高三数学二轮复习试题
基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)
冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。
郑州第一中学2024届高三第二轮复习质量检测试题数学试题
郑州第一中学2024届高三第二轮复习质量检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<2.已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y +=B .2213616x y +=C .2213010x y += D .2214525x y += 3.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14 B .13 C .23D .164.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .75.已知ABC 是边长为3的正三角形,若13BD BC =,则AD BC ⋅=A .32- B .152 C .32D .152-6.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A .B .C .1D .27.已知等差数列{}n a 的公差为2-,前n 项和为n S ,1a ,2a ,3a 为某三角形的三边长,且该三角形有一个内角为120︒,若n m S S ≤对任意的*n ∈N 恒成立,则实数m =( ). A .6B .5C .4D .38.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .1289.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 10.已知函数()cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数()g x x =的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 11.已知命题p :1m =“”是“直线0x my -=和直线0x my +=互相垂直”的充要条件;命题q :对任意()2,∈=+a R f x x a 都有零点;则下列命题为真命题的是( )A .()()p q ⌝∧⌝B .()p q ∧⌝C .p q ∨D .p q ∧12.下列函数中,值域为R 的偶函数是( ) A .21y x =+B .x x y e e -=-C .lg y x =D.y 二、填空题:本题共4小题,每小题5分,共20分。
2023年高考数学二轮复习讲练测专题11 离心率问题速解(原卷版)
专题11 离心率问题速解【命题规律】求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.【核心考点目录】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题 核心考点二:焦点三角形顶角范围与离心率 核心考点三:共焦点的椭圆与双曲线问题 核心考点四:椭圆与双曲线的4a 通径体 核心考点五:椭圆与双曲线的4a 直角体 核心考点六:椭圆与双曲线的等腰三角形问题 核心考点七:双曲线的4a 底边等腰三角形 核心考点八:焦点到渐近线距离为b核心考点九:焦点到渐近线垂线构造的直角三角形 核心考点十:以两焦点为直径的圆与渐近线相交问题 核心考点十一:渐近线平行线与面积问题【真题回归】1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) AB C .2D .33.(2021·全国·统考高考真题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦4.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )AB .32C D 5.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________.6.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.7.(2022·全国·统考高考真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C无公共点”的e 的一个值______________.【方法技巧与总结】求离心率范围的方法 一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b+=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系.【核心考点】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题 【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .2⎛ ⎝⎭C .,23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上的一个动点,若使得满足12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为( )A .12B C D 例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅=,125tan 12PF F ∠=,则此椭圆的离心率为( )A B .1517 C .1315D .1317核心考点二:焦点三角形顶角范围与离心率 【典型例题】例4.(2022春·福建漳州·高二校联考期中)已知椭圆2222:1x y C a b+=(0ab >>),椭圆的左、右焦点分别为1F ,2F ,P 是椭圆C 上的任意一点,且满足120PF PF ⋅>,则椭圆C 的离心率e 的取值范围是( )A .10,2⎛⎫⎪⎝⎭B .⎛ ⎝⎭C .12⎛ ⎝⎭D .⎫⎪⎪⎝⎭例5.(2022春·北京·高二人大附中校考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .2⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .1112⎫⎪⎣⎭D .11,112⎛⎫⎪⎝⎭例6.(2022春·新疆乌鲁木齐·高二乌市八中校考阶段练习)已知1F ,2F 是椭圆()222210x y a b a b +=>>的两个焦点,若存在点P 为椭圆上一点,使得1260F PF ∠=︒,则椭圆离心率e 的取值范围是( ).A .2⎫⎪⎢⎪⎣⎭ B .0,2⎛ ⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .1,22⎡⎫⎪⎢⎪⎣⎭例7.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且ππ[,]64α∈,则该椭圆离心率e 的最大值为___________.例8.(2022春·黑龙江佳木斯·高二建三江分局第一中学校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,63ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是___________.例9.(2022·高二单元测试)椭圆2222:1(0)x y C a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF θ∠=,且5,412ππθ⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为________.核心考点三:共焦点的椭圆与双曲线问题 【典型例题】例10.(2022春·江苏苏州·高二江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P ∠=,记椭圆和双曲线的离心率分别为12,e e,则221231e e +等于_______. 例11.(2022春·山东青岛·高二统考期末)已知椭圆1C 和双曲线2C 有共同的焦点1F ,2F ,P 是它们的一个交点,且1223F PF π∠=,记椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则2212484w e e =+的最小值为( ) A .24B .37C .49D .52例12.(2022春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为( )AB .34CD .3例13.(2022春·辽宁沈阳·高二沈阳市第三十一中学校考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是( ) AB .12CD例14.(2022·河南洛阳·校联考模拟预测)已知椭圆1C :()222210x y a b a b+=>>和双曲线2C :()222210,0x y m n m n -=>>有共同的焦点1F ,2F ,P 是它们在第一象限的交点,当1260F PF ∠=︒时,1C 与2C 的离心率互为倒数,则双曲线2C 的离心率是( ) ABC .2D核心考点四:椭圆与双曲线的4a 通径体 【典型例题】例15.(2022·广西南宁·南宁市第八中学校考一模) 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若222=AF F C ,则椭圆的离心率为( )A B C D 例16.(2022·全国·高三专题练习)已知椭圆22221(0)x y C a b a b +=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D 例17.(2022春·云南·高三校联考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为( ) A1B .2C D 例18.(2022春·江苏宿迁·高三校考阶段练习)如图,已知A ,B ,C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,AB 经过原点O ,AC 经过右焦距F ,若BF AC ⊥且2CF FA =,则该双曲线的离心率等于_____.核心考点五:椭圆与双曲线的4a 直角体 【典型例题】例19.(2022春·福建福州·高二福建省福州格致中学校考阶段练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F l ,l 分别交y 轴和双曲线右支于点M ,P ,且212F F PM F M -=,则E 的离心率为______.例20.(2022·全国·高三专题练习)如图所示,双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线 C 的两条渐近线分别交于A 、B 两点,A 是1F B 的中点,且12F B F B ⊥,则双曲线C 的离心率e =( )AB .2C D 1例21.(2022·天津·统考一模)设12,F F 分别是双曲线22221(0,0)x ya b a b-=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,OE 则双曲线的方程为( ) A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=例22.(2022·四川广元·统考三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C D 例23.(2022春·江西抚州·高二江西省临川第二中学校考阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为( )AB C .52D 核心考点六:椭圆与双曲线的等腰三角形问题 【典型例题】例24.(2022春·陕西西安·高二期末)设1F ,2F 是椭圆E :()222210x ya b a b+=>>的左、右焦点,过点()2,0F c 且倾斜角为60°的直线l 与直线2a x c=相交于点P ,若12PF F △为等腰三角形,则椭圆E 的离心率e 的值是( )A B .13C D 例25.(2022·全国·高三专题练习)已知双曲线22221x y a b-=的左焦点为1F ,过1F 作一倾斜角为15的直线交双曲线右支于P 点,且满足1POF △(O 为原点)为等腰三角形,则该双曲线离心率e 为( )A .e =B .2e =C .e =D .e =例26.(2022·河南鹤壁·鹤壁高中校考模拟预测)已知12F F 、是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 为抛物线28(0)y ax a =->准线上一点,若12F PF △是底角为15︒的等腰三角形,则椭圆的离心率为( )A1B 1C D 例27.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭ D .1,12⎛⎫ ⎪⎝⎭核心考点七:双曲线的4a 底边等腰三角形 【典型例题】例28.(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F 作的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为( )AB C .2D 例29.(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 作斜l 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为( ) AB C D .2核心考点八:焦点到渐近线距离为b 【典型例题】例30.(2022·全国·模拟预测)设1F ,2F 分别是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,O 为坐标原点,过右焦点2F 作双曲线的一条渐近线的垂线,垂足为A .若12212AF F S OF =△,则双曲线C 的离心率为( )AB C D 例31.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为( )AB .2C D 例32.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x y C a b u b -=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P ,若1PF =,则C 的离心率为( ) A.B .2C D 例33.(多选题)(2022秋·广东·高二校联考阶段练习)过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点F引C 的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若FB AF λ=,23λ≤≤,则C 的离心率可以是( )A B C D .2核心考点九:焦点到渐近线垂线构造的直角三角形 【典型例题】例34.(2022·陕西西安·西安中学校考模拟预测)已知双曲线:C 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点 ,且H 恰为线段2EF 的中点,则双曲线C 的离心率为 ( ) AB C .2D 例35.(2022秋·安徽·高二校联考期中)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段1MF 交双曲线于点P ,且2//MF OP 则该双曲线的离心率为( )AB CD 例36.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x yE a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M N 、两点(点1F 位于点M 与点N 之间),且112MF F N =,又过点1F 作1F P OM ⊥于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =( )AB C D 例37.(2022·全国·统考模拟预测)设F是双曲线22221(0)x y b a a b-=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =,则双曲线的离心率为( ) AB C .2D .5核心考点十:以两焦点为直径的圆与渐近线相交问题 【典型例题】例38.(2022春·四川宜宾·高二四川省宜宾市第四中学校校考阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________.例39.(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.例40.(2022春·甘肃张掖·高三高台县第一中学校考阶段练习)过双曲线()222210,0x y a b a b-=>>的左焦点F且垂直于x 轴的直线与双曲线交于A ,B 两点,过A ,B 分别作双曲线的同一条渐近线的垂线,垂足分别为P ,Q .若2AP BQ a +=,则双曲线的离心率为___________.例41.(2022·高二课时练习)过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 引一条渐近线的垂线,垂足为点A 、在第二象限交另一条渐近线于点B ,且||||(1)AB AF λλ=≥,则双曲线的离心率的取值范围是___________.例42.(2022·全国·高三专题练习)双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,1F 过的直线与双曲线C 的两条渐近线分别交于P 、Q 两点(P 在第二象限,Q 在第一象限)1122,0=⋅=F P PQ FQ F Q ,则双曲线C 的离心率为______.例43.(2022春·湖南长沙·高二湖南师大附中校考期中)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.例44.(2022春·黑龙江大庆·高二大庆实验中学校考期末)已知F是双曲线22221x y a b-=的左焦点,圆2222:O x y a b +=+与双曲线在第一象限的交点P ,若PF 的中点在双曲线的渐近线上,则此双曲线的离心率是___________.例45.(2022·四川·统考模拟预测)设双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,左,右顶点分别为A ,B ,以AB 为直径的圆与双曲线的渐近线在第一象限的交点为P ,若2PAF △为等腰三角形,则双曲线的离心率为_________.例46.(2022秋·天津·高三专题练习)已知F 1(﹣c ,0),F 2(c ,0)分别为双曲线2222x y a b-=1(a >0,b >0)的左、右焦点,以坐标原点O 为圆心,c 为半径的圆与双曲线在第二象限交于点P ,若tan ∠PF 1F 2=该双曲线的离心率为_____.例47.(2022·全国·模拟预测)已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,两条渐近线分别为1l ,2l .过点2F 且与1l 垂直的直线分别交1l ,2l 于P ,Q 两点,O 为坐标原点,若满足22OF OQ OP +=,则该双曲线的离心率为______.核心考点十一:渐近线平行线与面积问题 【典型例题】例48.(2022春·江苏南京·高二南京市第二十九中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过双曲线C 上任意一点P 分别作C 的两条渐近线的垂线,垂足分别为,,A B 8||||9PA PB ⋅=,12F F 等于3212x x ⎛⎫- ⎪⎝⎭展开式的常数项,则双曲线C 的离心率为A .3B .3C D .例49.(2022春·贵州六盘水·高三校考期末)在平面直角坐标系xOy 中,已知双曲线()2222:10,0x y C a b a b-=>>,过双曲线的右焦点F 分别作双曲线的两条渐近线的垂线,垂足分别为M 、N ,若四边形FMON 为正方形,则双曲线C 的离心率为__________.例50.(2022秋·湖北·高三统考阶段练习)已知双曲线2222:1(0)x y C a b a b-=>>的左顶点为A ,过A 作双曲线两条渐近线的垂线,垂足分别为M ,N ,且4||||5MN OA =(O 为坐标原点),则此双曲线的离心率是___.例51.(2022·河南郑州·郑州一中校考模拟预测)在平面直角坐标系xOy 2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线上一点,且1PF x ⊥轴,过点P 作双曲线C 的两条渐近线的平行线,分别交两条渐近线于A ,B 两点,若四边形PAOB 的面积为2,则12PF F ∆的面积为______.例52.(2022春·全国·高二期中)已知双曲线2222:1(0,0)x y C a b a b-=>>上一点P 坐标为)(0),m m F >为双曲线C 的右焦点,且PF 垂直于x 轴.过点P 分别作双曲线C 的两条渐近线的平行线,它们与两条渐近线围成的图形面积等于1,则该双曲线的离心率是________.例53.(2022·浙江·校联考模拟预测)过双曲线2221(0)x y a a-=>上一点M 作直线l ,与双曲线的两条渐近线分别交于,P Q ,且M 为线段PQ 的中点,若POQ △(O 为坐标原点)的面积为2,则双曲线的离心率为______. 例54.(2022春·江苏苏州·高二苏州中学校考期末)过双曲线22221(0,0)x y a b a b-=>>上的任意一点P ,作双曲线渐近线的平行线,分别交渐近线于点,M N ,若214OM ON b ⋅≥,则双曲线离心率的取值范围是___________.【新题速递】一、单选题1.(2022·重庆沙坪坝·重庆八中校考模拟预测)已知双曲线C :2221x y a-=()0a >的右焦点为F ,点()0,A a -,若双曲线的左支上存在一点P ,使得7PA PF +=,则双曲线C 的离心率的取值范围是( )A .⎛ ⎝⎦B .(C .⎫+∞⎪⎣⎭D .)+∞2.(2022春·河南·高三校联考阶段练习)已知双曲线2222:1(0,0)y x C a b a b-=>>,F 为C 的下焦点.O 为坐标原点,1l 是C 的斜率大于0的渐近线,过F l 交1l 于点A ,交x 轴的正半轴于点B ,若||||OA OB =,则C 的离心率为( )A .2BC D3.(2022春·福建福州·高三福州四中校考阶段练习)设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点M ,N 在C 上(M 位于第一象限),且点M ,N 关于原点O 对称,若12MN F F =,22NF =,则椭圆C 的离心率为( )A B .12C D 4.(2022春·江苏南通·高三期末)如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,若直线AC 与BD 的斜率之积为14-,则椭圆的离心率为( )A .12B C D .345.(2022春·山东聊城·高三山东聊城一中校考阶段练习)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,A ,B 分别为C 的左右顶点,222:()(0)G x y m m m +-=>与y 轴的一个交点为D ,直线AD ,BG 的交点为M ,且MF x ⊥轴,则C 的离心率为( )A .13B .12C .23D .346.(2022春·陕西·高三陕西省榆林中学校联考阶段练习)已知如图,椭圆C :()222210x y a b a b+=>>,斜率为12的直线l 与椭圆C 交于A ,B 两点,与x 轴,y 轴分别交于M ,N 两点,若AN NM MB ==,则椭圆C 的离心率e 为( )A .12B C D7.(2022春·广东·高三校联考阶段练习)已知椭圆2222:1(0)x y C a b a b+=>>,直线l 过坐标原点并交椭圆于,P Q两点(P 在第一象限),点A 是x 轴正半轴上一点,其横坐标是点P 横坐标的2倍,直线QA 交椭圆于点B ,若直线BP 恰好是以PQ 为直径的圆的切线,则椭圆的离心率为( )A .12B C D 8.(2022春·浙江金华·高三期末)设O 为坐标原点,12,F F 为双曲线22221(0,0)x ya b a b-=>>的两个焦点,12,l l 为双曲线的两条渐近线,1F A 垂直1l 于1,A F A 的延长线交2l 于B ,若2OA OB AB +=,则双曲线的离心率为( )AB C D 9.(2022春·广东广州·高三校考期中)已知1F 、2F 为双曲线()222210,0x y a b a b -=>>的左、右焦点,P 为双曲线的渐近线上一点,满足1260F PF ∠=︒,12OP F =(O 为坐标原点),则该双曲线的离心率是( )A B C D 10.(2022春·江苏·高三校联考阶段练习)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过1F 的直线与C 交于,A B 两点.若23,2AB a AF AB =⊥,则C 的离心率为( )A B C .23D .13二、多选题11.(2022春·黑龙江绥化·高三校考阶段练习)已知双曲线2221(0)4x y b b-=>右焦点为1F ,过1F 且垂直于x轴的直线与双曲线交于A ,B 两点,点()4,0F -,若ABF △为锐角三角形,则下列说法正确的是( ) A .双曲线过点()2,0-B .直线30x y -=与双曲线有两个公共点C .双曲线的一条渐近线2by x =D .双曲线的离心率取值范围为11,2⎛ ⎝⎭12.(2022春·江苏常州·高三统考阶段练习)如图,椭圆1C 与椭圆2C 有公共的左顶点和左焦点,且椭圆2C 的右顶点为椭圆1C 的中心,设椭圆1C 与椭圆2C 的长半轴长分别为1a 和2a ,半焦距分别为1c 和2c ,离心率分别为1e 和2e ,则以下结论中正确的是( )A .2121e e =-B .1221a c a c >C .1221a c a c +=+D .122122a c a c ->-13.(2022·浙江·模拟预测)如图,椭圆()2222:10x y C a b a b+=>>的左顶点为A ,上顶点为B ,右焦点为F ,且AB ⊥BF ,则C 的离心率为( )A .BF AFB .22||||AB AFC .2||AF BF AB ⋅ D14.(2022春·吉林通化·高三梅河口市第五中学校考期末)如图,P 是椭圆22122:1(0)x y C a b a b +=>>与双曲线22222:1(0,0)x y C m n m n-=>>在第一象限的交点,且12,C C 共焦点121212,,,,F F F PF C C ∠θ=的离心率分别为12,e e ,则下列结论不正确的是( )A .12,PF m a PF m a =+=-B .若60θ=︒,则2221314e e +=C .若90θ=︒,则2212e e +的最小值为2D .tan2bnθ= 15.(2022春·山西运城·高三校考阶段练习)已知12F F 、分别为双曲线22221(0,0)x ya b a b-=>>的左、右焦点,过点2F 的直线与双曲线的右支交于A B 、两点,记12AF F △的内切圆1I 的半径为112,r BF F 的内切圆2I 的半径为2r ,若212r r a =,则( )A .1I 、2I 在直线x a =上B .双曲线的离心率2e =C .1ABF 内切圆半径最小值是32aD .12r r +的取值范围是2a ⎡⎤⎢⎥⎣⎦16.(2022春·福建厦门·高三厦门双十中学校考期中)已知1F ,2F 是双曲线E :()222210,0x ya b a b-=>>的左、右焦点,过1F 作倾斜角为30°的直线分别交y 轴与双曲线右支于点M ,P ,1PM MF =,下列判断正确的是( ) A .21π3PF F B .2112MF PF =C.E D .E 的渐近线方程为y =三、填空题17.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,点P 在双曲线2222:1x y C a b-=上,点H 在直线x a =上,且满足122340HP HF HF ++=.若存在实数λ使得122112sin sin PF PF OH OP PF F PF F λ⎛⎫=++ ⎪∠∠⎝⎭,则双曲线C 的离心率为_____________18.(2022·河南·模拟预测)已知椭圆1C 和双曲线2C 有共同的左、右焦点12,F F ,M 是它们的一个交点,且12π4F MF ∠=,记1C 和2C 的离心率分别为12,e e ,则12e e 的最小值是___________.19.(2022·四川绵阳·四川省绵阳南山中学校考二模)第24届冬奥会,是中国历史上第一次举办的冬季奥运会,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于916-,则椭圆的离心率为______.20.(2022·四川遂宁·四川省遂宁市第二中学校校考一模)双曲线 22221(00)x y a b a b-=>>,的左顶点为A ,右焦点()0F c ,, 若直线x c =与该双曲线交于B C 、两点,ABC 为等腰直角三角形, 则该双曲线离心率为__________21.(2022·上海崇明·统考一模)已知椭圆1Γ与双曲线2Γ的离心率互为倒数,且它们有共同的焦点1F 、2F ,P 是1Γ与2Γ在第一象限的交点,当12π6F PF ∠=时,双曲线2Γ的离心率等于______.22.(2022·广东广州·统考一模)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型.在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面与截面都相切,设图中球1O ,球2O 的半径分别为4和2,球心距离12OO =1O ,球2O 相切于点,E F (,E F 是截口椭圆的焦点),则此椭圆的离心率等于__________.。
高三数学二轮复习训练 函数与导数活页 试题
专题一 集合,常用逻辑用语,不等式,函数与导数创 作人:历恰面 日 期: 2020年1月1日第二讲 函数与导数训练活页1.(2021·)设函数f (x )=x 3cos xf (a )=11,那么f (-a )=________.2.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,假设方程f (x )=m (m >0),在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,那么x 1+x 2+x 3+x 4=________.3.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),那么f ⎝⎛⎭⎪⎫1f (3)的值是________.4.函数f (x )=⎩⎪⎨⎪⎧e -x-2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于以下命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③假设f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,那么a 的取值范围是a >1;④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________.(写出所有正确命题的序号)5.设a >1,函数y =|log a x |的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m 〞,假设区间[m ,n ]长度的最小值为56,那么实数a 的值是________.6.设m ∈N ,假设函数f (x )=2x -m 10-x -m +10存在整数零点,那么m 的取值集合为____________.7.函数f (x )对一实在数x 都满足f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,并且方程f (x )=0有三个实根,那么这三个实根的和为________.8.(原创题)全集I =R ,假设函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |f ′(x )<0},那么M ∩(∁I N )=__________.9.(2021·改编)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,那么f (x )>2x +4的解集为________.10.曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要实现不被曲线C 挡住,那么实数a 的取值范围是____________.11.f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )·g (x )<f (x )g ′(x ),f (x )=a x·g (x ),(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52,在有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n =1,2,…10)中,任意取正整数k (1≤k ≤10),那么前k 项和大于1516的概率是______.12.函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,那么t 的取值范围是____________.13.(2021·)在平面直角坐标系xOy 中,P 是函数f (x )=e x(x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,那么t 的最大值是______.14.(文)函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,那么实数m 的取值范围为________.〔理〕如图,直线y =1与曲线y =-x 2+2所围图形的面积是________.14.函数f (x )=x 3+ax 2+bx +c ,过曲线y =f (x )上的点P (1,f (1))的切线方程为y =3x +1.(1)假设y =f (x )在x =-2时有极值,求f (x )的表达式; (2)在(1)的条件下,求y =f (x )在[-3,1]上的最大值;(3)假设函数y =f (x )在区间[-2,1]上单调递增,务实数b 的取值范围.15.长方形物体E 在雨中沿面P 〔面积为S 〕的垂直方向作匀速挪动,速度为(0)v v >,雨速沿E 挪动方向的分速度为()c c R ∈。
高三数学二轮复习专题 平面向量共线,极化恒等式,奔驰定理,轨迹等问题(解析版)
平面向量综合问题参考答案与试题解析一.试题(共38小题)1.如图,在ABC ∆中,13AN NC =,P 是BN 上的一点,若211AP mAB AC =+,则实数m的值为( )A .911B .511C .211D .311【分析】由已知中ABC ∆中,13AN NC =,P 是BN 上的一点,设BP BN λ=后,我们易将AP表示为(1)4AB AC λλ-+的形式,根据平面向量的基本定理我们易构造关于λ,m 的方程组,解方程组后即可得到m 的值 【解答】解:P 是BN 上的一点,设BP BN λ=,由13AN NC =,则AP AB BP =+AB BN λ=+()AB AN AB λ=+-(1)AB AN λλ=-+(1)4AB AC λλ=-+211mAB AC =+1m λ∴=-,2411λ=解得811λ=,311m =故选:D .【点评】本题考查的知识点是面向量的基本定理及其意义,其中根据面向量的基本定理构造关于λ,m 的方程组,是解答本题的关键.2.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB 、BC 分别为a 、b ,则(AH = )A .2455a b -B .2455a b +C .2455a b -+D .2455a b --【分析】欲求出向量则AH ,关键是求出向量则AH 与向量AF 的线性.关系过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,利用相似三角形有知识即可得出它们的线性关系,从而解决问题. 【解答】解:过点F 作BC 的平行线交DE 于G , 则G 是DE 的中点,且1124GF EC BC ==14GF AD ∴=,则AHD GHF ∆∆∽ 从而14FH AH =,∴45AH AF =又12AF AD DF b a =+=+ ∴4124()5255AH b a a b =+=+ 故选:B .【点评】本题主要考查了向量加减混合运算及其几何意义、平行四边形的几何性质,属于基础题.3.如图所示,在凸四边形ABCD 中,对边BC ,AD 的延长线交于点E ,对边AB ,DC 的延长线交于点F ,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A .3144EB EF EA =+B .14λμ=C .11λμ+的最大值为1 D .49EC AD EB EA⋅-⋅ 【解答】解:对于A ,因为3AB BF =,所以3()EB EA EF EB -=-,整理得3144EB EF EA =+,故A 正确;对于B ,过点B 作//BG FD ,交AE 于点G ,则AF AD BF DG =,BC DG CE DE =,所以1AF BC ED AD DG ED BF CE DA DG DE DA⋅⋅=⋅⋅=,因为BC CE λ=,ED DA μ=,3AB BF =,所以4AF BF =,BCCEλ=,ED DA μ=, 所以41λμ=,所以14λμ=,故B 正确; 对于C ,由B 知,114()84λμλμλμ+=+=,当且仅当12λμ==时等号成立, 所以11λμ+的最小值为4,故C 错误;对于D ,因为BC CE λ=,ED DA μ=,所以(1)EB EC λ=+,(1)(1)EA DA AD μμ=+=-+, 所以111455(1)(1)9(1)(1)244EC AD EC AD EB EA EC AD λμλμλμλμ⋅⋅-===-=--++⋅-++⋅+++,当且仅当12λμ==时取等号,故D 正确. 故选:ABD .【点评】本题主要考查平面向量的线性运算,基本不等式的应用,考查转化思想与数形结合思想的应用,属于中档题.4.已知向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则( )A .0a e ⋅=B .()0a a e ⋅-=C .()0e a e ⋅-=D .()()0a e a e +⋅-=【分析】由平面向量数量积运算可得22210t te a e a -⋅+⋅-=,对任意t R ∈恒成立,则2(2)4(21)0e a e a ⋅-⋅-,然后求解即可.【解答】解:由向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则2222222a te a t e a e a e -⋅+=-⋅+,即22210t te a e a -⋅+⋅-=,由题意有2(2)4(21)0e a e a ⋅-⋅-,即2(1)0e a ⋅-,即1e a ⋅=,则()0e a e ⋅-=, 故选:C .【点评】本题考查了平面向量数量积运算,重点考查了不等式恒成立问题,属基础题.5.已知e 为单位向量,向量a 满足()(5)0a e a e -⋅-=,则||a e +的最大值为( ) A .4B .5C .6D .7【分析】设(1,0)e =,(,)a x y =,根据向量a 满足()(5)0a e a e -⋅-=,可得x ,y 的关系式,并得出x ,y 的取值范围,||(1)a e x +=+ 【解答】解:设(1,0)e =,(,)a x y =,则()(5)(1a e a e x -⋅-=-,)(5y x ⋅-,22)650y x x y =-++=,即22(3)4x y -+=,则15x ,22y -,所以||(1)a e x +=+=,当5x =6,即||a e +的最大值为6, 故选:C .【点评】本题考查了向量数量积的应用,将所求问题坐标化转化为函数的最值问题是解题关键.6.已知ABC ∆中,对任意t R ∈,||||BA tBC AC -,则ABC ∆是 以C 为直角的直角 三角形.【分析】两边平方后整理成关于t 的一元二次不等式恒成立,再利用判别式小于等于0,以及正弦定理可得.【解答】解:对任意t R ∈,||||BA tBC AC -,即22()|BA tBC AC-,即22222cos 0a t act B c b -+-,则△2222(2cos )4()0ac B a c b =--,化简得222cos 1b B c -,即222sin b B c ,即sin b B c,设ABC ∆外接圆的半径为R ,则由正弦定理可得2b bR c,得2c R ,得sin 1C ,又sin 1C ,sin 1C ∴=,2C π∴=.故答案为:以C 为直角的直角.【点评】本题考查了平面向量数量积的性质及其运算,属中档题. 7.已知ABC ∆,若对任意t R ∈,||||BA tBC AC -,则ABC ∆一定为( )A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定【解答】解:令AM BA tBC =-,则根据向量的减法的几何意义可得M 在BC 上, 由||||BA tBC AC -对一切实数t 都成立可得:||||AM AC ,AC BC ∴⊥,则ABC ∆为直角三角形.故选:C .【点评】本题是一道构造非常巧妙的试题,解题的关键是由||||BA tBC AC -对一切实数t都成立可得到AC 为A 到BC 的距离.8.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC = 18 .【分析】设AC 与BD 交于O ,则2AC AO =,在RtAPO 中,由三角函数可得AO 与AP 的关系,代入向量的数量积||||cos AP AC AP AC PAO =∠可求 【解答】解:设AC 与BD 交于点O ,则2AC AO =AP BD ⊥,3AP =,在Rt APO ∆中,cos 3AO OAP AP ∠==||cos 2||cos 2||6AC OAP AO OAP AP ∴∠=⨯∠==,由向量的数量积的定义可知,||||cos 3618AP AC AP AC PAO =∠=⨯= 故答案为:18【点评】本题主要考查了向量的数量积 的定义的应用,解题的关键在于发现规律:cos 2cos 2AC OAP AO OAP AP ⨯∠=⨯∠=.9.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足向量2AP PM =,则向量()PA PB PC +等于( )A .49-B .43-C .43D .49【分析】由题意M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解.【解答】解:M 是BC 的中点,知AM 是BC 边上的中线, 又由点P 在AM 上且满足2AP PM =P ∴是三角形ABC 的重心∴()PA PB PC +2||PA AP PA ==-又1AM =∴2||3PA =∴4()9PA PB PC +=-故选:A . 【点评】本题考查向量的数量积的应用,解题的关键是判断P 点是三角形的重心,考查计算能力.10.在ABC ∆中,2AB =,3AC =,N 是边BC 上的点,且,BN NC O =为ABC ∆的外心,则(AN AO ⋅= ) A .3B .134C .92D .94【分析】利用平面向量的线性运算法则以及外心的性质、数量积的定义求解. 【解答】解:因为O 为ABC ∆的外心,故2122AO AB AB ⋅==,21922AO AC AC ⋅==, 又BN NC =,故N 为BC 的中点,故1()2AN AB AC =+,所以11()()22AN AO AB AC AO AO AB AO AC ⋅=+⋅=⋅+⋅1913(2)224=+=.故选:B .【点评】本题考查平面向量数量积的定义以及平面向量线性运算的几何意义,属于中档题.11.设a 、b 、c 是单位向量,0a b =,则()()a c b c --的最小值为 1 【分析】利用向量的运算法则展开()()a c b c --,再利用余弦值的有界性求范围. 【解答】解:设c 与a b +的夹角等于θ,()()(a c b c a b c --=-2)a b c ++20||||cos 10||1()1c a b a b a b θ=-++-++=-++2222211a b a b a b =+++=-++1=.故答案为:1【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,考查向量的运算法则:交换律、分配律,但注意不满足结合律,属于中档题.12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()()PB AB PB PC -+的最小值是( ) A .1-B .32-C .2-D .43-【分析】建立坐标系,设(,)P x y ,得出()()PB AB PB PC -+关于x ,y 的表达式,配方即可得出结论.【解答】解:以BC 为x 轴,以BC 边上的高为y 轴建立坐标系,则(0,3)A ,设(,)P x y ,则2(2,2)PB PC PO x y +==--,()(,3)PB AB PA x y -==--, 222233()()222322()22PB AB PB PC x y y x y ∴-+=+-=+--, ∴当0x =,32y =时,()()PB AB PB PC -+取得最小值32-, 故选:B .【点评】本题考查了平面向量的数量积运算,属于中档题.13.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE 的最小值为( )A .2116B .32C .2516D .3【分析】如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,求出A ,B ,C 的坐标,根据向量的数量积和二次函数的性质即可求出. 【解答】解:如图所示,以D 为原点,以DA 所在的直线为x 轴, 以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==, 1cos602AN AB ∴=︒=,3sin 60BN AB =︒,13122DN ∴=+=,32BM ∴=,3tan302CM MB ∴=︒=, 3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,3)2,(0,3)C ,设(0,)E m ,∴(1,)AE m =-,3(2BE =-,3)2m -,03m,∴22233333321()()224216416AE BE m m m m =+-=-+-=-+, 当34m =时,取得最小值为2116. 故选:A .【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题. 14.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .14【分析】根据题意,利用MH 与NH 共线,求出x 与y 的表达式,再利用基本不等式求出4x y +的最小值即可.【解答】解:在ABC ∆中,D 为BC 边的中点,H 为AD 的中点, ,AM xAB AN y AC ==,∴1()4AH AM MH xAB MH AB AC =+=+=+,∴11()44MH x AB AC =-+,同理,11()44NH AB y AC =+-, MH 与NH 共线,∴存在实数λ,使(0)MH NH λλ=<,即1111()()4444x AB AC AB y AC λλ-+=+-,即114411()44x y λλ⎧-=⎪⎪⎨⎪=-⎪⎩,解得14x λ-=,114y λ-=, 1115159442(444444x y λλλλ--∴+=+⨯=--+-=, 当且仅当14λλ-=-,即2λ=-时,“=”成立,4x y ∴+的最小值是94. 故选:C .【点评】本题考查了平面向量的线性运算,以及基本不等式的应用,属于中档题. 15.直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM mAB =,AN nAC =,(0,0)m n >>,则下列结论错误的是( ) A .12m n+为常数 B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为:12m =,2n = 【分析】作出图形,由2BP PC =可得出1233AP AB AC =+,根据三点共线的结论得出123m n+=,结合基本不等式可判断出各选项的正误,即可得出结论. 【解答】解:如下图所示:由2BP PC =,可得2()AP AB AC AP -=-,∴1233AP AB AC =+, 若,,(0,0)AM mAB AN nAC m n ==>>,则11,AB AM AC AN m n==, ∴1233AP AM AN m n=+,M 、P 、N 三点共线,∴12133m n+=,∴123m n +=,故A 正确;所以1,22m n ==时,也满足123m n +=,则D 选项正确;122252252(2)()2333333333n m n m n m n m n mn m +=++=++⋅=, 当且仅当m n =时,等号成立,C 选项成立; 1222()()1211333333n m n m n m n m n m n m +=++=++⋅,当且仅当2n m =时,即1222,33m n ++==时等号成立,故B 选项错误. 故选:B .17.已知点O 、N 、P 在ABC ∆所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O 、N 、P 依次为ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【分析】根据O 到三角形三个顶点的距离相等,得到O 是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P 是三角形的垂心. 【解答】证明:||||||OA OB OC ==,O ∴到三角形三个顶点的距离相等, O ∴是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,∴只要判断第三个条件可以得到三角形的什么心就可以,PA PB PB PC PC PA ⋅=⋅=⋅,∴()0PB PA PC -=,∴0PB CA ⋅=,∴PB CA ⊥,同理得到另外两个向量都与相对应的边垂直,得到P 是三角形的垂心, 故选:C .【点评】本题是一个考查的向量的知识点比较全面的题目,把几种三角形的心总结的比较全面,解题时注意向量的有关定律的应用,不要在运算律上出错. 18.已知非零向量,AB AC 和BC 满足())0||||AB AC BC AB AC +⋅=,且1||||2AC BC AC BC ⋅=,则ABC ∆为( ) A .等边三角形 B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形【解答】解:根据向量的性质可得||||1||||AB ACAB AC == ∴||||AB ACAB AC +在BAC ∠的角平分线上(设角平分线为)AD (())0||||AB ACBC AB AC +⋅= AD BC ∴⊥从而有AB AC =又因为12||||AC BC AC BC ⋅=且||||1||||AC BCAC BC ==所以60C ∠=︒三角形为等边三角形 故选:A .【点评】本题主要考查了平面向量的加法的四边形法则,向量的数量积的运算,考查了等边三角形的性质,属于综合试题.19.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++,[0λ∈,)+∞,则动点P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心【解答】解:设BC 的中点为D , ()2||cos ||cos OB OC AB AC OP AB B AC C λ+=++,∴()||cos ||cos AB ACOP OD AB B AC C λ=++, 即()||cos ||cos AB ACDP AB B AC Cλ=+,两端同时点乘BC ,||||cos()||||cos ()()(||||)0||cos ||cos ||cos ||cos AB BC AC BC AB BC B AC BC CDP BC BC BC AB B AC C AB B AC Cπλλλ⋅⋅⋅-⋅⋅=+=+=-+=DP BC ∴⊥,∴点P 在BC 的垂直平分线上,即P 经过ABC ∆的外心故选:D .【点评】本题主要考查了空间向量的加减法,以及三角形的外心的知识,属于基础题. 20.设点O 在ABC ∆的内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A .2B .32C .3D .53【解答】解:分别取AC 、BC 的中点D 、E ,230OA OB OC++=,∴2()OA OC OB OC+=-+,即2 4OD=-OE,O∴是DE的一个三等分点,∴3ABCAOCSS∆∆=,故选:C.【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.21.已知点O在ABC∆内,且::4:3:2AOB BOC AOCS S S∆∆∆=,AO AB ACλμ=+,则(λμ+= A.1B.29C.59D.23【分析】先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=成立,得到4320OC OA OB++=,利用向量的线性运算得到429AC AB AO+=,求出λ,μ,由此能求出结果.【解答】解:先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,延长AO交BC于Q,由题意得AOB BOC AOC ABCS S S S∆∆∆∆++=,由面积关系得:BOCABCS OQS AQ∆∆=,∴APB CPAABCS SAQ AQS∆∆∆+=⋅,||||||||AOC AOBAOC AOB AOC AOBS SQC QBAQ AB AC AB ACS S S SBC BC∆∆∆∆∆∆=⋅+⋅=⋅+⋅++,∴0AOC AOB BOCS OB S OC S AO∆∆∆⋅+⋅-⋅=,∴0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,由题意知::4:3:2AOB BOC AOCS S S∆∆∆=,4320OC OA OB∴++=,∴429AC AB AO+=,∴24,99λμ==,23λμ∴+=.故选:D.22.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Mercedesbenz的log o很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O是ABC∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC ∆的外心B .BOC A π∠+=C .||:||:||cos :cos :cos OA OB OC A B C =D .::tan :tan :tan A B C S S S A B C =【分析】选项A ,将OA OB OB OC ⋅=⋅移项,并结合平面向量的减法和数量积的运算法则,可得OB CA ⊥,同理推出OA CB ⊥,OC AB ⊥,得解; 选项B ,根据选项A 中所得,可知2OBC C π∠+=,2OCB B π∠+=,再由三角形的内角和定理,得解;选项C ,延长CO 交AB 于点P ,结合诱导公式与余弦函数的定义,可证cos :cos :A B OA OB =,进而得解;选项D ,由三角形的面积公式与诱导公式,可得:tan :tan A B S S A B =,进而得解. 【解答】解:对于选项A ,()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇔⋅-=⇔⋅=⇔⊥,同理可得,OA CB ⊥,OC AB ⊥,故O 为ABC ∆的垂心,即A 错误; 对于选项B ,因为OB AC ⊥,OC AB ⊥,所以2OBC C π∠+=,2OCB B π∠+=,所以OBC C OCB B π∠++∠+=,又OBC OCB BOC π∠+∠+∠=,所以BOC C B ∠=+, 又A B C π++=,所以BOC A π∠+=,即B 正确; 对于选项C ,由上可知,A BOC π=-∠,B AOC π=-∠, 延长CO交AB 于点P ,cos :cos cos():cos()cos :cos ::OP OPA B BOC AOC BOP AOP OA OB OB OAππ=-∠-∠=∠∠==, 同理可得,cos :cos :A C OA OC =,所以cos :cos :cos ::A B C OA OB OC =,即C 正确;对于选项D ,11:():():tan :tan tan :tan tan():tan()tan :tan 22A B S S OC BP OC AP BP AP OP POB OP AOP BOC AOC A B A Bππ=⋅⋅⋅⋅==∠∠=∠∠=--=,同理可得,:tan :tan A C S S A C =,所以::tan :tan :tan A B C S S S A B C =,即D 正确.故选:BCD .【点评】本题考查平面向量在几何中的应用,熟练掌握平面向量的数量积,诱导公式,平面几何基础知识是解题的关键,考查逻辑推理能力和运算能力,属于难题.23.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A .3B .22C 5D .2【分析】方法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为25(1θ+,252)θ+,根据AP AB AD λμ=+,求出λ,μ,根据三角函数的性质即可求出最值.方法二:根据向量分解的等系数和线直接可得.【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上, 设圆的半径为r ,2BC =,1CD =,22215BD ∴=+∴1122BC CD BD r ⋅=⋅, 5r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(1θ+252)θ+,AP AB AD λμ=+,25(1θ∴+252)(1θλ+=,0)(0μ+,2)(λ=,2)μ, ∴251θλ+=2522θμ+=,255cos sin 2sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=, 1sin()1θϕ-+,13λμ∴+,故λμ+的最大值为3,方法二:根据向量分解的等系数和线,可得λμ+的最大值为3,如图所述 故选:A .【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.24.平面直角坐标系中,O 为坐标原点,已知两点(3,1)A 、(1,3)B -,若点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,则点C 的轨迹方程为( )A .32110x y +-=B .22(1)(2)5x y -+-=C .20x y -=D .250x y +-=【分析】由点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程.【解答】解:C 点满足OC OA OB αβ=+且1αβ+=,A ∴、B 、C 三点共线. C ∴点的轨迹是直线AB 又(3,1)A 、(1,3)B -,∴直线AB 的方程为:133113y x --=---整理得250x y +-= 故C 点的轨迹方程为250x y +-= 故选:D .【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.25.若动直线:440l mx y m -+-=与圆22:(4)(5)9C x y -+-=相交于A ,B 两点,则()A .||AB 的最小值为42B .CA CB ⋅的最大值为7-C .(OA OB O ⋅为坐标原点)的最大值为78D .AC AB ⋅的最大值为18【解答】解:440mx y m -+-=,(4)(4)0m x y ∴---=,故动直线l 恒过点(4,4)D ; 圆22:(4)(5)9C x y -+-=的圆心为(4,5)C ,半径为3,则22||(44)(45)1CD =-+-=, 故||AB 的最小值为2223142⨯-=;故选项A 正确;对于选项B ,||||cos 9cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,易知当CD AB ⊥时,ACB ∠最小,此时22233(42)7cos 2339maxACB +-∠==-⨯⨯;故7()9()79max CA CB ⋅=⨯-=-;故选项B 正确;对于选项C ,设AB 的中点为M ,()()OA OB OM MA OM MA ⋅=+⋅-22229OM MA OM CM =-=+-,而点M 在以DC 为直径的圆2291(4)()24x y -+-=上,设1(4cos 2M θ+,91sin )([022θθ+∈,2]π,且)2πθ≠,故2222221911119(4cos )(sin )(cos )(sin )9222222OA OB OM CM θθθθ⋅=+-=+++++--284cos 4sin 2842sin()28424πθθθ=++=+++,故错误;对于选项D ,21||||cos ||2AC AB AC AB CAB AB ⋅=⋅∠=, 故当||AB 取最大值,即AB 过圆心C 时,但动直线l 的斜率一定存在, 故动直线l 不包括垂直于x 轴的直线,故AC AB ⋅的最大值不存在,即错误; 故选:AB .【点评】本题综合考查了直线与圆的位置关系的应用及平面向量的综合应用,属于难题.。
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。
江西省南昌市稳派2023届高三二轮复习验收考试(4月联考)数学(文)试题
B.401
C.625
D.913
7.黄地绿彩云龙纹盘是收藏于中国国家博物馆的一件明代国宝级瓷器.该龙纹盘敞口,
弧壁,广底,圈足.器内施白釉,外壁以黄釉为地,刻云龙纹并填绿彩,美不胜收.黄地
绿彩云龙纹盘可近似看作是圆台和圆柱的组合体,其口径 22.5cm,足径 14.4cm,高 3.8cm,
其中底部圆柱高 0.8cm,则黄地绿彩云龙纹盘的侧面积约为( )(附:圆台的侧面积
江西省南昌市稳派 2023 届高三二轮复习验收考试(4 月联考) 数学(文)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x2 3x , B x y x 1 ,则 AI B ( )
喜欢有机水果 A 不喜欢有机水果 A
南方会员 80
40
北方会员 40
40
(1)视频率为概率,分别估计南方、北方会员中喜欢有机水果 A 的概率; (2)(i)判断是否有 97.5%的把握认为是否喜欢有机水果 A 与会员的区域有关? (ii)已知农场 CSA 会员有 2000 人,其中南方会员有 1200 人,若喜欢有机水果 A 的人 不低于 1100 人,则可种植 50 亩左右的有机水果 A ,否则只能种植 30 亩左右,试问该 农场应怎样安排有机水果 A 的种植面积.
D. 2 2
10.正割(Secant)及余割(Cosecant)这两个概念是由伊朗数学家、天文学家阿布尔·威
发首先引入, sec , csc 这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后
经欧拉采用得以通行.在三角中,定义正割 sec 1 ,余割 csc 1 .已知函数
江苏省苏州十中2024年高三年级二轮复习数学试题导引卷(二)含附加题
江苏省苏州十中2024年高三年级二轮复习数学试题导引卷(二)含附加题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭2.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .193.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)24.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为( ) A .1211e er R e e ++-- B .111e er R e e ++-- C .1211e er R e e-+++ D .111e er R e e-+++ 5.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A 10B .3C 5D .26.已知函数()sin()(0,)2f x x πωϕωϕ=+><的最小正周期为(),f x π的图象向左平移6π个单位长度后关于y 轴对称,则()6f x π-的单调递增区间为( )A .5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D .,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦7.在直角坐标平面上,点(),P x y 的坐标满足方程2220x x y -+=,点(),Q a b 的坐标满足方程2268240a b a b ++-+=则y bx a--的取值范围是( ) A .[]22-,B.⎣⎦C .13,3⎡⎤--⎢⎥⎣⎦ D.⎣⎦8.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .49.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 10.若实数,x y 满足的约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩,则2z x y =+的取值范围是( )A .[)4+∞, B .[]06,C .[]04,D .[)6+∞,11.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )A .4πB .16πC .36πD .643π12.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( )A .16,e e ⎛⎫ ⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭ D .746,e e ⎡⎫⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
届高三数学二轮复习专题训练-以数列为载体的情景问题
以数列为载体的情景问题一、单项选择题1.小方计划从4月1日开始存储零钱,4月1日到4月4日每天都存储1元,从4月5日开始,每天存储的零钱比昨天多1元,则小方存钱203天(4月1日为第1天)的储蓄总额为()A .19903元B .19913元C .20103元D .20113元2.《张丘建算经》曾有类似记载:“今有女子善织布,逐日织布同数递增(即每天增加的数量相同).”若该女子第二天织布一尺五寸,前十五日共织布六十尺,按此速度,该女子第二十日织布()A .七尺五寸B .八尺C .八尺五寸D .九尺3.现有17匹善于奔驰的马,它们从同一个起点出发,测试它们一日可行的路程.已知第i (i =1,2,…,16)匹马的日行路程是第i +1匹马日行路程的1.05倍,且第16匹马的日行路程为315里,则这17匹马的日行路程之和约为(取1.0517=2.292)()A .7750里B .7752里C .7754里D .7756里4.[2022·全国乙卷]嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N *(k =1,2,…).则()A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 75.[2022·新高考Ⅱ卷]图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A .0.75B .0.8C .0.85D .0.96.[2023·河北秦皇岛模拟]中国古代许多著名数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,所讨论的二阶等差数列与一般等差数列不同,前后两项之差并不相等,但是后项减前项之差组成的新数列是等差数列.现有一个“堆垛”,共50层,第一层2个小球,第二层5个小球,第三层10个小球,第四层17个小球,…,按此规律,则第50层小球的个数为()A .2400B .2401C .2500D .25017.[2023·安徽马鞍山模拟]风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年.龙被视为中华古老文明的象征,大型龙类风筝放飞场面壮观,气势磅礴,因而广受喜爱.某团队耗时4个多月做出一长达200米、重约25公斤,“龙身”共有180节“鱗片”的巨龙风筝.制作过程中,风筝骨架可采用竹子制作,但竹子易断,还有一种耐用的碳杆材质也可做骨架,但它比竹质的成本高.最终团队决定骨架材质按图中规律排列(即相邻两碳质骨架之间的竹质骨架个数成等差数列),则该“龙身”中竹质骨架个数为()A .161B .162C .163D .1648.[2023·湖北武汉模拟]为平衡城市旅游发展和生态环境保护,某市计划通过五年时间治理城市环境污染,预计第一年投入资金81万元,以后每年投入资金是上一年的43倍;第一年的旅游收入为20万元,以后每年旅游收入比上一年增加10万元,则这五年的投入资金总额与旅游总收入差额为()A .325万元B .581万元C .721万元D .980万元二、多项选择题9.[2023·山西大同模拟]《庄子·天下》中有:“一尺之棰,日取其半,万世不竭”,其大意为:一根一尺长的木棰每天截取一半,永远都取不完,设第一天这根木棰截取一半后剩下a 1尺,第二天截取剩下的一半后剩下a 2尺,…,第五天截取剩下的一半后剩下a 5尺,则下列说法正确的是()A.a 5a 2=14B .a 3=18C .a 3-a 4=116D .a 1+a 2+a 3+a 4+a 5=313210.某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为a 1,a 2,a 3,…,则下列说法正确的是(lg 2≈0.3010,lg 3≈0.4771)()A .a 1=6千万元B .{a n -3}是等比数列C .{a n -3}是等差数列D .至少到2026年的年底,企业的剩余资金会超过21千万元三、填空题11.《周髀算经》是中国十部古算经之一,其中记载有:阴阳之数,日月之法,十九岁为一章,四章为一蔀,二十蔀为一遂……若32个人的年龄(都为整数)依次成等差数列,他们的年龄之和恰好为“一遂”,其中年龄最小者不超过30岁,则年龄最大者为________岁.12.三潭印月被誉为“西湖第一胜境”,所谓三潭,实际上是3个石塔和其周围水域,石塔建于宋代元四年(公元1089年),每个高2米,分别矗立在水光潋滟的湖面上,形成一个等边三角形,记为△A 1B 1C 1,设△A 1B 1C 1的边长为a 1,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,设其边长为a 2,依此类推,由这些三角形的边长构成一个数列{a n },若{a n }的前6项和为195316,则△A 1B 1C 1的边长a 1=________.13.[2023·山东烟台模拟]欧拉是瑞士数学家和物理学家,近代数学先驱之一,在许多数学的分支中经常可以见到以他的名字命名的重要函数、公式和定理.如著名的欧拉函数φ(n ):对于正整数n ,φ(n )表示小于或等于n 的正整数中与n 互质的数的个数,如φ(5)=4,φ(9)=6.那么,数列{nφ(5n )}的前n 项和为________.14.[2021·新高考Ⅰ卷]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2.以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么.1.解析:设小方第n天存钱a n元,则数列{a n}从第4项起成等差数列,且该等差数列的首项为1,公差为1,所以小方存钱203天的储蓄总额为1+1+1+200×1+200×1992×1=203+19900=20103元.故选C.答案:C2.解析:由题意知:该女子每天织布的尺寸成等差数列,记为{a n},其前n项和为S n,则a2=1.5,S15=60,∵S15=15(a1+a15)2=15a8=60,∴a8=4,∴数列{a n}的公差d=a8-a26=4-1.56=512,∴a20=a8+12d=4+12×512=9,即该女子第二十日织布九尺.故选D.答案:D3.解析:3151.05=300,依题意可得,第17匹马、第16匹马……第1匹马的日行路程里数依次成等比数列,且首项为300,公比为1.05,故这17匹马的日行路程之和为300×(1-1.0517)1-1.05=6000×(1.0517-1)=6000×(2.292-1)=7752(里).故选B.答案:B4.解析:方法一因为αk∈N*(k=1,2,…),所以0<1αk ≤1,所以α1<α1+1α2+1α3+1α4+1α5,所以b1>b5,所以A错误.同理α3<α3+1α4+1α5+1α6+1α7+1α8.设1α4+1α5+1α6+1α7+1α8=t1,所以α2+1α3>α2+1α3+t1,则α1+1α2+1α3<α1+1α2+1α3+t1,所以b3>b8,所以B错误.同理α2<α2+1α3+1α4+1α5+1α6.设1α3+1α4+1α5+1α6=t2,所以α1+1α2>α1+1α2+t2,所以b2<b6,所以C错误.同理α4<α4+1α5+1α6+1α7.设1α5+1α6+1α7=t3,所以α3+1α4>α3+1α4+t 3,则α2+1α3+1α4<α2+1α3+1α4+t 3,所以α1+1α2+1α3+1α4>α1+1α2+1α3+1α4+t 3,所以b 4<b 7,所以D 正确.故选D.方法二此题可赋特殊值验证一般规律,不必以一般形式做太多证明,以节省时间.由αk ∈N *,可令αk =1,则b 1=2,b 2=32,b 3=53,b 4=85.分子、分母分别构成斐波纳契数列,可得b 5=138,b 6=2113,b 7=3421,b 8=5534.对比四个选项,可知选D.答案:D5.解析:设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k 3-0.2=k 1,k 3-0.1=k 2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9,故选D.答案:D6.解析:不妨设第n 层小球个数为a n ,由题意,a 2-a 1=3,a 3-a 2=5,…,即各层小球之差是以3为首项,2为公差的等差数列.所以a n -a n -1=3+2(n -2)=2n -1(n ≥2,n ∈N *).50-a 49=9949-a 48=972-a 1=3,累加可得:a 50-a 1=49×(3+99)÷2=2499,故a 50=2499+2=2501.故选D.答案:D7.解析:设有n 个碳质骨架,n ∈N *,由已知可得n +1+2+3+…+(n -1)+n ≥180,如果只有n -1个碳质骨架,则骨架总数少于180,所以(n -1)+1+2+3+…+(n -1)<180,所以n 2+3n ≥360,且n 2+n <362,又n ∈N *解得n =18,所以共有碳质骨架18个,故竹质骨架有162个.故选B.答案:B8.解析:根据题意可知,这五年投入的金额构成首项为81,公比为43的等比数列,所以这五年投入的资金总额是81×[1-(43)5]1-43=781(万元);由题意可知,这五年的旅游收入构成首项为20,公差为10的等差数列,所以这五年的旅游总收入是20×5+5×42×10=200(万元),所以这五年的投入资金总额与旅游总收入差额为781-200=581(万元).故选B.答案:B9.解析:根据题意可得{a n }是首项为12,公比为12的等差数列,则a n =(12)n (n ∈N *),a 5a 2=q 3=18,故A 错误;a 3=18,故B 正确;a 3=18,a 4=116,则a 3-a 4=116,故C 正确;a 1+a 2+a 3+a 4+a 5=12(1-125)1-12=3132,故D 正确.故选BCD.答案:BCD10.解析:对于A ,由题意可知,a 1=5×1.5-1.5=6(千万元),A 正确;对于B ,因为由题意可得a n +1=1.5a n -1.5,所以a n +1-3=1.5(a n -3),又因为a 1-3=3,则a n -3≠0,故a n +1-3a n -3=1.5,所以{a n -3}是首项为3,公比为1.5的等比数列,B 正确,则C 错误;对于D ,由C 的分析可得a n -3=3×1.5n -1,所以a n =3+3×1.5n -1,令3+3×1.5n -1>21,解得n -1>lg 6lg 1.5=lg 3+lg 2lg 3-lg 2≈4.42,所以n >5.42,所以至少到2026年的年底,企业的剩余资金会超过21千万元,D 正确.故选ABD.答案:ABD11.解析:根据题意可知这32个人年龄之和为19×4×20=1520,设年纪最小者年龄为n ,年纪最大者年龄为m ,则n +m2×32=1520⇒n +m =95,设等差数列的首项为n ,公差为d ,则n ,m ,d ∈N *,则32n +32×312d =1520⇒2n +31d =95⇒2n =95-31d ,因为1≤n ≤30⇒2≤2n ≤60,则2≤95-31d ≤60,解得3531≤d ≤3,d =2时,n =332不满足题意,所以d =3,2n =95-31×3=2⇒n =1,则m =95-1=94.答案:9412.解析:根据题意,取△A 1B 1C 1每边的中点构成△A 2B 2C 2,则△A 2B 2C 2的各边均为△A 1B 1C 1对应的中位线,长度减半,由此a 2=12a 1,依次类推可得a n =12a n -1,所以{a n }是首项为a 1,公比q =12的等比数列,故其前6项和S 6=a 1(1-q 6)1-q =2a 11-(12)6=195316,则a 1=62.答案:6213.解析:在[1,5n ]中,与5n 不互质的数有5×1,5×2,5×3,…,5×5n -1,共有5n -1个,所以φ(5n )=5n -5n -1=4·5n -1,所以nφ(5n )=(4n )·5n -1,设数列{nφ(5n )}的前n 项和为S n ,所以S n =4×50+8×51+12×52+…+4n ×5n -1,5S n =4×51+8×52+12×53+…+4n ×5n ,两式相减可得-4S n =4+4×(51+52+…+5n -1)-4n ·5n ,所以S n =-1-(51+52+…+5n -1)+n ·5n=-1-5(1-5n -1)1-5+n ·5n ,即S n =(n -14)·5n +14.答案:(n -14)·5n +1414.解析:(1)由对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,所以对折三次的结果有:52×12,5×6,10×3,20×32,共4种不同规格(单位dm 2);故对折4次可得到如下规格:54×12,52×6,5×3,10×32,20×34,共5种不同规格.(2)由于每次对折后的图形的面积都减小为原来的一半,故各次对折后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120(dm 2),第n 次对折后的图形面积为n -1,对于第n 次对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想S n =120(n +1)2n -1,设S =错误!k =120×220+120×321+120×422+…+120(n +1)2n -1,则12S=120×221+120×322+…+120n2n-1+120(n+1)2n,两式作差得:1 2S=240+120(12+122+…+12n-1)-120(n+1)2n=2401-12-120(n+1)2n=360-1202n-1-120(n+1)2n=360-120(n+3)2n,因此,S=720-240(n+3)2n=720-15(n+3)2n-4.答案:5720-15(n+3) 2n-4。
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习(附答案)
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。
(通用版)高考数学二轮复习 稳取120分保分练(一)文-人教版高三全册数学试题
稳取120分保分练(一)一、选择题1.若z =2-i2+i ,则|z |=( )A.15 B .1 C .5D .25解析:选B z =2-i2+i=2-i 22+i 2-i =35-45i ,则|z |=⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫-452=1.2.设集合A ={x ∈Z||x |≤2},B =⎩⎨⎧⎭⎬⎫x|32x ≤1,则A ∩B =( )A .{1,2}B .{-1,-2}C .{-2,-1,2}D .{-2,-1,0,2}解析:选C A ={-2,-1,0,1,2},B =⎩⎨⎧⎭⎬⎫x|x ≥32或x <0,所以A ∩B ={-2,-1,2}.3.向量a ,b 满足|a |=2,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( ) A .45° B .60° C .90°D .120°解析:选C 因为(a +b )⊥(2a -b ),所以(a +b )·(2a -b )=2a 2+a ·b -b 2=4+a ·b -4=0,即a ·b =0,从而a ⊥b ,即向量a ,b 的夹角为90°.4.已知一组数据(2,3),(4,6),(6,9),(x 0,y 0)的线性回归方程为y ^=x +2,则x 0-y 0的值为( )A .2B .4C .-4D .-2解析:选D 由题意知x -=14(2+4+6+x 0)=14(12+x 0),y -=14(3+6+9+y 0)=14(18+y 0),∵线性回归方程为y ^=x +2, ∴14(18+y 0)=14(12+x 0)+2, 解得x 0-y 0=-2.5.已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A ∵a =243,b =425=245,43>45,∴a >b ,又a =243=316,c =325,∴a <c ,故c >a >b .6.已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且a =4,b +c =5,tan A +tan B +3=3tan A tan B ,则△ABC 的面积为( )A.32 B .3 3C.332D.32解析:选C 由题意可知,tan C =-tan(A +B )=-tan A +tan B1-tan A tan B,整理化简得,tan A +tan B +tan C =tan A tan B tan C ,所以tan C =3,即C =60°,所以cos C =a 2+b 2-c 22ab,把a=4,b +c =5,C =60°代入,解得b =32,所以△ABC 的面积S =12ab sin C =332,故选C.7.已知数列{a n }为等差数列,S n 为其前n 项和,S 3=3,a n -2+a n -1+a n =24,S n =54,则n 的值为( )A .9B .10C .11D .12解析:选D ∵S 3=3,∴a 1+a 2+a 3=3,则3a 2=3,a 2=1.∵a n -2+a n -1+a n =24,∴3a n -1=24,a n -1=8.∵{a n }为等差数列,∴S n =a 1+a n n2=a 2+a n -1n2=1+8n2=54,∴n =12. 8.如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的体积为( )A .20B .22C .24D .26解析:选C 由三视图可知:该几何体是一个棱长为3的正方体去掉3个棱长为1的小正方体剩下的部分,如图所示.该几何体的体积V =33-3×13=24.9.已知MOD 函数是一个求余函数,其格式为MOD(n ,m ),其结果为n 除以m 的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为36时,则输出的结果为( )A .4B .5C .6D .7解析:选D 模拟执行程序框图,可得:n =36,i =2,MOD(36,2)=0,j =1,i =3,满足条件i <n ,MOD(36,3)=0,j =2,i =4,满足条件i <n , MOD(36,4)=0,j =3,i =5,满足条件i <n , MOD(36,5)=1,i =6,满足条件i <n , … 由36i∈N *,可得i =2,3,4,6,9,12,18,∴j =j +1执行了7次,故j =7.10.若函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=e x-1x 2-1B .f (x )=exx 2-1C .f (x )=x 3+x +1x 2-1D .f (x )=x 4+x +1x 2-1解析:选B 由题意,当x =0时,y <0,排除A ,当-1<x <0时,若x →-1,则y →-∞,排除C ,D 选项中,f (-2)=5,f (-3)=798>f (-2),不符合,排除D.故选B.11.已知球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,则棱锥S ABC 的体积为( )A.324B.924C.322D.922解析:选D 如图,设O 是球心,则OA =OB =OS =OC =12SC =3.又AB =SA =SB =3,∴SA =OA =OB =SB ,取SO 的中点D ,连接AD ,BD ,∴AD ⊥SO ,BD ⊥SO ,又AD ∩BD =D ,∴SC ⊥平面ABD .又易求得AD =BD =332,∴S △ABD =12×3× ⎝ ⎛⎭⎪⎫3322-⎝ ⎛⎭⎪⎫322=924.∴V S ABC =V S ABD +V C ABD =13S △ABD ×SD +13S △ABD ×DC =13S △ABD ×SC =13×924×6=922. 12.设[x ]表示不小于实数x 的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f (x )=[x ]2-2[x ],若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则k 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫-52,-1∪[2,5) B.⎣⎢⎡⎭⎪⎫-1,-23∪[5,10)C.⎝ ⎛⎦⎥⎤-43,-1∪[5,10)D.⎣⎢⎡⎦⎥⎤-43,-1∪[5,10) 解析:选B 令F (x )=0得f (x )=k (x -2)-2, 作出函数y =f (x )和y =k (x -2)-2的图象如图所示: 若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则函数f (x )和g (x )=k (x -2)-2的图象在(-1,4]上有2个交点,经计算可得k PA =5,k PB =10,k PO =-1,k PC =-23,∴k 的取值X 围是⎣⎢⎡⎭⎪⎫-1,-23∪[5,10).二、填空题13.已知向量OA ―→⊥AB ―→,|OA ―→|=3,则OA ―→·OB ―→=________.解析:由OA ―→⊥AB ―→,得OA ―→·AB ―→=0,即OA ―→·(OB ―→-OA ―→)=OA ―→·OB ―→-|OA ―→|2=0, ∵|OA ―→|=3,∴OA ―→·OB ―→=|OA ―→|2=9.答案:914.在区间[-1,1]上随机取一个数x ,使sin πx 2的值介于0到12之间的概率为________.解析:当-1≤x ≤1时,-π2≤πx 2≤π2,由0≤sin πx 2≤12,得0≤πx 2≤π6,即0≤x ≤13,则sin πx 2的值介于0到12之间的概率P =132=16.答案:1615.已知双曲线x 216-y 236=1上一点P (x ,y )到双曲线一个焦点的距离是9,则x 2+y 2的值是________.解析:双曲线x 216-y 236=1的a =4,b =6,c =a 2+b 2=213,不妨设点P (x ,y )在右支上,由条件可知P 点到右焦点(213,0)的距离为9,即为 x -2132+y 2=9,且x 216-y 236=1,解得x =213,y =±9,则x 2+y 2=52+81=133.答案:13316.将函数y =sin 2x -cos 2x 的图象向右平移m (m >0)个单位以后得到的图象与y =n sin x cosx (n >0)的图象关于⎝ ⎛⎭⎪⎫π3,0对称,则n +m 的最小值为________.解析:将y =sin 2x -cos 2x =-cos 2x 的函数图象向右平移m 个单位以后得到y =-cos 2(x -m )=-cos(2x -2m )的图象,根据所得图象与y =n sin x cos x =n2sin 2x (n >0)的图象关于⎝ ⎛⎭⎪⎫π3,0对称,设点P (x 0,y 0)为y =-cos(2x -2m )上任意一点,则该点关于⎝ ⎛⎭⎪⎫π3,0的对称点为Q ⎝⎛⎭⎪⎫2π3-x 0,-y 0,且Q 在y =n2sin 2x (n >0)的图象上,故有⎩⎪⎨⎪⎧-cos 2x 0-2m =y 0,n 2sin ⎝ ⎛⎭⎪⎫4π3-2x 0=-y 0,求得n =2,sin ⎝ ⎛⎭⎪⎫2x 0-π3=cos(2x 0-2m ),即cos ⎝⎛⎭⎪⎫2x 0-5π6=cos(2x 0-2m ),∴-2m =-5π6+2k π,k ∈Z ,即m =5π12-k π,k ∈Z ,又m >0,故m 的最小值为5π12,则n +m 的最小值为2+5π12.答案:2+5π12三、解答题17.已知数列{a n }的前n 项和S n 满足a n =1-2S n . (1)求证:数列{a n }为等比数列;(2)设函数f (x )=log 13x ,b n =f (a 1)+f (a 2)+…+f (a n ),求T n =1b 1+1b 2+1b 3+…+1b n.解:(1)证明:∵数列{a n }的前n 项和S n 满足a n =1-2S n .∴a 1=1-2a 1,解得a 1=13.n ≥2时,a n -1=1-2S n -1,可得a n -a n -1=-2a n .∴a n =13a n -1.∴数列{a n }是首项和公比均为13的等比数列.(2)由(1)可知a n =⎝ ⎛⎭⎪⎫13n,则f (a n )=log 13a n =n .∴b n =1+2+…+n =n n +12.∴1b n =2⎝ ⎛⎭⎪⎫1n -1n +1.∴T n =1b 1+1b 2+1b 3+…+1b n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 18.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且a cos C +3a sin C =b +c . (1)求A ;(2)若a =7,△ABC 的面积为332,求b 与c 的值.解:(1)∵a cos C +3a sin C =b +c ,由正弦定理得sin A cos C +3sin A sin C =sin B +sin C , 即sin A cos C +3sin A sin C =sin(A +C )+sin C , 化简得3sin A -cos A =1,∴sin A -π6=12.在△ABC 中,0<A <π,∴A -π6=π6,得A =π3.(2)由已知得12bc sin π3=332,则bc =6,由已知及余弦定理得b 2+c 2-2bc cos π3=7,(b +c )2=25,b +c =5,联立方程组⎩⎪⎨⎪⎧bc =6,b +c =5,可得⎩⎪⎨⎪⎧b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2.19.某初级中学共有学生2 000名,各年级男、女生人数如表:初一年级初二年级初三年级女生373x y男生377370z已知在全校学生中随机抽取1名学生,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.解:(1)∵在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19,即x2 000=0.19,∴x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为482 000×500=12名.(3)由题意,满足y+z=500,y≥245,z≥245的基本事件共有11个,y>z包含的事件共有5个,则y>z的概率为511.即初三年级中女生比男生多的概率为511.20.已知四棱台ABCDA1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点.(1)求证:AB1⊥平面PBC;(2)在BC边上找一点Q,使PQ∥平面A1ABB1,并求三棱锥QPBB1的体积.解:(1)证明:取AA1的中点M,连接BM,PM,BM与B1A相交于点N,∴PM∥AD∥BC,∴BM⊂平面PBC.∵AA1⊥平面ABCD,BC⊂平面ABCD,∴AA1⊥BC,∵四边形ABCD是正方形,∴AB⊥BC,又AB∩AA1=A,∴BC⊥平面ABB1A1.∵AB1⊂平面ABB1A1,∴BC⊥AB1.∵AB=AA1=4,∠BAM=∠B1A1A=90°,AM=B1A1=2,∴△ABM≌△A1AB1,∴∠MBA=∠B1AA1,∵∠BAB1+∠B1AA1=90°,∴∠MBA+∠BAB1=90°,即∠BNA=90°,∴BM⊥AB1.又BM∩BC=B,∴AB1⊥平面PBC.(2)在BC边上取一点Q,使BQ=3,∵PM为梯形ADD1A1的中位线,A1D1=2,AD=4,∴PM=3,PM∥AD,又∵BQ∥AD,∴PM綊BQ,∴四边形PMBQ 是平行四边形,∴PQ ∥BM , 又BM ⊂平面A 1ABB 1,PQ ⊄平面A 1ABB 1, ∴PQ ∥平面A 1ABB 1.∵BC ⊥平面ABB 1A 1,BM ⊂平面ABB 1A 1, ∴BQ ⊥BM ,∴PQ ⊥BQ . ∵AB =AA 1=4,AM =A 1B 1=2, ∴BM =AB 1=25, 则AN =AB ·AM BM =455. ∴B 1N =AB 1-AN =655.∴VQ PBB 1=VB 1BPQ =13S △BPQ ·B 1N =13×12×3×25×655=6.。
复数小题专练-高三数学二轮专题复习
冲刺高考二轮 复数小题专练(原卷+答案)一、单项选择题1.(2+2i)(1-2i)=( )A .-2+4iB .-2-4iC .6+2iD .6-2i2.设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A .a =1,b =-1B .a =1,b =1C .a =-1,b =1D .a =-1,b =-13.复数2i1-i (i 是虚数单位)的虚部是( )A .1B .-iC .2D .-2i4.若复数z 满足i·z =3-4i ,则|z |=( )A .1B .5C .7D .255.复数z 满足(1-i)z =2+3i ,则z 在复平面内对应的点位于() A .第一象限 B .第二象限C .第三象限D .第四象限6.若复数z 满足z +3i =z - ,则复数z 的虚部为( )A .32B .-32C .32 iD .-32 i7.设z i =3-2z - ,则复数z =( )A .3+iB .3-iC .2+iD .2-i8.已知复数z =i +i 2+i 31+i ,z - 是z 的共轭复数,则z - ·z =() A .0 B .12C .1D .2二、多项选择题9.已知复数z =5i 1+2i,则下列各项正确的为( ) A .复数z 的虚部为iB .复数z -2为纯虚数C .复数z 的共轭复数对应点在第四象限D .复数z 的模为510.已知z 1,z 2均为复数,则下列结论中正确的有( )A .若|z 1|=|z 2|,则z 1=±z 2B .若z 1=z 2,则z 1+z 2是实数C .(z 1-z 2)2=|z 1-z 2|2D .若z 1+z 2=0,则z 1z 2是实数11.已知复数z 1对应的向量为OZ 1→ ,复数z 2对应的向量为OZ 2→ ,则( )A .若|z 1+z 2|=|z 1-z 2|,则OZ 1→ ⊥OZ 2→B .若(OZ 1→ +OZ 2→ )⊥(OZ 1→ -OZ 2→ ),则|z 1|=|z 2|C .若z 1与z 2在复平面上对应的点关于实轴对称,则z 1z 2=|z 1z 2|D .若|z 1|=|z 2|,则z 21 =z 2212.欧拉公式e i x =cos x +isin x (本题中e 为自然对数的底数,i 为虚数单位)是由瑞士著名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,则下列结论中正确的是( )A .复数e i π2 为纯虚数B .复数e i2对应的点位于第二象限C .复数e i π3 的共轭复数为32 -12i D .复数e i θ(θ∈R )在复平面内对应的点的轨迹是圆三、填空题13.已知复数z 满足(1+i)z =2i(i 为虚数单位),则z ·z - =________.14.设m 为实数,复数z 1=1+2i ,z 2=m +3i(这里i 为虚数单位),若z 1·z 2为纯虚数,则|z 1+z 2|的值为________.15.已知i 是虚数单位,则复数(1+i 2)4的模等于________. 16.已知2+i 是关于x 的方程x 2+ax +5=0的根,则实数a =________.参考答案1.解析:(2+2i)(1-2i)=2-4i +2i -4i 2=2-2i +4=6-2i.故选D.答案:D2.解析:由(1+2i)a +b =2i ,得a +2a i +b -2i =0,即(a +b )+(2a -2)i =0,所以⎩⎪⎨⎪⎧a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-1. 故选A. 答案:A3.解析:由题意可知,2i 1-i =2i ×()1+i ()1-i ()1+i =-2+2i 2 =-1+i , 所以复数2i 1-i的虚部为1. 答案:A4.解析:方法一 由i·z =3-4i ,得z =3-4i i =(3-4i )·(-i )i·(-i ) =-3i +4i 2-i 2=-4-3i , 所以|z |=(-4)2+(-3)2 =5.故选B.方法二 由i ·z =3-4i ,得z =3-4i i ,所以|z |=|3-4i i |=|3-4i||i| =32+(-4)202+12=5.故选B.答案:B5.解析:由题知:z =2+3i 1-i =(2+3i )(1+i )(1-i )(1+i )=-1+5i 2 , 所以z 在复平面内对应的点的坐标为⎝⎛⎭⎫-12,52 ,位于第二象限. 故选B.答案:B6.解析:设z =a +b i(a ,b ∈R ),则z - =a -b i ,因为z +3i =z - ,则a +(b +3)i =a -b i ,所以b +3=-b ,解得b =-32, 因此,复数z 的虚部为-32. 故选B.答案:B7.解析:由z i =3-2z - 得z i +2z - =3.设复数z =x +y i(x ,y ∈R ),则z - =x -y i ,所以(x +y i)i +2(x -y i)=3,所以2x -y +(x -2y )i =3,所以⎩⎪⎨⎪⎧2x -y =3,x -2y =0, 解得⎩⎪⎨⎪⎧x =2,y =1, 所以z =2+i. 故选C.答案:C8.解析:∵z =i +i 2+i 31+i =-11+i =-1+i (1+i )(1-i )=-12 +12 i , 所以z - ·z =⎝⎛⎭⎫-12-12i ⎝⎛⎭⎫-12+12i =14 +14 =12.故选B. 答案:B9.解析:∵z =5i 1+2i =5i (1-2i )(1+2i )(1-2i )=2+i ,则可得: 复数z 的虚部为1,A 错误;z -2=i 为纯虚数,B 正确;复数z 的共轭复数为z - =2-i ,其对应点为(2,-1),在第四象限,C 正确;复数z 的模为|z |=22+12 =5 ,D 错误.故选BC.答案:BC10.解析:z 1=1,z 2=-i ,|z 1|=|z 2|而z 1≠±z 2,A 错;令z 1=a +b i ,则z 2=a -b i ,z 1+z 2=2a 为实数,B 对;z 1=1,z 2=i ,(z 1-z 2)2=-2i ,|z 1-z 2|2=2,则(z 1-z 2)2≠|z 1-z 2|2,C 错;令z 1=a +b i ,则z 2=-a -b i ,z 2=-a +b i ,z 1·z 2=(a +b i)(-a +b i)=-a 2-b 2为实数,D 对,故选BD.答案:BD11.解析:因为|z 1+z 2|=|z 1-z 2|,所以|OZ 1→ +OZ 2→ |=|OZ 1→ -OZ 2→ |,则|OZ 1→ +OZ 2→ |2=|OZ 1→ -OZ 2→ |2,即4OZ 1→ ·OZ 2→ =0,则OZ 1→ ⊥OZ 2→ ,故选项A 正确;因为(OZ 1→ +OZ 2→ )⊥(OZ 1→ -OZ 2→ ),所以(OZ 1→ +OZ 2→ )·(OZ 1→ -OZ 2→ )=0,即OZ 12→ =OZ 22→ ,则|z 1|=|z 2|,故选项B 正确;设z 1=a +b i(a ,b ∈R ),因为z 1与z 2在复平面上对应的点关于实轴对称,则z 2=a -b i(a ,b ∈R ),所以z 1z 2=a 2+b 2,|z 1z 2|=a 2+b 2,则z 1z 2=|z 1z 2|,故选项C 正确;若z 1=1+i ,z 2=1-i 满足|z 1|=|z 2|,而z 21 ≠z 22 ,故选项D 错误,故选ABC.答案:ABC12.解析:对A :因为复数e i π2=cos π2 +isin π2 =i 为纯虚数,故选项A 正确;对B :复数e i2=cos 2+isin 2,因为cos 2<0,sin 2>0,所以复数e i2对应的点为(cos 2,sin 2)位于第二象限,B 正确;对C :复数e i π3=cos π3 +isin π3 =12 +32 i 的共轭复数为12 -32 i ,故选项C 错误; 对D :复数e i θ=cos θ+isin θ(θ∈R )在复平面内对应的点为(cos θ,sin θ),因为cos 2θ+sin 2θ=1,所以复数e i θ(θ∈R )在复平面内对应的点的轨迹是圆,故选项D 正确.故选ABD.答案:ABD13.解析:z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,z - =1-i ,所以z ·z - =2. 答案:214.解析:∵z 1=1+2i ,z 2=m +3i ,∴z 2- =m -3i ,∴z 1·z 2- =(1+2i)(m -3i)=m -3i +2m i +6=(m +6)+(2m -3)i ,∵z 1·z 2- 为纯虚数,∴m +6=0⇒m =-6,∴z 1+z 2=(1+2i)+(-6+3i)=-5+5i ,∴|z 1+z 2|=(-5)2+52 =52 . 答案:5215.解析:因为⎝⎛⎭⎪⎫1+i 2 4=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 22 2=⎝⎛⎭⎫2i 2 2=i 2=-1,所以模为1. 答案:116.解析:因为2+i 是关于x 的方程x 2+ax +5=0的根,其中a ∈R ,所以2-i 也是关于x 的方程x 2+ax +5=0的根,所以2+i +2-i =-a ,a =-4.答案:-4。
2023届高考数学二轮复习专题集合善良、中立、邪恶模式必刷100题
2023届高考数学二轮复习专题集合善良、中立、邪恶模式必刷100题专题 集合必刷100题任务一:善良模式(基础)1-50题 一、单选题1.(2021·江苏省泰兴中学高三期中)设全集U =R ,集合{}220A xx x =--≤∣,{}lg 0B x x =>∣,则()UA B =为( )A .{}|1x x ≤-B .{|1x x <或}2x ≥C .{|1x x ≤或}2x >D .{}|1x x <-2.(2021·山东烟台·高三期中)设集合{}13A x x =≤≤,{}2680B x x x =-+≥,则AB =R( )A .{}23x x <≤B .{}13x x ≤≤C .{}14x x ≤<D .{}24x x <<3.(2021·全国·高三期中)已知集合{}2210M x x x =--<,{}20N x x a =+≤,若M N =∅,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤4.(2021·山东德州·高三期中)已知全集U =R ,若集合{}2540A xx x =-+<∣,集合{}2log 2B xx =>∣,则()UB A =( )A .{14}xx <<∣ B .{4}xx >∣ C .{}4xx ∣ D .{1xx <∣ 或 4}x >5.(2021·山西怀仁·高三期中(文))已知集合{}220A x x x =+-<,01xB x x ⎧⎫=>⎨⎬-⎩⎭,则A B =( ) A .()2,0- B .()1,2 C .()0,1D .R6.(2021·河南南阳·高三期中(理))已知:全集U =R ,集合{}2log (1)1A x x =-<,集合{}3xB x e =>,则图中阴影部分表示的集合是( )A .{}1ln3x x <≤B .{}ln3x x ≤C .{}1ln3x x <<D .{}ln3x x <7.(2021·全国·高三月考)已知集合{(){},20A x y B x l n x ===+>,则A B =( )A .()1,1-B .(]1,1-C .()2,1-D .(]2,1-8.(2021·新疆·克拉玛依市教育研究所模拟预测(理))如图所示的韦恩图中,已知A ,B 是非空集合,定义*A B 表示阴影部分的集合.若{}03A x x =≤<,{}2B y y =>,则*A B =( )A .{}3x x >B .{}23x x ≤≤C .{}23x x <<D .{}3x x ≥9.(2021·江西·赣州市赣县第三中学高三期中(理))已知a 、b R ∈,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20202021a b +的值为( ) A .1- B .0 C .1 D .1-或010.(2021·浙江金华·高三月考)已知集合{}3|1A x x =-≤<,{}|05B x x =<≤,则()AB =R( )A .()()15,-∞+∞,B .[)3,0-C .[]3,0-D .[)3,5-11.(2021·河北石家庄·高三月考)已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合AB 的真子集的个数为( )A .3B .4C .7D .812.(2021·重庆市涪陵实验中学校高三期中)已知集合{}2|3100M x x x =--<,{|33}N x x =-≤≤,且M 、N 都是全集R 的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤B .{3x x <-或}5x >C .{}32x x -≤≤-D .{}35x x -≤≤13.(2021·辽宁·沈阳市翔宇中学高三月考)已知集合{A x y ==,{}1,0,1,2B =-,则A B =( )A .1,0,1,2B .{}0,1,2C .{}1,2D .{}214.(2021·湖北·高三期中)设集合{}2log 4A x x =<,102x B x x -⎧⎫=≥⎨⎬+⎩⎭,则A B =( )A .{}22x x -<<B .{}01x x <<C .{}21x x -<≤D .{}01x x <≤15.(2021·江苏如皋·高三月考)已知集合{}24xM x =<,{1,0,1}N =-,则M N =( )A .(,)-∞+∞B .{0,1}C .MD .N16.(2021·四川成都·高三月考(理))已知集合12A y y x ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭,{}2x B y y ==,则下列选项正确的是( ) A .A B ⊆ B .A B = C .A B A = D .A B A =17.(2021·河南·高三月考(文))已知集合42sin ,,63A y y x x ππ⎧⎫⎡⎤==∈-⎨⎬⎢⎥⎣⎦⎩⎭,2,1,0,2,{}3B =--,则A B =( )A .{}1,0,2-B .{}2,1,0--C .{}2,1,0,2--D .1,0,1,218.(2021·江苏高邮·高三月考)已知()(21)1g x f x =-+,且()g x 的定义域为(1,4],值域为[3,)+∞,设函数()f x 的定义域为A 、值域为B ,则AB =( )A .∅B .[4,7]C .[2,7]D .[2,5]219.(2022·全国·高三专题练习)已知全集U =R ,(){}20A x x x =+<,{}1B x x =≤,则()()UUAB BA =( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,120.(2021·河北省唐县第一中学高三月考)下列集合中表示同一集合的是( ) A .{(3,2)}M =,{(2,3)}N = B .{}(,)1M x y x y =+=,{}1N y x y =+=C .{1,2}M =,{(1,2)}N =D .{}2|3M y y x ==+,{|N x y ==21.(2021·内蒙古赤峰·高三月考(文))下列各式中,A 与B 表示同一集合的是( )A .(){},{()2}1,21A B ==, B .{},,22{}11A B ==,C .{}0,A B ==∅D .{}{}221,1A y y x B x y x ==+==+22.(2021·江苏省阜宁中学高三月考)设全集为U ,非空真子集A ,B ,C 满足:A B A =,B C B ⋃=,则( )A .A C ⊆B .AC ≠∅ C .UB A ⊆D .()UA C ≠∅23.(2021·广东·深圳市第七高级中学高三月考)设集合{}1,2,4,6A =,{}2,3,5B =,则韦恩图中阴影部分表示的集合是( )A .{}2,3,5B .{}2C .{}3,5D .{}524.(2022·全国·高三专题练习)已知集合M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3},且M ∩N={3},则实数m 的值为( ) A .4 B .-1 C .-1或4D .-1或625.(2021·河南·高三月考(文))已知集合{}2230A x x x =∈--≤N ,(){}2log 3B x y x ==-,则A B ⋃=( )A .(],3-∞B .{}0,1,2,3C .{}0,1,2D .R26.(2021·全国·高三月考(理))已知集合{}23M x x =-≤<,()(){}310N y y y =+-≥,则MN =( )A .∅B .[]2,1-C .[]3,1-D .[)2,3-27.(2021·全国·模拟预测(理))设集合{}29M x x =≤,{}ln(1)N x y x ==-,则R()M N =( )A .[3,1]-B .[3,1)-C .(,3)[1,)-∞-+∞D .(,3)(1,)-∞-⋃+∞28.(2021·安徽省亳州市第一中学高三月考(文))设,,A B C 是非空集合,定义:{A B C x x A ⨯⨯=∈且x B ∈且}x C ∈.已知{{}{}2,31,log 3x A x y B y y C x x ====+=<,则A B C ⨯⨯=( )A .()1,8B .()0,8C .()0,1D .(][),40,-∞-+∞29.(2021·全国·高三月考)已知集合U =R ,(){}ln A x y e x ==-,{}2|2,11y y x x B x --==≤≤,则()UB A =( )A .()3,+∞B .[)3,+∞C .(),e -∞D .(],e -∞30.(2021·陕西·西安中学高三期中)设集合{}04M x x =<<,{}1N x x a =≤≤,且M N M =,则a 取值范围是( )A .,4B .[)1,4C .(),1-∞D .(),4-∞二、多选题31.(2021·重庆市第七中学校高三月考)已知集合2{|log 0}A x x =≤,集合1{|0}1y B y y +=≥-,集合1{|3}9z D z =≥,则( ) A .A D R = B .A B =∅ C .()R A B D D .R D B32.(2020·全国·高三专题练习)给定数集M ,若对于任意a ,b M ∈,有a b M ,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( ) A .集合{}4,2,0,2,4M =--为闭集合 B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A 为闭集合33.(2022·全国·高三专题练习)设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足A B ⋂=∅的实数a 的取值范围可以是( )A .{|06}a aB .{|2a a 或4}aC .{|0}a aD .{|8}a a34.(2021·河北·藁城新冀明中学高三期末)已知集合,{}0P m =,{}2250,Q x x x x Z =∈-<,若P Q ⋂≠∅,则m 可以等于( )A .1B .2C .25D .335.(2021·山东潍坊·高三期末)设全集为U ,如图所示的阴影部分用集合可表示为( )A .AB B .()U A BC .()()UAB B D .()U A B36.(2022·全国·高三专题练习)设不大于x 的最大整数为[]x ,如[]3.63=.已知集合[]{}1A x x ==-,[]{}0223B x x =+<<,则( ) A .{}10A x x =-≤<B .112A B x x ⎧⎫=-≤≤⎨⎬⎩⎭C .3⎡=-⎣D .102A B x x ⎧⎫=-≤⎨⎬⎩⎭<37.(2021·山东·高三专题练习)已知集合1,44kM x x k Z ⎧⎫==+∈⎨⎬⎩⎭,集合1,84k N x x k Z ⎧⎫==-∈⎨⎬⎩⎭,则( )A .M N =∅B .M NC .M N M =D .M N M =38.(2021·湖南·长沙一中高三月考)已知集合{}2320M x x x =-+≤,{}1N x x =>-,则( )A .N M ⊆B .M N ⊆C .M N ≠∅D .RMN R =39.(2020·全国·高三专题练习)已知集合{1,1}M =-,{|1}N x mx ==,且M N M ⋃=,则实数m 的值可以为( ) A .1 B .-1 C .2 D .0 E.-240.(2020·江苏·东海县石榴高级中学高三月考)设集合{}220M x x x =+-≤,{}2log 1N x x =<,若实数()a M N ∈⋂,则a 的值可以是A .1B .2-C .0.5D .1.5第II 卷(非选择题)三、填空题41.(2022·上海·高三专题练习)若集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,则正实数a 的取值范围是___________42.(2020·上海市嘉定区第二中学高三期中)若集合{}{}|lg 1,|sin ,A x x B y y x x R =<==∈,则A B =________.43.(2021·上海市敬业中学高三月考)已知全集U =R ,集合{}12A x x =->,则U C A =_________.44.(2022·全国·高三专题练习)设集合{}116A x x =-≤+≤,{}121B x m x m =-<<+,若A B ⊇,则m 的取值范围是________.45.(2022·全国·高三专题练习)集合A 满足{}1,3**15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,则集合A 的个数有________个.46.(2020·上海崇明·高三月考)对于集合A 、B ,定义运算{A B x x A -=∈且}x B ∉,若{}11A x x =-<<,{}02B x x =<<,则A B -=__________.47.(2020·上海市行知中学高三开学考试)若{|2132}A x a x a =+≤<-,2{|11100}B x x x =-+<,且A B ⊆,则实数a 的取值范围是_________.48.(2020·上海·模拟预测)已知集合(){}2log 21A x x =-<,31B xx ⎧⎫=<⎨⎬⎩⎭,则A B =______.49.(2021·江苏·高三专题练习)已知集合{}2230M x x x =--≤,{}2322N x a x a =-≤≤+,若M N ⊆,则实数a 的取值范围是______.50.(2021·全国·高三专题练习)已知集合{A x y ==,集合21{2}x B y y -+==,则A B =_________(用区间表达).任务二:中立模式(中档)1-30题 一、单选题1.(2021·全国·高三专题练习(理))设集合A =()6|1ln x x y x ⎧⎫-=⎨⎬+⎩⎭,集合B =()()28115|448x x y y x x ⎧⎫++=≤<⎨⎬⎩⎭,.则ARB =( ) A .2564⎛⎫⎪⎝⎭,B .63610⎛⎤⎥⎝⎦,C .2764⎛⎫⎪⎝⎭,D .R2.(2022·全国·高三专题练习)已知集合{}*N 0A x x y =∈≥∣,若B A ⊆且集合B 中恰有2个元素,则满足条件的集合B 的个数为( ).A .1B .3C .6D .103.(2022·全国·高三专题练习)设U 是一个非空集合,F 是U 的子集构成的集合,如果F 同时满足:①F ∅∈,②若,A B F ∈,则()UA B F ∈且A B F ∈,那么称F 是U 的一个环,下列说法错误的是( )A .若{1,2,3,4,5,6}U =,则{}{}{},1,3,5,2,4,6,U F =∅是U 的一个环B .若{, , }U a b c =,则存在U 的一个环F ,F 含有8个元素C .若U Z =,则存在U 的一个环F ,F 含有4个元素且{2},{3,5}F ∈D .若U =R ,则存在U 的一个环F ,F 含有7个元素且[][]0,3,2,4F ∈4.(2022·全国·高三专题练习)已知集合(){},30A x y x y =-=,(){},10B x y x my =++=.若A B =∅,则实数m =( )A .-3B .13-C .13D .35.(2021·全国·高三专题练习)已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若A B B =,则实数a 的取值集合为( )A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--6.(2022·全国·高三专题练习)已知集合(){},0A x y x ay a =+-=,()(){},2310B x y ax a y =++-=.若AB =∅,则实数=a ( )A .3B .1-C .3或1-D .3-或17.(2020·天津·南开中学模拟预测)由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足MN =Q ,M N =∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素8.(2021·全国·高三专题练习)已知{}22(,)4P x y x y =-=,{}22(,)()1Q x y x a y =-+=,若P Q =∅,则a 的取值范围是( ).A .11a -<<B .a <a >C .1a <-或1a <<D .以上答案都不对9.(2021·山西长治·高三月考(理))集合{})M x N y x =∈=-,集合{}24x P x =<,则M P ⋂=( )A .{}0,1,2B .{}1,2C .{}0,1D .{}110.(2021·甘肃省民乐县第一中学高三月考(理))设U 是全集,若A B U =,则下列关系式一定正确的是( ) A .A B =∅ B .U B C A ⊆ C .U C A B ⊆ D .U U C A C B U =11.(2021·全国·高三专题练习)已知集合{}{|02},{|11},10,A x x B x x C x mx =<<=-<<=+>若()A B C ⊆,则实数m 的取值范围是( ) A .112m ≤≤ B .112m -≤≤ C .102m -≤≤ D .112m -<<12.(2022·全国·高三专题练习)设集合{|24k M x x πππ+==-,}k Z ∈,{|42k N x x ππ==+,}k Z ∈,则( ) A .M N B .M N C .M N ⊆ D .M N13.(2022·全国·高三专题练习)已知(){},11A x y x a y =-+-≤,()}{22,(1)(1)1B x y x y =-+-≤,若集合AB ≠∅,则实数a 的取值范围是( )A .[]1,3-B .1⎡-⎣C .[]3,1-D .[]0,214.(2021·新疆·莎车县第一中学高三期中)已知集合{}13A x x =-<≤,集合{}2B x x =≤,则下列关系式正确的是( )A .AB =∅ B .{}23A B x x =-<≤C .{R1A B x x =≤-或}2x > D .{}R23AB x x =<≤15.(2020·上海市松江二中高三月考)函数2,0()4sin ,0x x f x x x π⎧≤=⎨<≤⎩,则集合{}|[()]0x f f x =元素的个数有( )A .2个B .3个C .4个D .5个16.(2021·全国·模拟预测)已知集合(){}()22,|1,,,{,|2M x y x y x y N x y x y +≤∈∈+≤==Z Z },则集合M ⋂N 中元素的个数是( )A .6B .7C .8D .917.(2021·江苏·模拟预测)已知集合{|2A x cosx =≥,集合2{|20}B x x x =+-≤,则A B =( ) A .2,6π⎡⎤-⎢⎥⎣⎦B .,16π⎡⎤-⎢⎥⎣⎦C .[]2,1-D .,66ππ⎡⎤-⎢⎥⎣⎦18.(2021·全国·高三专题练习){}{}22(,)1,(,),A x y x y B x y x y a A B =+≤=+≤⊆∣,则a 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .[1,)+∞C .)+∞D .[2,)+∞二、多选题19.(2021·广东·普宁市普师高级中学高三月考)已知集合{}220,A x ax x a a R =++=∈,若集合A 有且仅有2个子集,则a 的取值有( )A .2-B .1-C .0D .120.(2021·全国·高三专题练习)定义{A B x x A -=∈,且}x B ∉,()()A B A B B A *=--叫做集合的对称差,若集合{}2,13A y y x x ==+-≤≤,21,15B y y x x ⎧⎫==≤≤⎨⎬⎩⎭,则以下说法正确的是( )A .[]2,10B = B .[)1,2A B -=C .(](]1,25,10A B *=⋃D .A B B A *=*21.(2021·全国·高三专题练习)设全集为U ,下列命题正确的是( ) A .若A B =∅,则()()U U A B U =B .若A B =∅,则A =∅或B =∅C .若A B U =,则 ()()U U A B =∅D .若A B =∅,则A B ==∅22.(2020·全国·高三专题练习)若集合{}sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则正确的结论有( ) A .A B B = B .R R B A ⊆ C .A B =∅ D .R R A B ⊆23.(2022·全国·高三专题练习)设集合{}4xM y y e ==-+,()(){}lg 23N x y x x ⎡⎤==+-⎣⎦,则下列关系正确的是( )A .R RM N ⊆ B .N M ⊆ C .M N =∅ D .R N M ⊆24.(2020·上海市大同中学高三月考)(多选)集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,下列说法正确的是( )A .对任意a ,1P 是2P 的子集B .对任意a ,1P 不是2P 的子集C .存在a ,使得1P 不是2P 的子集D .存在a ,使得2P 是1P 的子集第II 卷(非选择题)三、填空题25.(2021·河南驻马店·模拟预测(文))已知关于x 的不等式50ax x a-<-的解集为M ,则当3M ∈,且5M ∉时,实数a 的取值范围是___________.26.(2021·福建省厦门第二中学高三月考)若x A ∈,则1A x∈,就称A 是伙伴关系集合,集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合个数为_________________.27.(2021·全国·高三专题练习)已知函数22241,0()241,0x x x f x x x x ⎧-+=⎨--+<⎩,A ={x |t ≤x ≤t +1},B ={x ||f (x )|≥1},若集合A ∩B 只含有一个元素,则实数t 的取值范围是____.28.(2021·上海·上外浦东附中高三月考)设不等式20x x -≤的解集为M ,函数()lg(1||)f x x =-的定义域为N ,则MN =_______.29.(2021·上海市七宝中学高三月考)函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x ==∈R ,集()(){}0,B x f f x x ==∈R .若A B =,且A 、B 都不是空集,则m n +的取值范围是________.30.(2020·上海·南汇县泥城中学高三月考)已知集合{}20,1,A m m =+,{}3,2B m =+,若B A ⊆,则m =___________;任务三:邪恶模式(困难)1-20题 一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( ) ①若A 为一个“群”,则A 必为无限集; ②若A 为一个“群”,且a ,b A ∈,则a b A -∈; ③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”; A .1 B .2C .3D .42.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元; ④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( ) A .G Q =,则(),+G 为一个群 B .G R =,则(),G ⨯为一个群 C .{}1,1G =-,则(),G ⨯为一个群 D .G ={平面向量},则(),+G 为一个群3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( )A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( ) A .233B .323C .334D .4545.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .0 B .1C .2D .36.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( ) A .1 B .2C .3D .47.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( ) A .1B .2C .3D .48.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( ) A .4B .6C .8D .910.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( )A .3个B .4个C .5个D .6个11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( ) A .0 B .1 C .2 D .312.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R , C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣ D .整数集Z二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则y A x∈15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M -∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( ) A .A B 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.18.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集.给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面.其中所有正确结论的序号是______.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.。
大连育明中学2024届高三第二轮复习测试卷数学试题(一)
大连育明中学2024届高三第二轮复习测试卷数学试题(一)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线20(0)ax by ab ab ++=>与圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .相交或相切2.若31nx x ⎛⎫+ ⎪⎝⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .563.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个4.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A . B .C .D .5.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( ) A 10B .23C .3D .46.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) A .3B .2C .5D .67.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .608.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( ) A .134-B .54C .5D .1549.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<10.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .811.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π- D .42π-12.已知平面向量,,a b c ,满足||2,||1,b a b c a b λμ=+==+且21λμ+=,若对每一个确定的向量a ,记||c 的最小值为m ,则当a 变化时,m 的最大值为( ) A .14B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
高三数学二轮复习 1.6.1 直线与圆课时巩固过关练 理 新人教版-新人教版高三全册数学试题
课时巩固过关练十五直线与圆(30分钟55分)一、选择题(每小题5分,共20分)1.(2016·某某一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=( ) A.±2 B.± C. D.【解析】选B.抛物线的准线为y=-1,将圆化为标准方程+y2=,圆心到直线的距离为1=⇒m=±.2.(2016·某某一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )A. B.2 C.3 D.4【解析】选C.由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.l1,l2间的距离为=.原点到l2的距离为=,所以点M到原点的距离最小值为+=3.3.(2016·某某二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+ (y-2)2=1相切,则反射光线所在直线的斜率为( )A.-或-B.-或-C.-或-D.-或-【解析】选D.由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为:y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆相切,圆心为(-3,2),所以=1.整理得12k2+25k+12=0,解得:k=-或k=-.4.(2016·某某二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b ∈R且ab≠0,则+的最小值为( )A.1B.3C.D.【解析】选A.x2+y2+2ax+a2-4=0即(x+a)2+y2=4,x2+y2-4by-1+4b2=0即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,当且仅当=,即a=±2b时取等号.二、填空题(每小题5分,共10分)5.(2016·某某高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.【解析】设C(a,0)(a>0),由题意知=,解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=96.(2016·某某二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.【解析】由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.答案:18三、解答题(7题12分,8题13分,共25分)7.(2016·某某一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程.(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.【解析】(1)由圆C:x2+y2-4x-6y+12=0,配方,得(x-2)2+(y-3)2=1,圆心C(2,3).当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.又斜率不存在时直线x=3也与圆相切,故所求切线方程为x=3或3x-4y+11=0.(2)直线OA的方程为y=x,即5x-3y=0,点C到直线OA的距离为d==,又|OA|==,所以S=|OA|d=.8.(2016·某某一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程.(2)求过P点的圆C的弦的中点的轨迹方程.【解析】(1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4.C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.直线l的斜率不存在时,也满足题意,此时方程为x=0.所以所求直线l的方程为x=0或3x-4y+20=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即·=0,所以(x+2,y-6)·(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.【误区警示】在本题(1)的求解中不可忽视直线l斜率的存在性,在由距离公式求出一个k 时应考虑直线斜率不存在的情况,否则会造成漏解.【加固训练】(2016·某某二模)已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.(1)求圆O的方程.(2)圆O与x轴交于E,F两点,圆O内的动点D使得|DE|,|DO|,|DF|成等比数列,求·的取值X围.【解析】(1)圆M的方程可整理为(x-1)2+(y-1)2=8,故圆心M(1,1),半径R=2.圆O的圆心为O(0,0),因为|MO|=<2,所以点O在圆M内,故圆O只能内切于圆M.设圆O的半径为r,因为圆O内切于圆M,所以|MO|=R-r,即=2-r,解得r=.所以圆O的方程为x2+y2=2.(2)不妨设E(m,0),F(n,0),且m<n.由解得或故E(-,0),F(,0).设D(x,y),由|DE|,|DO|,|DF|成等比数列,得|DE|·|DF|=|DO|2,即·=x2+y2,整理得x2-y2=1.而=(--x,-y),=(-x,-y),所以·=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1.由于点D在圆O内,故有得y2<,所以-1≤2y2-1<0,即·∈[-1,0).(30分钟55分)一、选择题(每小题5分,共20分)1.直线l1:ax-y-3=0,l2:2x+by+c=0,则ab=-2是l1∥l2的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.当ab=-2且c=3时,l1与l2重合,而l1∥l2时一定有ab-2×(-1)=0,即ab=-2,所以ab=-2是l1∥l2的必要不充分条件.【加固训练】设向量a=(a,1),b=(1,b)(ab≠0),若a⊥b,则直线b2x+y=0与直线x-a2y=0的位置关系是( )A.平行B.相交且垂直C.相交但不垂直D.重合【解析】选B.由题意知两直线都经过点(0,0),因为a⊥b,所以a·b=a+b=0,所以a=-b,由于直线b2x+y=0的斜率为-b2,直线x-a2y=0的斜率为,则(-b2)·=-1,故两直线垂直.2.已知直线l:x·cosα+y·sinα=2(α∈R),圆C:x2+y2+2cosθ·x+2sinθ·y=0(θ∈R),则直线l与圆C的位置关系是( )A.相交B.相切C.相离D.相切或相离【解析】选D.x2+y2+2cosθ·x+2sinθ·y=(x+cosθ)2+(y+sinθ)2=1,所以圆的圆心坐标为(-cosθ,-sinθ),半径为1,则直线到圆心的距离为d==|2+cos(α-θ)|∈[1,3],所以直线l与圆C的位置关系是相切或相离.3.命题p:0<r<4,命题q:圆(x-3)2+(y-5)2=r2(r>0)上恰好有两个点到直线4x-3y=2的距离等于1,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题导引】先求出圆心到直线的距离,因为到直线4x-3y=2的距离等于1有两条,数形结合可得答案.【解析】选A.因为圆心(3,5)到直线4x-3y=2的距离等于1,所以圆(x-3)2+(y-5)2=r2上恰好有两个点到直线4x-3y=2的距离等于1时,0<r<2,所以q是p充分不必要条件.【加固训练】动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+2+1总有公共点,则圆C的面积( )A.有最大值8πB.有最小值2πC.有最小值3πD.有最小值4π【解析】选D.由题意圆C的圆心在以F为焦点,以x=-1为准线的抛物线上,抛物线方程为y2=4x.因为与直线y=x+2+1总有公共点,所以圆C的面积有最小值,最小半径为抛物线上的点到直线的距离的最小值.设与直线y=x+2+1平行且与抛物线相切的直线方程为y=x+t,由得y2-4y+4t=0,由Δ=0得t=1.所以直线y=x+1与y=x+2+1间的距离=2即为最小半径.所以圆C的最小面积为4π.4.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O为坐标原点,且有|+|≥||,则k的取值X围是( )A.(,+∞)B.[,2)C.[,+∞)D.[,2)【解析】选B.由已知得圆心到直线的距离小于半径,即<2,由k>0得0<k<2. ①如图,又由|+|≥||得|OM|≥|BM|⇒∠MBO≥,因为|OB|=2,所以|OM|≥1,故≥1⇒k≥, ②综合①②得≤k<2.二、填空题(每小题5分,共10分)5.已知直线x+y-a=0与圆x2+y2=2交于A,B两点,O是坐标原点,向量,满足|2-3|=|2+3|,则实数a的值为________.【解析】由|2-3|=|2+3|得·=0,即OA⊥OB,则直线x+y-a=0过圆x2+y2=2与x轴、y轴正半轴或负半轴的交点,故a=±.答案:±【加固训练】已知直线l1与圆x2+y2+2y=0相切,且与直线l2:3x+4y-6=0平行,则直线l1的方程是________.【解析】依题意,设所求直线l1的方程是3x+4y+b=0,则由直线l1与圆x2+(y+1)2=1相切,可得圆心(0,-1)到直线3x+4y+b=0的距离为1,即有=1,解得b=-1或b=9.因此,直线l1的方程是3x+4y-1=0或3x+4y+9=0.答案:3x+4y-1=0或3x+4y+9=06.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且=6,则圆C的方程为________.【解题导引】先求圆心坐标,再利用点到直线的距离公式求圆心到直线的距离,最后根据勾股定理求圆的半径.【解析】设所求圆的半径为r,抛物线y2=4x的焦点坐标为(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,故圆C的方程是x2+(y-1)2=10.答案:x2+(y-1)2=10【加固训练】已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,则△PAB面积的最大值是________.【解析】依题意得圆x2+y2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是-+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,△PAB面积的最大值为×2×=3+.答案:3+三、解答题(7题12分,8题13分,共25分)7.已知半径为2,圆心在直线y=-x+2上的圆C.(1)当圆C经过点A(2,2),且与y轴相切时,求圆C的方程.(2)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值X 围.【解析】(1)因为圆心在直线y=-x+2上,半径为2,所以可设圆的方程为(x-a)2+[y-(-a+2)]2=4,其圆心坐标为(a,-a+2).因为圆C经过点A(2,2),且与y轴相切,所以有解得a=2,所以圆C的方程是(x-2)2+y2=4.(2)设Q(x,y),由|QF|2-|QE|2=32,得(x-1)2+(y+3)2-[(x-1)2+(y-1)2]=32,解得y=3,所以点Q在直线y=3上.又因为点Q在圆C:(x-a)2+[y-(-a+2)]2=4上,所以圆C与直线y=3必须有公共点.因为圆C的圆心的纵坐标为-a+2,半径为2,所以圆C与直线y=3有公共点的充要条件是1≤-a+2≤5,即-3≤a≤1.所以圆心的横坐标a的取值X围是[-3,1].8.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为☉H.(1)若直线l过点C,且被☉H截得的弦长为2,求直线l的方程.(2)对于线段BH上的任意一点P,若在以点C为圆心的圆上都存在不同的两点M,N,使得点M 是线段PN的中点,求☉C的半径r的取值X围.【解析】(1)线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y-3=0,所以外接圆圆心为H(0,3),半径为=,☉H的方程为x2+(y-3)2=10.设圆心H到直线l的距离为d,因为直线l被☉H截得的弦长为2,所以d==3.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线l的方程为y-2=k(x-3),则=3,解得k=,直线l的方程为4x-3y-6=0.综上,直线l的方程为x=3或4x-3y-6=0.(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y),因为点M是线段PN的中点,所以M,又M,N都在半径为r的☉C上,所以即因为此关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2≤(3-6+m)2+(2-4+n)2≤(r+2r)2,又3m+n-3=0,所以r2≤10m2-12m+10≤9r2对∀m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为,故r2≤且10≤9r2.又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对∀m∈[0,1]成立,即r2<.故☉C的半径r的取值X围为.【加固训练】已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值X 围;若不存在,说明理由.【解析】方法一:(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),因为点M为弦AB的中点,即C1M⊥AB,所以·k AB=-1,即·=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由=得k=±,又k DE=-k DF=-=,结合上图可知当k∈∪[-,]时,直线l:y=k(x-4)与曲线C只有一个交点.方法二:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,所以圆C1的圆心坐标为C1(3,0).(2)设M(x,y),因为A,B为过原点的直线l与圆C1的交点,且M为AB的中点,所以由圆的性质知:MC1⊥MO,所以·=0.又因为=(3-x,-y),=(-x,-y),所以由向量的数量积公式得x2-3x+y2=0.易知直线l的斜率存在,所以设直线l的方程为y=mx,当直线l与圆C1相切时,d==2,解得m=±.把相切时直线l的方程代入圆C1的方程化简得9x2-30x+25=0,解得x=.当直线l经过圆C1的圆心时,M的坐标为(3,0).又因为直线l与圆C1交于A,B两点,M为AB的中点,所以<x≤3.所以点M的轨迹C的方程为x2-3x+y2=0,其中<x≤3,其轨迹为一段圆弧.(3)由题意知直线l表示过定点(4,0),斜率为k的直线,把直线l的方程代入轨迹C的方程x2-3x+y2=0,其中<x≤3,化简得(k2+1)x2-(3+8k2)x+16k2=0,其中<x≤3,记f(x)=(k2+1)x2-(3+8k2)x+16k2,其中<x≤3.若直线l与曲线C只有一个交点,令f(x)=0.当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,解得x=∈,所以k=±满足条件.当Δ>0时,①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意.②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一个根,满足题意.③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-<k<.故在区间上有且仅有一个根,满足题意.综上所述,k的取值X围是-≤k≤或k=±.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想三(等价转化)1.设M={y|y=x+1, x ∈R}, N={ y|y=x 2+1, x ∈R},则集合M ∩N 等于 ( ) A.{(0,1),(1,2)} B.{x|x ≥1} C.{y|y ∈R} D.{0,1} 2.三棱锥的三个侧面两两垂直,它们的面积分别为M,N,Q ,则体积为 ( )A.32MNQB.42MNQC.62MNQD.82MNQ3.若3sin 2+2sin 2=2sin,则y= sin 2+sin 2的最大值为( ) A.21 B.32 C.94 D.92 4.对一切实数x ∈R ,不等式x 4+(a-1)x 2+1≥0恒成立,则a 的取值范围为 ( ) A.a ≥-1 B.a ≥0 C.a ≤3 D.a ≤15.(1-x 3)(1+x)10的展开式中,x 5的系数是 ( ) A.-297 B.-252 C.297 D.2076.方程|2|)1(3)1(32++=-+-y x y x 表示的曲线是 ( )A.圆B.椭圆C.双曲线D.抛物线7.AB 是抛物线y=x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 长度的最大值 ( ) A.45 B.25C.2D.4 8.马路上有编号为1,2,3,4,5,6,7,8,9的9只路灯,为节约用电,可以把其中的3只路灯关掉,但不能同时关掉相邻的2只或3只,也不能关掉两端的路灯,则满足条件的关灯方法共有___________________种。
9.正三棱锥A BCD 的底面边长为a ,侧棱长为2a ,过B 点作与侧棱AC,AD 都相交的截面BEF ,则截面⊿BEF 的周长的最小值为_______________ 10.已知方程x 2+mx+m+1=0的两个根为一个三角形两内角的正切值,则 m ∈________________________________________ 11.等差数列{a n }的前项和为S n , a 1=6,若S 1,S 2,S 3,···S n ,···中S 8最大,问数列{a n -4}的前多少项之和最大?12.已知抛物线C :y=ax 2-(3a+21)x+2a+)0(23≠a (1)求证:无论a 取何值,抛物线C 恒过两定点A(x 1,y 1),B(x 2,y 2) (2)x ∈[x 1,x 2],(x 1<x 2)时,不等式ax 2- (3a+21)x+2a+x123≥恒成立,求a 的取值范围?13.设x,y ∈R,i ,j 为直角坐标平面内x,y 轴正方向上的单位向量;若=x +(y+2) ,= x +(y-2) ,||+||=8(1)求动点M(x,y)的轨迹C 的方程;(2)过点(0,3)作直线L 与曲线C 交于A,B 两点,设=+,是否存在直线L ,使得四边形OAPB 是矩形?若存在,求出L 的方程;若不存在,说明理由。
数学思想二(分类讨论 )1.已知椭圆1522=+m y x 的离心率510=e ,则m 的值为 ( ) A 3 B. 3或325C. 5D.3155或15 2空间四边形ABCD 中,边AB,CD 所在直线所成的角为300,E,F 分别为边BC,AD 的中点,则直线EF 与AB 所成的角为. ( )A.750B.150 C .750或150 D 900 3.非零实数a ,b ,c 则由||||||||abc abc c c b b a a +++的值组成的集合是 ( ) A.{-4,4} B.{0,4} C. {-4,0} D. {-4,0,4} 4.每天上午有4节课,下午有2节课,安排5门不同的课程,其中安排一门课上连堂,则一天课表的排法种数为( )A. 480B. 600C. 720D. 3605过双曲线1222=-y x 的右焦点的直线l 交双曲线成于点A,B ,当线段AB 的长为4时,直线l 的条数为. ( )A.1B.2C. 3D. 4 6.f (x )=(a -x )|3a -x |,a 是正常数,下列结论正确的是A. 当x=2a 时,有最小值0B.当x=3a 时,有最大值0C.无最大值,且无最小值D.有最小值,但无最大值7.设数列{a n }的通项为a n =2n-7,则| a 1 | +| a 2 |+┅+| a n |=_________________________8.对于任意实数x ,不等式02)1()1011(22>+--+--x a x a a 恒成立,则实数a 的取值范围是________________________9. 已知数列a n =n 2-mn 为增数列,则实数m 的取值范围是______________________10.直线l 过点(2,3),且在两坐标上截距相等,则l 的方程为_____________________11.解关于x 的不等式04)1(22>++-x a ax a ∈R12.已知动圆C 与定圆O:x 2+y 2=1及直线l:x =3都相切,求圆心C 到点P(m,0)距离的最小值13.已知直角坐标平面上点Q(2,0)和圆C: x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹数学思想—函数与方程1.若对任意实数x ,|x -3|+|x -2|>a 均成立,则a 的取值范围是 ( )A. 0≤a <1B. a <1C. a ≥1D. a >12.若a >1,且a -x +log a y <a -y + log a x ,则x,y 之间的关系是 ( )A. x >y >0B. x =y >0C. y >x >0D. 不能确定 3.若关于x 的方程)lg(12a x x -=-有正数解,则实数a 的取值范围是 ( )A. -10< a ≤0B.-1<a ≤0C. 0≤a <1D. 0≤a <2 4.曲线y =2x 4上的点到直线y =-x -1的距离的最小值为( ) A.2 B.22 C. 32D. 16255.已知抛物线y =x 2-1上一定点B(-1,0),两动点P,Q ,当BP ⊥PQ 时,点Q 的横坐标的取值范围是 ( )A.)3,(--∞B.),1[+∞C.[]1,3-D.),1[)3,(+∞⋃--∞6.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出3人参加一项调查活动,若至少有一名女生去参加的概率为f (x ),则f (x )max =_______________7.⎩⎨⎧+∞∈-∞∈=-),1( log ]1,( 2)(81x x x x f x ,则满足f (x )=0.25的x 值为________________8.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列,且f (0)=-4,则f (x )有最____值(填大小),且该值为_______________9已知f (x+y )= f (xy ) x ,y ∈R,若f (2002)=8,则f (2003)=______________10.已知点A(0,1),B(2,3),抛物线y =x 2+mx +2,若抛物线与线段AB 相交于两点,则实数m 的取值范围为___________________11.若数列{a n }的前几项和s n =p-2+p a n (p>1,p ≠2,n ∈N +)(1)求证:{a n }成等比列;(2)对一切正整数n ,当a n+1> a n 时,求p 的取值范围。
12.已知n ∈N +,n ≥2,求证:221)1211()711)(511)(311(nn +>-++++13. 已知直线l:y=4x 和点P(6,4),在直线l 上求一点Q (Q 点在第一象限),使直线PQ,OQ 和x 轴正向围成的三角形面积最小,并求出最小面积.数学思想—数形结合一.选择题:1.使sinx ≤cosx 成立的x 的一个变化区间是 ( ) A. ]4,43[ππ-B. ]2,2[ππ-C.]43,4[ππ- D. ],0[π2.0<a <1,函数y =a x 与y =(a -1) x 2的图像只可能是 ( )A. B. C. D.3.已知线段AB 的两个端点的坐标为A(2,-3),B(-3,-2),直线l 过点P(1,1)与线段AB 相交,则直线l 的斜率k 的取值范围是 ( ) A. 4-≤k ≤43 B. k ≤-4或k ≥43 C. k ≠51- D. k ∈R 4.集合M={(x,y )| x 2+y 2=9 (0< y <1)},集合N={(x,y )| y = x +b},若M ∩N ≠Φ,则实数b 满足( )A.23-≤b ≤23B.-3≤b ≤23C.0<b ≤23D. -3<b ≤235.已知x, y 之间的关系式x 2+y 2-6x-6y +17=0,则xy( ) A.既有最大值,又有最小值 B. 既无最大值,又无最小值 C. 有最大值,而无最小值 D. 无最大值,有最小值 6.设α是第二象限的角,则有 ( ) A.2cos 2sin αα> B.2cos2sinαα< C.2cot2tanαα>D.2cot2tanαα<二.填空题:7.方程x 2-2| x |-p=0有两个不相等的实数根,则常数p 的值为__________________________8.已知方程ax 2+bx +a =0 (ab >0)的解集为Φ,则a 2+b 2-2b 的取值范围是___________________9.函数418922+-++=x x x y 的最小值为_______________10. 已知x , y ∈R 且⎪⎩⎪⎨⎧≤-+≥+-≥+-07207302154y x y x y x ,则z =x +2y 的最大值为________________ 三.解答题:11. 已知f (x )=(x +1)|x -1|,方程f (x )= x +m 有三个不同的实数解,求实数m 的取值范围12.设f (x )是x 在[-1,1]上的偶函数,f (x )与g(x )的图象关于x =1对称,且当x ∈[2,3]时,g(x )=2a (x -2)-4(x -2)3 (a 为常数) ①求函数f (x )的表达式:②设a ∈(2,6)或a ∈(6,+∞),分别求a 的值,使f (x )的最大值为12.13.P 是双曲线12222=-by a x 上任意一点,过P 作与双曲线渐近线平行的直线分别与这两条直线交于Q,R ,求证:平行四边形OQPR 的面积是与P 的位置无关的常数,并求此常数。