠三边形中角度等于135°的内角个数的最大值为1;∠四边形的内角和为360°,∠四边形中角度等于135°的内角个数的最大值为2;∠五边形的内角和为540°,∠五边形中角度等于135°的内角个数的最大值为3;答案:1,2,3;(2)由(1)得:凸n边形中角度等于135°的内角个数的最大值为:n﹣2.即m=n﹣2;(3)取n=7时,m=6,验证猜想不成立;设凸n边形最多有m个内角等于135°,则每个135°内角的外角都等于45°,∠凸n边形的n个外角和为360°,∠k≤360=8,只有当n=8时,m才有最大值8,45讨论n≠8时的情况:(1)当时n>8,m的值是7;(2)当n=3,4,5时,m的值分别为1,2,3;(3)当n =6,7时,m 的值分别为5,6;综上所述,当3≤n ≤5时,凸n 边形最多有n ﹣2个内角等于135°;当6≤n ≤7时,凸n 边形最多有n ﹣1个内角等于135°;当n =8时,凸n 边形最多有8个内角等于135°;当n >8时,凸n 边形最多有7个内角等于135°.10.(2022·山东滨州市·九年级期末)阅读下列内容,并答题:我们知道,计算n 边形的对角线条数公式为:1(3)2n n -.如果一个n 边形共有20条对角线,那么可以得到方程1(3)202n n -=.整理得23400n n --=;解得8n =或5n =-,n 为大于等于3的整数,5n ∴=-不合题意,舍去.8n ∴=,即多边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个多边形共有10条对角线”,你认为小明同学说法正确吗?为什么? 【答案】(1)多边形是六边形;(2)多边形的对角线不可能有10条. 【分析】(1)根据多边形的对角线公式列出方程求解即可;(2)根据多边形的对角线公式列出方程,根据所求得的解要为正整数分析即可. 【详解】解:(1)根据题意得:1(3)92n n -=,整理得:23180n n --=,解得:6n =或3n =-.n 为大于等于3的整数,3n ∴=-不合题意,舍去. 6n ∴=,即多边形是六边形;(2)小明同学说法是不正确的,理由如下:当1(3)102n n -=时,整理得:23200n n --=,解得:n =∴符合方程23200n n --=的正整数n 不存在, ∴多边形的对角线不可能有10条.。
中考复习指导之四:三角形、四边形
A C A , CA f E BD D,B ,B}D , AF C, F两 点 在 边 B R ∥D E、 c
上 .且 四边 形 A D是 平 行 EF
四边 形 .
图 2
1 舞 凸 。 麓鬟 = =
——f
解析
i
读 题 是 理解 问题 的关 键 . 题 考查 平 行 四 此
一
一
l
蛩 。红 警j 稳
一 复一 习_ —
\
一
硼
_ 江 苏常 熟
张 建 良
、
主 要 知 识 结 构 图
螂
一
令一\、 分 凸 /厂 线 ]
] _ _
2直 角 三 角形 .
\
勾股 定 理
/
\
复 习 这 一 部 分 内容 . 一 要 熟 悉 各 图 形 本 身 所 涉 及 的 知识 . 二 要 理顺 各 第 第 个 图形 之 间 的联 系 . 领会 知识 之 间演 变 衍 生 的关 系 . 同学 们 仔 细 观 察 上 面 三个 请 框 内的 图形 . 时 将 图形 语 言 转 化 成文 字 或 符 号 语 言 . 正 将所 学知 识 串起 来. 及 真 例 如 : 到 线 段 , 想 到 线 段 是 轴 对 称 图 形 , 直 平 分 线 是 它 的对 称 轴 , 看 要 垂 垂 直 平分 线 上 的点 到线 段 两 端 的距离 相等 : 据垂 直平 分 线 的 性 质作 图 , 得 到一 根 可 个 等腰 三 角 形 . 而想 到 等 腰 三角 形 的性 质 “ 边 对 等 角 ” . 进 等 等
下 面 用 两 个 中考 题 进 行 分 析 . 一 看 考 了 哪 些 几 何 知 识 . 怎 样 的形 式 在 看 以 考 . 们 如 何 正 确解 答 . 我 例 1 ( 0 9江 苏 省 中考 试 题 ) 图 1 已 20 如 ,
三角形与多边形的概念及性质-2024年中考数学考点(全国通用)(解析版)
【中考高分指南】数学(选择+填空)【备战2024年中考·数学考点总复习】(全国通用)三角形与多边形的有关概念及性质一、三角形有关概念及性质1.三角形的分类(1)三角形按角分类:锐角三角形、直角三角形、钝角三角形.(2)三角形按边分类:①一般三角形:三边都不等的三角形;②等腰三角形:两边相等的三角形;③等边三角形:三边都相等的三角形2.三角形的边的关系(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边3.三角形的角的关系(1)三角形三个内角的和等于180°;特别地,当有一个内角是90° 时,其余的两个内角互余.(2)三角形的外角和等于360°.(3)三角形的任意一个外角等于和它不相邻的两个内角的和,三角形的任意一个外角大于任意一个和它不相邻的内角4.三角形的中线(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.(2)一个三角形有三条中线,都在三角形的内部,三条中线交于一点,这点叫做三角形的重心.(3)三角形的一条中线把原三角形分成面积相等的两部分5.三角形的高(1)从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)一个三角形有三条高,可能在三角形内部,也可能在三角形上,还可能在三角形的外部6.三角形的角平分线(1)在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 它区别于一个角的平分线在于它是线段,而一个角的平分线是射线.(2)三角形的内心:三角形的三条角平分线相交于一点,这个点叫做三角形的内心.这个点也是这个三角形内切圆的圆心.三角形的内心到三角形三条边的距离相等7.三角形的中位线(1)连接三角形两边的中点的线段叫做三角形的中位线.(2)一个三角形有3条中位线,都在三角形的内部.(3)三角形的中位线平行于第三边,且等于第三边的一半二、多边形1.多边形的内角和、外角和n边形的内角和为(n-2)·180°,外角和为360°.2.正多边形:在平面内,各内角都相等,各边也都相等的多边形叫做正多边形.3.多边形的对角线:在多边形中,连接互不相邻的两个顶点的线段.【考点1】三角形的相关概念与计算【例1】(2024·山东模拟)一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是( )A. B.C. D.【答案】D【解析】A.三条线段没有首尾顺次相接,不合题意B.三条线段没有首尾顺次相接,不合题意C.三条线段没有首尾顺次相接,不合题意D.不在同一直线上的三条线段首尾顺次相接,是三角形,符合题意【例2】(2024·山东模拟)下列图形中具备稳定性的是( )A. B. C. D.【答案】B【解析】解:A、图形不具备稳定性,不符合题意;B、图形具备稳定性,符合题意;C、图形不具备稳定性,不符合题意;D、图形不具备稳定性,不符合题意;故选:B.根据三角形具有稳定性解答即可.本题考查的是三角形的性质,熟记三角形具有稳定性是解题的关键.【例3】(2023·湖南)下列长度的三条线段,能组成三角形的是( )A. 1,3,4B. 2,2,7C. 4,5,7D. 3,3,6【答案】C【解析】解:∵1+3=4,∴1,3,4不能组成三角形,故A选项不符合题意;∵2+2<7,∴2,2,7不能组成三角形,故B不符合题意;∵4+5>7,∴4,5,7能组成三角形,故C符合题意;∵3+3=6,∴3,3,6不能组成三角形,故D不符合题意,故选:C.根据三角形的三边关系分别判断即可.本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.【例4】(2023·天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是( )A. BCB. CEC. ADD. AC【答案】B【分析】连接PC,由已知可得AD垂直平分BC,所以PB=PC,从而BP+EP=PC+PE,显然E,P,C三点共线时取得最小值.【解析】解:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P、C、E三点共线时,PB+PE的值最小,最小值为CE,故选B.【例5】(2024·四川模拟)如图,△ABC≌△ADE,∠BAC=40°,∠E=115°,则∠B的度数是( )A. 40°B. 30°C. 45°D. 25°【答案】D【分析】【分析】由全等三角形的性质可得∠C=∠E=115°,再利用三角形的内角和定理即可求解.【解析】解:∵△ABC≌△ADE,∠E=115°,∴∠C=∠E=115°,∵∠BAC=40°,∴∠B=180°−∠C−∠BAC=25°.故选:D.【点评】本题主要考查全等三角形的性质,解答的关键是熟记全等三角形的性质:全等三角形的对应角相等.三角形三边关系“三角形两边之和大于第三边,两边之差小于第三边”的应用(1)在实际应用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形.(2)在实际应用中,已知两边,则第三边的取值范围为:两边之差<第三边<两边之和.(3)所有通过周长相加减求三角形的边,求出两个答案的,要注意检查每个答案能否组成三角形.1.(2023·湖南)下列长度的各组线段能组成一个三角形的是( )A. 1cm,2cm,3cmB. 3cm,8cm,5cmC. 4cm,5cm,10cmD. 4cm,5cm,6cm【答案】D【解析】解:A、∵1+2=3,∴长度为1cm,2cm,3cm的三条线段不能组成三角形,本选项不符合题意;B、∵3+5=8,∴长度为3cm,8cm,5cm的三条线段不能组成三角形,本选项不符合题意;C、∵4+5<10,∴长度为4cm,5cm,10cm的三条线段不能组成三角形,本选项不符合题意;D、∵4+5>6,∴长度为4cm,5cm,6cm的三条线段能组成三角形,本选项符合题意;故选:D.根据两边之和大于第三边判断即可.本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边是解题的关键.2.(2024·全国模拟)已知a,b为等腰三角形的两边长,且a,b满足√ 2a−3b+5+(2a+3b−13)2=0,则此等腰三角形的周长为( )A. 8B. 6或8C. 7D. 7或8【答案】D【解析】解:∵√ 2a−3b+5+(2a+3b−13)2=0,∴{2a−3b+5=02a+3b−13=0,解得:{a=2b=3,当b 为底时,三角形的三边长为2,2,3,周长为7;当a 为底时,三角形的三边长为2,3,3,则周长为8,∴等腰三角形的周长为7或8,故选:D .首先根据√ 2a −3b +5+(2a +3b −13)2=0,并根据非负数的性质列方程求得a 、b 的值,然后求得等腰三角形的周长即可.本题考查了等腰三角形的性质,三角形三边关系定理,二元一次方程方程组,关键是根据2,3分别作为腰,由三边关系定理,分类讨论.3.(2024·河北模拟)设等腰三角形的一边长为5,另一边长为10,则其周长为( )A. 15B. 20C. 25D. 20或25【答案】C【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.【解析】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选C .【考点2】三角形的角平分线、中线、高【例1】(2023·四川)如图,在△ABC 中,∠CAD =90°,AD =3,AC =4,BD =DE =EC ,点F 是AB 边的中点,则DF =( )A. 54B. 52C. 2D. 1【答案】A【解析】解:∵∠CAD =90°,AD =3,AC =4,∴DC =√ AD 2+AC 2=√ 32+42=5,∵DE =EC ,DE +EC =DC =5,∴DE =EC =AE =52,∵BD =DE ,点F 是AB 边的中点,∴DF =12AE =54.故选:A .先在直角△CAD中利用勾股定理求出DC=5,再根据直角三角形斜边上的中线等于斜边的一半得出AE=52,最后利用三角形的中位线定理求出DF=12AE=54.本题考查了勾股定理,直角三角形斜边上的中线的性质,三角形的中位线定理,准确识图并且熟记相关定理与性质是解题的关键.【例2】(2024·陕西模拟)如图,AD是△ABC的中线,AB=5,AC=4.若△ACD的周长为10,则△ABD的周长为( )A. 8B. 9C. 10D. 11【答案】D【分析】本题考查了三角形的中线,解题关键是求出AD+DC的长.根据三角形的中线的定义可得BD=CD,先求得AD+DC=6,然后求出△ABD的周长为AB+AD+DC,进而即可得到答案.【解析】解:△ACD的周长=AD+DC+AC=AD+DC+4=10,∴AD+DC=6,∵AD是ΔABC的中线,∴BD=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=5+6=11.故选:D.【例3】(2024·河南模拟)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A. 线段CD是△ABC的AC边上的高线B. 线段CD是△ABC的AB边上的高线C. 线段AD是△ABC的BC边上的高线D. 线段AD是△ABC的AC边上的高线【答案】B【分析】本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.根据三角形的高的概念判断即可.【解析】解:A.线段CD 是△ABC 的AB 边上的高线,故本选项说法错误,不符合题意;B .线段CD 是△ABC 的AB 边上的高线,本选项说法正确,符合题意;C .线段AD 不是△ABC 的边上高线,故本选项说法错误,不符合题意;D .线段AD 不是△ABC 的边上高线,故本选项说法错误,不符合题意;故选B .【例4】(2024·全国模拟)如图,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20∘,则∠ACE 的度数是( )A. 20∘B. 35∘C. 40∘D. 70∘【答案】B 【分析】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB =70°是解题的关键.先根据等腰三角形的性质以及三角形内角和定理求出∠CAB =2∠CAD =40°,∠B =∠ACB =12(180°−∠CAB)=70°.再利用角平分线定义即可得出∠ACE =12∠ACB =35°.【解析】解:∵AD 是△ABC 的中线,AB =AC ,∠CAD =20°,∴∠CAB =2∠CAD =40°,∠B =∠ACB =12(180°−∠CAB)=70°.∵CE 是△ABC 的角平分线,∴∠ACE =12∠ACB =35°.故选B .三角形中的重要线段∠CAD ∠BAC EC=½BC∠AFC=90°1.(2024·河南模拟)若线段AM,AN分别是△ABC的BC边上的高线和中线,则( )A. AM>ANB. AM≥C. AM<AND. AM≤AN 【答案】D【分析】此题考查垂线段问题,关键是根据垂线段最短解答.【解析】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,所以AM≤AN,故选:D.2.(2024·河北模拟)如图,将△ABC折叠,使点C落在BC边上C′处,展开后得到折痕l,则l是△ABC的( )A. 高B. 中线C. 中位线D. 角平分线【答案】A【解析】解:∵将△ABC折叠,使点C落在BC边上C′处,展开后得到折痕l,∴l⊥BC,即l是△ABC的高,故选:A.根据折叠性质可知,l⊥BC,由三角形高的定义即可得到答案.本题考查折叠性质及三角形高的定义,熟记相关性质及定义是解决问题的关键.3.(2024·广东模拟)如图,△ABC中,CD是AB边上的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长的差是( )A. 3cmB. 6cmC. 12cmD. 无法确定【答案】B【解析】解:∵CD是AB边上的中线,∴AD=DB,∴△ACD的周长−△BCD的周长=(AC+CD+AD)−(BC+CD+BD)=AC−BC=9−3=6(cm),故选:B.根据三角形的中线的概念得到AD=DB,根据三角形的周长公式计算,得到答案.本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4.(2024·福建模拟)如图所示,AD,AE分别为△ABC的高线和角平分线,且∠B=76°,∠C=36°,则∠DAE 的度数为( )A. 20°B. 18°C. 38°D. 40°【答案】A【分析】此题主要考查了高线以及角平分线的定义,得出∠BAE的度数是解题关键.根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠BAE=34°,进而得出∠DAE的度数,进而得出答案.【解析】解:∵AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180°−∠B−∠C=68°,∠BAD=90°−76°=14°,∴∠BAE=12∠BAC=12×68°=34°,∴∠DAE=34°−14°=20°.故选A.【考点3】三角形的内心、外心【例1】(2024·河南模拟)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD,再将△ABC折叠,使BC边落在AB边上,展开后得到折痕BE,若AD与BE的交点为O,则点O是( )A. △ABC的外心B. △ABC的内心C. △ABC的重心D. △ABC的中心【答案】B【解析】解:由题意得:∠BAD=∠CAD,∠ABE=∠CBE,∴O为角平分线的交点,则点O是△ABC的内心.故选:B.根据折叠的性质可知点O为角平分线的交点,可得结论.本题考查了翻折变换以及角平分线的性质,解题的关键是根据翻折变换的性质得出O为角平分线的交点.【例2】(2024·全国模拟)如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为( )A. 6B. 9C. 12D. 13.5【答案】C【解析】解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,∴S△BOD=2S△DOE=2×1=2,∴S△BDE=3,∵AD=BD,∴S△ABE=2S△BDE=6,∵AE=CE,∴S△ABC=2S△ABE=2×6=12.故选C.利用O点为△ABC的重心得到OB=2OE,利用三角形面积公式得到S△BOD=2S△DOE=2,再利用AD=BD得到S△ABE=2S△BDE=6,然后利用AE=CE得到S△ABC=2S△ABE=12.本题考查了三角形的重心的性质的运用,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.由△的三线组成的几个“心”:△三边中线交点—→重心—→性质:△的重心到一中线中点的距离=重心到这条中线定点距离的一半;△三条角平分线交点—→内心—→性质:△的内心到△三边的距离(垂线段)相等;△三边中垂线交点—→外心—→性质:△的外心到△三个顶点的距离(连接)相等;1.(2024·河北模拟)如图,在4×4的正方形格纸中,△ABC的顶点均在格点上,BC边与网格线交于点D,AC边过格点E,连接AD,BE相交于点O,则点O为△ABC的( )A. 重心B. 外心C. 内心D. 以上结果均不对【答案】A【解析】解:由图可知,点D、E是BC、AC的中点,∴AD、BE是△ABC的中线,∴点O是△ABC的重心,故选:A.根据三角形三条中线的交点是三角形的重心进行判断即可.本题考查了三角形的重心,熟练掌握三角形重心的定义是解题的关键.2.(2024·山东模拟)已知:如图1,在△ABC中,AB=AC.小明的作法如图2所示,则他作出的两条线的交点O是△ABC的( )A. 中心B. 内心C. 外心D. 重心【答案】C【解析】解:按如图作图痕迹可知,AD为∠BAC的角平分线,∵AB=AC,∴AD也是BC边的中线、高线,即BC边的垂直平分线,∵另一痕迹是AB边的垂直平分线,∴点O为边的垂直平分线的交点,∴点O为外心,故选:C.根据等腰三角形的“三线合一”定理可得,AD是垂直平分线,由另一痕迹是AB边的垂直平分线得点O为外心.本题考查了外心的判断,由痕迹判断尺规作图是解题关键.3.(2024·安徽模拟)下列说法中正确的是( )①等边三角形三条高的交点就是它的重心;②三角形的重心到一边的距离等于这边上中线长的三分之一;③三角形的重心到一边中点的距离等于这边上中线长的三分之一;④三角形的重心到一边的距离等于这边上高的三分之一A. ①③④B. ②③④C. ①②③D. ①②③④【答案】A【解析】解:①等边三角形三条高的交点既是它的垂心,也是重心,故正确;③三角形的重心到一边中点的距离等于这边上中线长的三分之一,故正确;如图,O为重心,过点O和点A分别作BC的垂线,垂足为E,F,则OE//AF,则△ODE∽△ADF,∴ODAD =OEAF=13,即三角形的重心到一边的距离等于这边上高的三分之一,故②错误,④正确;故选:A.根据三角形重心的性质分别判断,利用相似三角形的判定和性质判断相应推论.本题考查了三角形的重心,掌握相似三角形的判定和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.【考点4】三角形的中位线定理【例1】(2023·云南)如图,A,B两点被池塘隔开,A,B,C三点不共线.设AC,BC的中点分别为M,N.若MN=3米,则AB=( )A. 4米B. 6米C. 8米D. 10米【答案】B【解析】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.根据三角形中位线定理计算即可.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.【例2】(2023·四川)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC=6,BD=8,则OE=( )A. 2B. 52C. 3D. 4【答案】B【解析】解:∵四边形ABCD是菱形,∴OC=12AC,OB=12BD,AC⊥BD,∵AC=6,BD=8,∴OC=3,OB=4,∴CB=√ OB2+OC2=5,∵E为边BC的中点,∴OE=12BC=52.故选:B.由菱形的性质得到OC=12AC=3,OB=12BD=4,AC⊥BD,由勾股定理求出BC的长,由直角三角形斜边中线的性质,即可求出OE的长.本题考查菱形的性质,直角三角形斜边的中线,勾股定理,关键是由菱形的性质求出OC,OB的长,由勾股定理求出BC的长,由直角三角形斜边的中线的性质即可求出OE的长.【例3】(2023·辽宁)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为( )A. 2B. √ 3C. 32D. √ 2【答案】D【解析】解:如图,连接AO、BO、AB,∵∠C=45°,∴∠AOB=2∠C=90°,∵⊙O的半径为2,∴AO=BO=2,∴AB=2√ 2,∵点D、E分别是AC、BC的中点,∴DE=12AB=√ 2.故选:D.先根据圆周角定理得到∠AOB=2∠ACB=90°,则可判断△OAB为等腰直角三角形,然后根据勾股定理可得AB=2√ 2,再根据三角形的中位线定理可得DE=√ 2.此题主要考查了三角形的中位线定理,以及勾股定理,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三角形的中位线平行于第三边且等于第三边的一半1.(2023·四川)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( )A. 2cm2B. 4cm2C. 6cm2D. 8cm2【答案】B【解析】解:连接DE,如图:∵D、E分别为AC、BC中点,∴DE是△ABC的中位线,∴DE=12AB=3cm,DE//AB,∴△DEF∽△BAF,∴S△DEF S△ABF =(DEAB)2=14,EFAF=DEAB=12,∴S△BEF S△ABF =EFAF=12,∴S△ABF=23S△ABE=23×12AB⋅BE=23×12×6×12×8=8(cm2),∴S△DEF=14S△ABF=2(cm2),∵S△DEC=12DE⋅CE=12×3×4=6(cm2),DG:GC=1:2,∴S△DEG=13S△DEC=2(cm2),∴S四边形DFGE=S△DEF+S△DEG=4(cm2),∴四边形DFEG 的面积为4cm 2, 故选:B .连接DE ,由D 、E 分别为AC 、BC 中点,可得DE =12AB =3cm ,DE//AB ,即得△DEF ∽△BAF ,故S△DEF S △ABF=(DE AB)2=14,EF AF=DE AB=12,可得S △ABF =23S △ABE =23×12AB ⋅BE =8(cm 2),故S △DEF =14S △ABF =2(cm 2),又S △DEC =12DE ⋅CE =6(cm 2),DG :GC =1:2,可得S △DEG =13S △DEC =2(cm 2),从而S 四边形DFGE =S △DEF +S △DEG =4(cm 2),本题考查相似三角形判定与性质,三角形中位线及应用,解题的关键是掌握相似三角形的性质及应用. 2.(2023·内蒙古)如图,⊙O 是锐角三角形ABC 的外接圆,OD ⊥AB ,OE ⊥BC ,OF ⊥AC.垂足分别为D ,E ,F ,连接DE ,EF ,FD.若DE +DF =6.5,△ABC 的周长为21,则EF 的长为( ) A. 8 B. 4 C. 3.5 D. 3 【答案】B【解析】解:∵OD ⊥AB ,OE ⊥BC ,OF ⊥AC , ∴AD =BD ,AF =CF ,BE =CE , ∴DE ,DF ,EF 是△ABC 的中位线, ∴DE =12AC,DF =12BC,EF =12AB ,∴DE +DF +EF =12(AB +BC +AC)=12×21=10.5, ∵DE +DF =6.5, ∴EF =10.5−6.5=4, 故选:B .根据垂径定理得到AD =BD ,AF =CF ,BE =CE ,根据三角形的中位线定理得到DE +DF +EF =12(AB +BC +AC)=12×21=10.5,于是得到结论.本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.【考点5】多边形的内角和与外角和【例1】(2023·湖南)七边形的内角和为( ) A. 540°B. 720°C. 900°D. 1 080°【答案】C【分析】本题考查了多边形的内角和定理.熟记“n边形的内角和为(n−2)·180°”是解题的关键.利用多边形的内角和=(n−2)·180°即可解决问题.【解析】解:根据多边形的内角和可得:(7−2)×180°=900°.故选C.【例2】(2023·甘肃)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中,如图2是八角形空窗的示意图,它的一个外角∠1=( )A. 45°B. 60°C. 110°D. 135°【答案】A【解析】解:∵正八边形的外角和为360°,∴每一个外角为360°÷8=45°.故选:A.由多边形的外角和定理直接可求出结论.本题考查了多边形外角和定理,掌握外角和定理是解题的关键.【例3】(2023·北京)若正多边形的一个外角是60∘,则该正多边形的内角和为( )A. 360∘B. 540∘C. 720∘D. 900∘【答案】C【分析】本题主要考查的是多边形的内角和和外角和定理的有关知识,根据多边形的外角和等于360°,先求出这个多边形的边数,然后再利用多边形的内角和公式进行求解即可.【解析】解:由多边形的外角和为360∘可知,这个正多边形的边数为360∘÷60∘=6,由多边形内角和公式可知内角和为180∘×(6−2)=720∘.故选C.(1)多边形的内角和:n边形的内角和等于(n-2)·180°;(2)多边形的外角和:360°.1.(2023·湖北)五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【分析】此题考查了多边形内角与外角,比较简单,只要识记多边形的外角和是360°即可.多边形外角和都等于360°,则四边形的外角和为360度.【解析】解:∵多边形外角和=360°,∴四边形的外角和为360°.故选:B.2.(2023·广东)如图,直线AB//CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.【答案】40°【解析】如图,延长PM、EG K,PM延长线交AB于点L.∵AB//CD,∴∠ALM=∠LND=∠CNP=50°,∴∠MKG=∠BFG+∠ALM=80°.∵∠HMN=30°,∴∠HMK=150°∵∠FGH=90°,∴∠KGH=90°,∴∠GHM=360°−∠HMK−∠MKG−∠KGH=360°−150°−80°−90°=40°.3.(2023·江苏)如图,五边形ABCDE是正五边形,l1//l2,若∠1=20°,则∠2=_____°.【答案】56【分析】本题主要考查了平行线的性质以及多边形的内角与外角,解题的关键是连接AC,利用内错角相等建立等量关系.连接AC,依据平行线的性质,即可得到等式∠2+∠ACB=∠1+∠CAE,据此可得∠2的度数.【解析】解:如图所示,连接AC,∵五边形ABCDE是正五边形,∴∠B=∠BAE=108°,∠ACB=∠CAB=36°,∴∠CAE=108°−36°=72°,∵l1//l2,∴∠2+∠ACB=∠1+∠CAE,即∠2+36°=20°+72°,解得∠2=56°,故答案为56.4.(2023·山东)已知一个多边形的内角和为540°,则这个多边形是边形.【答案】五【分析】本题考查了多边形的内角和定理,熟记公式是解题的关键.根据多边形的内角和公式求出边数即可.【解析】解:设多边形的边数是n,则(n−2)·180°=540°,解得n=5,故答案为五.。
江苏省中考数学真题汇编(近三年) 专题7 图形的性质----三角形和多边形
江苏省中考数学真题汇编(近三年)专题7 图形的性质----三角形和多边形姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)图中的尺规作图是作()A . 线段的垂直平分线B . 一条线段等于已知线段C . 一个角等于已知角D . 角的平分线2. (2分) (2020九上·杭州月考) 如图,在边长相同的小正方形组成的网格中,点都在这些小正方形的顶点上,相交于点P,则().A .B . 3C .D . 23. (2分)(2017·景泰模拟) 如图,AB∥DE,∠ABC=20°,∠BCD=80°,则∠CDE=()A . 20°B . 80°C . 60°D . 100°4. (2分)在平行四边形ABCD中,若∠A:∠B=5: 4,则∠C的度数为()A . 60°B . 80°C . 90°D . 100°5. (2分)历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等的关系是()A . S△EDA=S△CEBB . S△EDA+S△CEB=S△CDEC . S四边形CDAE=S四边形CDEBD . S△EDA+S△CDE +S△CEB=S四边形ABCD6. (2分) (2020八下·温州期中) 若一个多边形的内角和是720°,则这个多边形的边数为()A . 4B . 5C . 6D . 77. (2分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为32,则OE的长等于()A . 8B . 4C . 7D . 168. (2分) (2019八下·温州期中) 如图,锐角△ABC中,AD是高,E,F分别是AB,AC中点,EF交AD于G,已知GF=1,AC= 6,△DEG的周长为10,则△ABC的周长为()A . 27-3B . 28-3C . 28-4D . 29-59. (2分)直角三角形中两锐角之差为20°,则最大锐角为()A . 45°B . 55°C . 65°D . 50°10. (2分) (2011七下·广东竞赛) 如图,∠A=35°,∠B=∠C=90°,则∠D的度数是()A . 35°B . 45°C . 55°D . 65°11. (2分) (2020八上·南京月考) 在联欢会上,有、、三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的()A . 三边中线的交点B . 三条角平分线的交点C . 三边中垂线的交点D . 三边上高所在直线的交点12. (2分)(2020·江干模拟) 已知⊙O的半径为3,A为圆内一定点,AO=1,P为圆上一动点,以AP为边作等腰△APQ,AP=PQ,∠APQ=120°,则OQ的最大值为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为14. (1分) (2019八上·吴兴期中) 如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC。
2023中考数学复习:三角形、四边形图形变换
当A'在BC的上方时,如图4,
又∵AB=A'B,AE⊥AA'于E,
∴∠ABF=∠A'BF.
又∵BF=BF,∴△ABF≌△A'BF(SAS),
∴∠BA'F=∠BAF=90°.
例题 1
1
2
返回类型清单
∴C,A',F在一条直线上.
1
1
∵S△BCF= BC·AB= A'B·CF,∴CF=BC=8.
∠BAC=30°+90°=120°,
∴∠D=180°-(∠ABD+∠BAD)=60°.
例题 1
1
2
返回类型清单
(3)当△A1B1C绕点C逆时针旋转过程中,
①请直接写出S△ABA 的最大值;
(3)解:①由题意,AC=2,AB=2 3,CA1=1,当点A1落在AC的延长线时,△ABA1
1
的面积最大,最大值为 ×2 3×(2+1)=3 3.
2
2
当A'在BC的下方时,如图5,
连接AF,A'F,则AF=A'F,
∵A'B=6,BC=8,∴A'C=2 .
过A'作A'P⊥CD,垂足落在DC的延长线上,
∵∠BCA'+∠A'CP=90°,∠A'CP+∠CA'P=90°,
例题 1
1
2
返回类型清单
∴∠BCA'=∠CA'P.
∵∠BA'C=∠A'PC,∴△A'BC∽△PCA',
形;
(2)把握运动中的特殊位置,临界位置,分段、分情况进行讨论;
中考数学全程复习方略第十六讲三角形与多边形课件
(1)求∠CBE的度数. (2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
第二十页,编辑于星期六:六点 三十五分。
【思路点拨】(1)先根据直角三角形两锐角互余求出
∠ABC=90°-∠A=50°,由邻补角定义得出∠CBD=130°.再根
据角平分线定义即可求出∠CBE.
(2)先根据(1)得出∠CEB,再根据平行线的性质即可求出
(2)区分性质与判定:已知直角三角形可得两锐角互余,此为 性质;已知两锐角互余可得直角三角形,此为判定.
第十八页,编辑于星期六:六点 三十五分。
【核心突破】 例2(2018·宜昌中考)如图,在Rt△ABC中
,∠ACB=90°,∠A=40°,△ABC的外角
∠CBD的平分线BE交AC的延长线于点E.
第十九页,编辑于星期六:六点 三十五分。
第三条线段,那么这三条线段能组成一个三角形,否则不能组 成一个三角形.
第八页,编辑于星期六:六点 三十五分。
2.已知两边求第三边:设三角形的两边长分别为a,b(a>b),则第
三边长c必须满足条件:a-b<c<a+b,由此便可确定第三边长
的范围.
3.证明线段不等关系:若是和的大小关系则采用三角形的两 边之和大于第三边,若是差的大小关系则采用三角形两边 之差小于第三边.
B.有两个不相等的实数根
C.没有实数根
D.无法确定
第十三页,编辑于星期六:六点 三十五分。
3.长度分别为3,4,5,7的四条线段首尾顺次相接,相邻 两线段的夹角可调整,则任意两端点的距离最大值为 ____9____.
第十四页,编辑于星期六:六点 三十五分。
4.(2019·株洲芦淞区一模)已知关于x的不等式组
中考数学总复习 三角形与多边形(真题集锦)课件 新人教版
边形的内角和与外角和公式,三角形的稳定性,平面图形的镶嵌为主要考查内容,
命题方式以选择题、填空题为主,偶尔有创新设计方面的题目.
2. 命题的热点为:三角形三边之间的关系,三角形、多边形的内角和与外角
和定理,平面图形的镶嵌.
复习目标
知识回顾
重点解析
一、三角形与正多边形的有关概念 1. 三角形的分类 (1)按角分类:
复习目标
知识回顾
重点解析
探究拓展
三、三角形与多边形的性质 1. 三角形三边之间的关系:
三角形两边之和大于
,任何两边之差
第三边.
2. 三角形内角和定理:
三角形三个内角的和等于
.
3. 三角形的外角定理及推论: (1)三角形的一个外角等于与它 (2)三角形的一个外角大于与它
的两个内角的和; 的任何一个内角.
=
.
三角形的三条中线交于三角形内一点,这一点就是三角形的
3. 如图,A D 是△A B C 的高,也可以有如下两种等价描述:
(1)A D 垂直于
,垂足为 D ;
(2)∠A D B = 90°或∠A D C = 90°.
真题演练
第 十 六 讲
第 十 七 讲
.
第 十
八
讲
➡特别提示:(1)三角形的角平分线、中线、高线各有三条,并且各自交于一点;(2) 三角形的角平分线、中线、高线都是线段.
(2)按边分类:
探究拓展
真题演练
第 十 六 讲
第 十 七 讲
第 十 八 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
2. 三角形的外角
第
十
六
三角形的一边与另一边的
[中考数学课件]三角形多边形复习课件
▪ (A)0 个 (B)1个 (D)3个
(C)2个
▪ 6.如图ΔABC中,D,E分别为BC, AB,AC上的点BD=BE,CD=CF,设 ∠A=α ∠EDF=β则下列关系中正确的 是( )B
▪ (A)2α+β=180°
▪ (B)α+2β=180°
▪ (C)α+β=90°
▪ (D)α+β=180°
▪ A、正十边形 B、正九边形 C、正八边形 D、正七边形
▪ 4、(2004·南宁)如果要用正三角形和 正方形两种图形进行密铺,那么至少需
要( A )
▪ A、三个正三角形,两个正方形 B 、 两个正三角形,三个正方形
▪ C、两个正三角形,两个正方形
▪ D、三个正三角形,三个正方形
5、已知 I 为ABC的内心,延长AI 交BC于 D,作IE ⊥BC.求证:∠BID=∠CIE 证明: 点I是的内心
▪ A、500 B、600 都不对
C、450 D、以上
4、如图,△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE, G是垂足.求证:(1)G是CE的 中点;(2)∠B=2∠BCE.
典型例题
▪ 1.
中,
▪则
45° 。
C
AD
E
B
▪ 2. ▪则
中, 15° 。 A
E
B
D
C
▪ 3、(2001·山西)如果正多 边形的一个内角是144°,则 这个多边形是(A )
中考总复习
课程标准及学习目标
1、三角形 (1)了解三角形有关概念(内
角、外角、中线、高、角平分线), 会画出任意三角形的角平分线、中 线和高,了解三角形的稳定性。
中考数学 专题17 三角形与多边形(知识点串讲)(原卷版)
专题17 三角形与多边形考点总结【思维导图】【知识要点】知识点一三角形的概念三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
三角形特性(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。
三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。
三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b考查题型一三角形的三边关系1.(2018·湖南中考真题)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 2.(2018·湖南中考真题)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113.(2018·贵州中考真题)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.104.(2018·四川中考模拟)已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为() A.2a+2b-2c B.2a+2b C.2c D.0三角形的分类:三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)1.(2018·湖南中考模拟)下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°2.(2019·陕西中考模拟)等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
中考数学专题复习 三角形与多边形
第四章 三角形
第2节 三角形与多边形
上一页 返回导航 下一页
课标导航
·理解三角形及其内角、外角、中线、高线、角平分线等概念,会按照边长的 关系和角的大小对三角形进行分类,了解三角形的稳定性.
·探索并证明三角形的内角和定理.掌握它的推论.证明三角形的任意两边之 和大于第三边.
·了解三角形重心的概念. ·探索并证明三角形的中位线定理. ·了解多边形的定义,多边形的定点、边、内角、外角、对角线等概念;探索 并掌握多边形内角和与外角和公式.
∴BF=2BT=2 3.
∵∠A F E =120°,∠A F B =∠A B F =30°,
∴∠B F E =90°.
∴S
△PE
F=
S
△B EF
=1·E 2
F
·BF
=1×2×2 2
3=2
外心 三角形三边垂直平分线的交点,外心到各顶点的距离相等.
上一页 返回导航 下一页
3.(1)下列说法错误的是( D ) A.三角形的内心是三角形内切圆的圆心 B.三角形的外心是三角形外接圆的圆心 C.三角形的重心到每个顶点的距离等于它到对边中点距离的 2 倍 D.等腰三角形的四心重合
上一页 返回导航 下一页
上一页 返回导航 下一页
2.(1)如图,在△ABC 中,AE 是中线,AD 是∠BAC 的角平分线,AF ⊥BC 于点 F,∠B=30°,∠C=50°.
①BE= EC ; ②∠BAD= 50 °; ③∠DAF= 10 °; ④S△AEC = S△ABE.(填“>”“<”或“=”)
上一页 返回导航 下一页
AD×BC×14.
上一页 返回导航 下一页
顶点连中点,倍长造全等 点 D 是 BC 的中点,延长 AD 到 E,使 AD=DE,则有 点 D 为 BC 的中点,延长 ED △ACD≌△EBD,AC∥BE. 到点 F,使 DF=ED,连接 CF,则有△BED≌△CFD.
中考复习:三角形和多边形
重要线段 中线 角平分线
高
第18讲┃ 考点聚焦 考点4 三角形的中位线 中点 连接三角形两边的______的线段叫三角 形的中位线 平行 三角形的中位线______于第三边,并且 一半 等于它的______ (1)一个三角形有三条中位线.(2)三角 形的中位线分得三角形两部分的面积比 为1∶3
定义
n边形具有不稳定性(n>3)
3 n边形的内角中最多有________个是 锐角
拓展
第18讲┃ 考点聚焦
定义
正多 边形 对称性
相等 各个角________,各条边 相等 ________的多边形叫正多边形
轴 正多边形都是________对称图 形,边数为偶数的正多边形是 中心对称图形
第18讲┃ 考点聚焦 考点8 平面图形的镶嵌
防错 提醒
第18讲┃ 归类示例
归类示例
► 类型之一 三角形三边的关系 命题角度: 1. 判断三条线段能否组成三角形; 2. 求字母的取值范围; 3. 三角形的稳定性.
例1 [2013·徐州]若三角形的两边长分别为6 cm、9 cm, 则其第三边的长可能为( C ) A.2 cm B.3 cm C.7 cm D.16 cm [解析] 设第三边的长为x,根据三角形三边关系得9-6 <x<9+6,即3 cm<x<15 cm,符合条件的只有选项 C.
例2 [2011· 淮安]如图18-1,在△ABC中, D,E分别 是边AB、AC的中点,BC=8,则DE=__________。 4
三角形和多边形
第18讲┃ 考点聚焦
考点聚焦
考点1 三角形概念及其基本元素
定义
不在同一 由________直线上的三条线段首尾 顺次连接而成的图形叫三角形
2023年中考数学专题复习课件 ——三角形及多边形
【常见的模型】
A
D
B
C
Hale Waihona Puke B AOD
C
【常见的模型】
B A'
C
D 1 2E
B
D
1
A
A
2E
C A'
【考点四 模型的应用】
【例题4】如图,是双环内三角形图形,求:∠A1+∠A2
+∠A3+∠A4+∠A5+∠A6
A2
A3
A5
A6
A1
A4
【变式4-1】如图,点A,B,C,D,E在同一平面内, 连接AB,BC,CD,DE,EA,若∠BCD=100°,则 ∠A+∠B+∠D+∠E=_________°.
【考点五 三角形的综合应用】
【例题5】如图,△ABC为直角三角形,∠C=90°,若 沿图中虚线剪去∠C,则∠1+∠2=( )
A.90° B.135° C.150° D.270°
【变式5-1】如图,点C是线段AB上一点,∠DAC=∠D, ∠EBC=∠E,AO平分∠DAC,BO平分∠EBC,若∠DCE=40°, 则∠AOB=______°
【考点六 多边形的内角和与外角和】
【例6】一个多边形过顶点剪去一个角后,所得多边形的内角
和为720°,则原多边形的边数是
.
【变式6-1】如图7-5-13,六边形ABCDEF的各个内角都 相等,且∠DAB=60°.求∠ADE的度数.
【变式6-2】如图,小明从点A出发沿直线前进10m到达 点B,向坐转30°后又沿直线前进10m到达点C……照这 样走下去,小明第一次回到出发点A,一共走了多少米?
初中数学中考一轮复习专题6 三角形 重点、考点知识、方法总结及真题练习
A.
B.
【答案】A.
C.
D.
【解析】解:三角形具有稳定性.
故选:A.
知识点 2 等腰三角形
等腰三角形的概念不性质
1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三
边叫做三角形的底.
2、等腰三角形的性质
①等腰三角形的腰相等
②等腰三角形的两个底角相等(简记为”等边对等角“)
2.如图,在△ABC 中,AB=AC.以点 C 为圆心,以 CB 长为半径作圆弧,交 AC 的延长线于
点 D,连结 BD.若∠A=32°,则∠CDB 的大小为 度.
【答案】37 【解析】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°, 又∵BC=DC,∴∠CDB=∠CBD= ∠ACB=37°.
.
【答案】40° 【解析】解:∵BO、CO 分别平分∠ABC、∠ACB, ∴∠OBC= ∠ABC,∠OCB= ∠ACB,
而∠BOC+∠OBC+∠OCB=180°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠ABC+∠ACB),
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A, ∴∠BOC=180°﹣ (180°﹣∠A)=90°+ ∠A,
3.如图,在△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数
是
.
【答案】3
【解析】解:∵AB=AC,∠A=36°∴△ABC 是等腰三角形,
∠ABC=∠ACB=
=72°,
BD 平分∠ABC,∴∠EBD=∠DBC=36°,
∴在△ABD 中,∠A=∠ABD=36°,AD=BD,△ABD 是等腰三角形,
多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)(解析)-中考数学重难点题型专题汇总
题型四--多边形证明(三角形、平行四边形、矩形、正方形、菱形)(复习讲义)【考点总结|典例分析】考点01三角形全等及性质一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形5.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).6.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.7.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.8.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.四、等边三角形(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.五、直角三角形与勾股定理9.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.10.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .2.如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E.求证:∠A =∠D .【答案】证明:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF ,∴△ABC≌△DEF(SAS),∴∠A =∠D .3.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.4.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE =BC .5.(2022·浙江省杭州市)如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE.已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.【答案】(1)证明:∵∠ACB =90°,点M 为边AB 的中点,∴MC =MA =MB ,∴∠MCA =∠A ,∠MCB =∠B ,∵∠A =50°,∴∠MCA =50°,∠MCB =∠B =40°,∴∠EMC =∠MCB +∠B =80°,∵∠ACE =30°,∴∠MEC =∠A +∠ACE =50°,∴∠MEC =∠EMC ,∴CE =CM ;(2)解:∵AB =4,∴CE =CM =12AB =2,∵EF ⊥AC ,∠ACE =30°,∴FC =CE ⋅cos30°=3.6.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.7.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE.(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒.三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.8.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∠ADE ,再利用平行线的性质求出∠ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.9.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.【答案】见解析【分析】由,⊥⊥DE AC DF AB 得出90DEC DFB ∠=∠=︒,由SAS 证明DEC DFB ≌,得出对应角相等即可.【详解】证明:∵,⊥⊥DE AC DF AB ,∴90DEC DFB ∠=∠=︒.在DEC 和DFB △中,,,,DE DF DEC DFB CE BF =⎧⎪∠=∠⎨⎪=⎩∴DEC DFB ≌,∴B C ∠=∠.【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.10.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.考点02相似六、相似三角形的判定及性质11.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.12.性质(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.13.判定(1)有两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.【方法技巧】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1);(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.七、相似多边形14.定义对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.15.性质(1)相似多边形的对应边成比例;(2)相似多边形的对应角相等;(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.八、位似图形16.定义如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.27.性质(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或–k ;(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.18.找位似中心的方法将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.19.画位似图形的步骤(1)确定位似中心;(2)确定原图形的关键点;(3)确定位似比,即要将图形放大或缩小的倍数;(4)作出原图形中各关键点的对应点;(5)按原图形的连接顺序连接所作的各个对应点.11.(2021·云南中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF ,则BE 的长是______.【答案】9【分析】根据中位线定理得到DE=12AB,DE∥AB,从而证明△DEF∽△ABF,得到12DE EFAB BF==,求出EF,可得BE.【详解】解:∵点D,E分别为BC和AC中点,∴DE=12AB,DE∥AB,∴△DEF∽△ABF,∴12 DE EFAB BF==,∵BF=6,∴EF=3,∴BE=6+3=9,故答案为:9.【点睛】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明△DEF∽△ABF.12.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AE AC的值.【分析】由平行线得三角形相似,得出AB•DE,进而求得AB,DE,再由相似三角形求得结果.【解析】∵BC∥DE,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC ,即4AB =DE 4=AE AC ,∴AB •DE =16,∵AB+DE =10,∴AB =2,DE =8,∴AE AC =DE BC =84=2,故答案为:2.13.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH =⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,∴DEH FEH ∠=∠,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.14.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠FAE =β,求tan α+tan β的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC =x ,证明△ABF ∽△FCE ,可得AB CF =BF EC ,由此即可解决问题.(3)首先证明tan α+tan β=BF AB +EF AF =BF AB +CF AB =BF+CF AB =BC AB ,设AB =CD =a ,BC =AD =b ,DE =x ,解直角三角形求出a ,b 之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB+∠EFC =90°,∠EFC+∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF ∽△FCE .(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF==2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)2=a−x∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=考点03多边形十、多边形20.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.21.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2360°. 22.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.15.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.16.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是()A .72°B .36°C .74°D .88°【答案】A【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.17.(2021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B.对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C.过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D.三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.18.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.19.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.20.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.21.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”考点04平行四边形十一、平行四边形的性质23.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.24.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.25.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.26.平行四边形中的几个解题模型(1)如图①,AE 平分∠BAD ,则可利用平行线的性质结合等角对等边得到△ABE 为等腰三角形,即AB=BE .(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB ;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD ≌△COB,△AOB ≌△COD ;根据平行四边形的中心对称性,可得经过对称中心O 的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE ≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E 为AD 上一点,根据平行线间的距离处处相等,可得S △BEC =S △ABE +S △CDE .(4)如图④,根据平行四边形的面积的求法,可得AE ·BC=AF ·CD .十二、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.十三、矩形的性质与判定27.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S △ABD =4S △AOB .(如图)28.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.十四、菱形的性质与判定29.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.30.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.十五、正方形的性质与判定31.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;=4S△AOB.(3)面积=边长×边长=2S△ABD32.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.十六、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等(8)有三个角都是直角.十七、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4.22.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.23.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.24.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD ,∠ADC=∠ABC ,根据SAS 证明△BEC ≌△DFC ,可得CE=CF .【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.25.(2021·四川自贡市·中考真题)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE ,AB ∥CD ,故四边形DEBF 是平行四边形,即可得到答案.【详解】∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .考点:1.矩形的性质;2.全等三角形的判定.26.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.。
三角形与多边形
【自主解答】选A.因为∠A=50°,∠ABC=70°,所以∠C=180°∠A-∠ABC=180°-50°-70°=60°.又因为BD平分∠ABC,所以 ∠DBC= 1 ∠ABC= 1 ×70°=35°,所以∠BDC=180°-∠DBC2 2
∠C=180°-35°-60°=85°.
【规律方法】三角形内角、外角关系的应用 (1)正确识别三角形的外角. (2)明确三角形的外角与“和它不相邻两个内角”的等量关系: 三角形的一个外角等于和它不相邻的两个内角的和. (3)注意三角形内角、外角转化,灵活运用整体思想.
2x>20 2x, 20 2x>0,
解得5cm<x<10cm.
热点考向二 三角形的内角和定理及其推论 【例2】(2014·昆明中考)如图,在△ABC中, ∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC 的度数是( A.85° C.75° ) B.80° D.70°
【思路点拨】根据三角形内角和定理及其推论求出角的度数 .
3.如果一个定理的逆命题经过证明是正确的,那么它也是一个 互逆 定理. 定理,则这两个定理为_____
【思维诊断】(打“√”或“×”) 1.三角形是由三条线段组成的封闭图形.( √ ) 2.长为3cm,4 cm,1 cm的三条线段能组成一个三角形.( × ) 3.一个三角形中最多有3个锐角.( √ ) 4.一个三角形中至少有1个锐角.( × ) 5.三角形的角平分线是一条射线.( × )
5.(2014·玉林、防城港中考)在等腰△ABC中,AB=AC,其周长为
20cm,则AB边的取值范围是( )
A.1cm<AB<4cm
C.4cm<AB<8cm
B.5cm<AB<10cm
2023年中考数学复习----多边形基础知识与例题讲解
2023年中考数学复习----多边形基础知识与例题讲解一、多边形1、多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n−.2、多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3、正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn−⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.典型例题讲解1、(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意; 故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2、021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°【答案】A【分析】 根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒−︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.3、021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B. 对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C. 过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D. 三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.4、21·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.5、021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯−=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.6、021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒−︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.7、021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18讲┃ 考点聚焦 考点8 平面图形的镶嵌
定义
形状 、______ 大小 完全相同的一种或几 用______ 平面图形 进行拼接,彼此之间不 种____________ 留空隙、不重叠地铺成一片,就是平面 镶嵌 图形的________
平面镶嵌 的条件
在同一顶点的几个角的和等于360°
第18讲┃ 考点聚焦
(1)用同一种正多边形可以镶嵌的只有三种情况: 六 个正三角形或________ ________ 四 个正四边形或 ________ 个正六边形 三 (2)用两种正多边形镶嵌 ①用正三角形和正四边形镶嵌:三个正三角形和 常见 两 个正四边形; ________ 形式 四 个正 ②用正三角形和正六边形镶嵌:用________ 一 个正六边形或者用________ 两 个 三角形和________ 两 个正六边形; 正三角形和________ 一 个正 ③用正四边形和正八边形镶嵌:用________ 两 四边形和________ 个正八边形可以镶嵌
第18讲┃ 归类示例
根据三角形三边关系:两边之和大于第三边,只要 两短边之和大于最长的边,这三条线段就能组成三角形 ,通常只要两短边之和大于最长的边,这三条线段就能 组成三角形.
第18讲┃ 归类示例 ► 类型之二 三角形的重要线段的应用
命题角度: 1. 三角形的中线、角平分线、高线; 2. 三角形的中位线.
第18讲┃ 考点聚焦 2.按边分:
不等边三角形 三角形 底边和腰不相等的等腰三角形 等角形中的重要线段 交点位置 三角形的三条中线的交点在三角形的______ 内 部 三角形的三条角平分线的交点在三角形的 ______ 内 部 ______ 锐角三角形的三条高的交点在三角形的内 部;____ 三角形的三条高的交点是直角顶点; 直角 ______ 三角形的三条高所在直线的交点在三 钝角 角形的外部
重要线段 中线 角平分线
高
第18讲┃ 考点聚焦 考点4 三角形的中位线 中点 的线段叫三角 连接三角形两边的______ 形的中位线 平行 于第三边,并且 三角形的中位线______ 一半 等于它的______ (1)一个三角形有三条中位线.(2)三角 形的中位线分得三角形两部分的面积比 为1∶3
第18讲┃ 考点聚焦 考点7 多边形
在同一平面内,不在同一直线上的一 首尾顺次 相接组成的图形叫 多边形的定义 些线段__________ 做多边形 -2)·180° n边形内角和(n ____________ 内角和 任意多边形的外角和为360° 外角和 多边形 的性质 多边形 对角线 不稳定 性
例2 [2011· 淮安]如图18-1,在△ABC中, D,E分别 是边AB、AC的中点,BC=8,则DE=__________ 。 4
定义
定理
总结
第18讲┃ 考点聚焦 考点5 三角形的三边关系
定理 推理 三角形的 稳定性
大于第三边 三角形的两边之和____ 三角形的两边之差小于 ____第三边 三条线段组成三角形后,形状无 法改变是稳定性的体现
第18讲┃ 考点聚焦 考点6 定理 三角形的内角和定理及推理 三角形的内角和等于________ 180° 1.三角形的一个外角等于和它________________ 不相邻的两个内角的和 推论 2.三角形的一个外角大于任何一个和它不相邻 ______的内角 3.直角三角形的两个锐角________ 互余 360° 4.三角形的外角和为________ 拓展 在任意一个三角形中,最多有三个锐角,最少有两 个锐角;最多有一个钝角,最多有一个直角
n(n-3) n边形共有______ 条对角线 2
n边形具有不稳定性(n>3)
3 n边形的内角中最多有________ 个是 锐角
拓展
第18讲┃ 考点聚焦
定义
正多 边形 对称性
相等 ,各条边 各个角________ 相等 的多边形叫正多边形 ________
轴 正多边形都是________ 对称图 形,边数为偶数的正多边形是 中心对称图形
第18讲┃ 考点聚焦
常见形式
(3)用三种不同的正多边形镶嵌 用正三角形、正四边形和正六边形进行镶嵌,设 用m块正三角形、n块正方形、k块正六边形,则 有60m+90n+120k=360,整理得 2m +3n+4k=12 ,因为m、n、k为整数,所以m ______________ =______ ,k=________ ,即用 1 ,n=________ 2 1 ________ 两 块正方形,________ 一 块正三角形和 ________ 块正六边形可以镶嵌 一 能镶嵌平面的关键是几个正多边形在同一个顶点 的几个角的和等于360°
防错 提醒
第18讲┃ 归类示例
归类示例
► 类型之一 三角形三边的关系 命题角度: 1. 判断三条线段能否组成三角形; 2. 求字母的取值范围; 3. 三角形的稳定性.
例1 [2013·徐州]若三角形的两边长分别为6 cm、9 cm, 则其第三边的长可能为( C ) A.2 cm B.3 cm C.7 cm D.16 cm [解析] 设第三边的长为x,根据三角形三边关系得9-6 <x<9+6,即3 cm<x<15 cm,符合条件的只有选项 C.
三角形和多边形
第18讲┃ 考点聚焦
考点聚焦
考点1 三角形概念及其基本元素
定义
由不在同一 ________直线上的三条线段首尾 顺次连接而成的图形叫三角形
三 个顶点, 三 条边,____ 三角形有____ 基本元素 三 个内角 ____
第18讲┃ 考点聚焦
考点2
三角形的分类
1.按角分:
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
第18讲┃ 归类示例
变式题 [2013·长沙]现有3 cm,4 cm,7 cm,9 cm长的 四根木棒,任取其中三根组成一个三角形,那么可以组成 B ( 的三角形的个数是 ) A.1 B.2 C.3 D.4
第18讲┃ 归类示例
[解析] 四条木棒的所有组合:3,4,7和3, 4,9和3,7,9和4,7,9;只有3,7,9和4,7, 9能组成三角形.故选B.