上海交大版大学物理参考答案

合集下载

上海交大版大学物理第三章参考答案

上海交大版大学物理第三章参考答案

版权归原著所有 本答案仅供参考习题33-1.如图,一质点在几个力作用下沿半径为20R m =的圆周运动,其中有一恒力0.6F i =N ,求质点从A 开始沿逆时针方向经3/4圆周到达B 的过程中,力F所做的功。

解:本题为恒力做功,考虑到B 的坐标为(R -,R ), ∴2020B A r r r i j ∆=-=-+,再利用:A F r =⋅∆,有:0.6(2020)12A i i j =⋅-+=-(焦耳)3-2.质量为m =0.5kg 的质点,在x O y 坐标平面内运动,其运动方程为x =5t 2,y =0.5(SI),从t =2s 到t =4s 这段时间内,外力对质点的功为多少?解:由功的定义:A F r =⋅∆ ,题意:250.5r t i j =+24(4)(2)60r r r i →∆=-=,220.5105d r F m i i d t==⋅=∴560300A i i J =⋅=。

3-3.劲度系数为k 的轻巧弹簧竖直放置,下端悬一小球,球的质量为m ,开始时弹簧为原长而小球恰好与地接触。

今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。

解:由于小球缓慢被提起,所以每时刻可看成外力与弹性力相等,则:F k x =,选向上为正向。

当小球刚脱离地面时:max mg kx =,有:max mgx k=, 由做功的定义可知:max222122mg x k m g A k xd x k x k===⎰。

3-4.如图,一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力数值为N ,求质点自A 滑到B 的过程中,摩擦力对其做的功。

分析:f A 直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。

解:求在B 点的速度:2v N G m R -=,可得:R G N mv )(21212-=由动能定理: 2102f mgR A mv +=-∴11()(3)22f A N G R mgR N mg R =--=-3-5.一弹簧并不遵守胡克定律,其弹力与形变的关系为2(52.838.4)F x x i =-- ,其中F和x 单位分别为N 和m 。

上海交大第三版大学物理学答案上册

上海交大第三版大学物理学答案上册

第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。

上海交大版大学物理第二章参考答案

上海交大版大学物理第二章参考答案

版权归原著所有 本答案仅供参考习题22-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。

当2st =时,求:(1) 质点的位矢; (2) 质点的速度。

解:由 x x f a m =,有:x a 263m /168s ==,2/167s m m f a y y ==(1) t dt a v v txx x 83200+-=+=⎰ 20001632)832(t t dt t dt v x x t t x +-=+-=+=⎰⎰t dt a v v t y y y 167000+=+=⎰2000327167t tdt dt v y y t t y ==+=⎰⎰于是2秒时质点的位矢为:)m )(87413(j i j y i x r+-=+=(2)于是质点在2s 时的速度: )m/s (8745j i v+-=2-2 摩托快艇以速率v 0行驶,它受到的摩擦阻力与速率平方成正比,可表示为F = -kv 2(k 为正值常量)。

设摩托快艇的质量为m ,当摩托快艇发动机关闭后,求: (1) 求速率v 随时间t 的变化规律; (2) 求路程x 随时间t 的变化规律;(3) 证明速度v 与路程x 之间的关系为x0ek v v '-=,其中m k k /='。

解:(1)由牛顿运动定律F ma =得:2d vkv md t-=,分离变量有2k d v d t m v -=,两边积分得:速率随时间变化的规律为011kt v v m=+; (2)由位移和速度的积分关系:0tx v dt =⋅⎰,积分有:000111ln()ln 1tk k k x dt t k m v m m v t v m=⋅=+-+⎰由于此题路程和位移相等,∴路程随时间变化的规律为:0ln(1)k kx v t m m=+ ; (3)由2d v d xkv m d x d t-=⋅,k d v d x m v -=,∴00x v v k dv dx m v -=⎰⎰ 积分有: )exp(0x mkv v -=)(0x k e v '-=,其中m k k ='2-3.质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。

上海交大版大学物理习题册下册答案

上海交大版大学物理习题册下册答案

大学物理(下册)答案第十一章 静电场【例题精选】例11-1 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30x qa επ. (C) 302x qa επ. (D) 204x qεπ. [ B ]例11-2半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r的关系曲线为:[ B ]例11-3 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ B ]例11-4一半径为R 的带有一缺口的细圆环,缺口长度为 d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E = ;场强方向为 .()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点. 例11-5 均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为______。

带电直线的延长线与球面交点P 处的电场强度的大小为_____,方向________。

0/ελd ; ()2204d R d-πελ ;沿矢径OP例11-6 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,EO r(A) E ∝1/r有一电荷为q 的正点电荷,如图,则通过该平面的电场强度通量为 (A)03εq . (B) 04επq (C) 03επq . (D) 06εq [ D ] 例11-7 两块“无限大”的均匀带电平行平板,其电荷面密度分别 为σ( σ>0)及-2 σ,如图所示。

试写出各区域的电场强度E 。

Ⅰ区E 的大小__________________,方向____________。

大学物理上海交通大学章课后习题答案

大学物理上海交通大学章课后习题答案

习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。

解:圆弧在O 点的磁感应强度:00146I I B R R μθμπ==,方向:;直导线在O 点的磁感应强度:000203[sin 60sin(60)]4cos602IIB R R μμππ=--=,方向:⊗;∴总场强:031)23IB Rμ=-,方向⊗。

14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。

(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。

解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。

(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B aR x μ=++, 右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x ,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。

对B 求一阶导数:当0x =时,0d Bd x =,可见在O 点,磁感应强度B 有极值。

对B 求二阶导数:当0x =时,202x d B d x ==222072223[()]2a R I R a R μ-+,可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d B d x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d B d x ==,说明磁感应强度B在O 点附近的磁场是相当均匀的,可看成匀强磁场。

上海交大版大学物理第九章参考答案

上海交大版大学物理第九章参考答案

版权归原著所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=1.3g /L 。

容器与大气相通排出一部分气体后,气压下降了0.78atm 。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV LP ⨯=则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少?解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H H Om mM M =,代入数据有: 1.6O m kg = 。

9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少? 解:已知氮气和氧气质量相同,水银滴停留在管的正中央,则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

大学物理下册(上海交大第四版)课后习题解答

大学物理下册(上海交大第四版)课后习题解答
大学物理课程(下册)课后习题选解
12-4. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为 ,四分之 一圆弧 AB 的半径为 R ,试求圆心 O 点的场强. 解:设 O 为坐标原点,水平方向为 x 轴,竖直方向为 y 轴 半无限长导线 A 在 O 点的场强 E 1
(i j ) 4 0 R
U1
则内球电荷:
4 0 R1
q1

4 0 R2
q1

Q q1 0 4 0 R3
q1
外球电势:
R1 R2 Q R1 R3 R3 R2 R1 R2
U2
电势差:
Q q1 Q( R1 R2 ) 4 0 R3 4 0 ( R1 R3 R3 R2 R1 R2 ) Q( R1 R2 ) 4 0 ( R1 R3 R3 R2 R1 R2 )
B0
B2

L2
由于两段圆弧电流对 O 的磁感应强度方向相反,所以
14-10. 在 半径 R 1cm 的 无 限 长 半 圆 柱 形 金 属 片 中 , 有 电 流 I 5A 自下而上通过,如图所示。试求圆柱轴线上一点 P 处的磁 感应强度的大小。 解:将半圆柱形无限长载流薄板细分成宽为 dl Rdθ 的长直电流
根据安培环路定理
B dL
0
I
B
0
2
(R 2 r 2 )
(2) 带电长直圆柱体旋转相当于螺线管, 端面的磁感应强度是中间磁感应强度的一半, 所以端面的磁感应强度
B
0 R 2
4
14-16. 如图所示的空心柱形导体,柱的半径分别为 a 和 b ,导体内载有电 流 I ,设电流 I 均匀分布在导体横截面上。证明导体内部各点( a < r < b ) 的磁感应强度 B 由下式给出:

《大学物理学》答案(上海交大版)上下册 2

《大学物理学》答案(上海交大版)上下册 2

0.003
4-7. 有质量为 2m 的弹丸,从地面斜抛出去,它的落地点为 x c 。如果它在飞行到最高点处爆炸成质量相等的两碎
片。其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。问第二块碎片落在何处。 解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为 xc。
v2 R
根据圆周运动的规律:T-G= M (2)根据冲量定理可得:
v2 T M g M1 84.6N R
I mv mv0 0.02 570 11.4 N s
4-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子, 巳知电子的动量为 1.2 10
22
(2) m3 v μm3 g t
t
v 0.2 0.1s μg 0.2 10
4-12. 一质量为 M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为 k . 一质量为 m 的子弹射入木块后,弹簧长度被压缩了 L . (1)求子弹的速度;(2)若子弹射入木块的深度为 s ,求子弹所受的平均阻力。 解: (1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,
m1v0 (m1 m2 m 3 )v m1v0 (m1 m2 )v
1 2
v 0.2 m s
m1 5 2 1 v0 ms m1 m2 5 25 3
v
1 2
m3 gs (m1 m2 )v 2 (m1 m2 m3)v 2
1 1 (m1 m2 )v 2 (m1 m2 m3)v 1 2 s 2 m m3 g 60
kg m/s ,中微子
的动量为 6.4 1023 kg m/s ,两动量方向彼此垂直。 (1)求核反冲动量的大小和方向; (2)已知衰变后原子核的质量 为 5.8 10

大物上海交大课后答案第二章

大物上海交大课后答案第二章

⼤物上海交⼤课后答案第⼆章习题22-1质量为16kg 的质点在xOy 平⾯内运动,受⼀恒⼒作⽤,⼒的分量为6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。

当2s t =时,求: (1) 质点的位⽮; (2) 质点的速度。

解:由x x f a m =,有:x a 263m /168s ==,27m /16y y f a s m -== (1)2003522m /84x x xv v a dt s =+=-+?=-?, 200772m /168y y y v v a dt s -=+=?=-?。

于是质点在2s 时的速度:57m /s 48v i j =--(2)22011()22x y r v t a t i a t j =++1317(224)()428216i j -=-?+??+?137m 48i j =--2-2 质量为2kg 的质点在xy 平⾯上运动,受到外⼒2424=- F i t j 的作⽤,t =0时,它的初速度为034=+v i j ,求t =1s 时质点的速度及受到的法向⼒n F 。

解:解:由于是在平⾯运动,所以考虑⽮量。

由:d v F m d t= ,有:24242d v i t j dt -=? ,两边积分有:0201(424)2v t v d v i t j dt =-?? ,∴3024v v t i t j =+- ,考虑到034v i j =+ ,s t 1=,有15v i =由于在⾃然坐标系中,t v ve = ,⽽15v i =(s t 1=时),表明在s t 1=时,切向速度⽅向就是i ⽅向,所以,此时法向的⼒是j ⽅向的,则利⽤2424F i t j =- ,将s t 1=代⼊有424424t n F i j e e =-=-,∴24n F N =-。

2-3.如图,物体A 、B 质量相同,B 在光滑⽔平桌⾯上.滑轮与绳的质量以及空⽓阻⼒均不计,滑轮与其轴之间的摩擦也不计.系统⽆初速地释放,则物体A 下落的加速度是多少?解:分别对A ,B 进⾏受⼒分析,可知:A A A m g T m a -=2B B T m a =12B A a a =则可计算得到:45A a g =。

大学物理教程上海交大答案

大学物理教程上海交大答案

1习题11-1.解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2解:(1)由24(32)r t i t j =++ ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d r v dt= ,有速度:82v t i j =+从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+。

1-3解:(1)由d rv dt = ,有:22v t i j =+ ,d v a dt = ,有:2a i =;(2)而v v =,有速率:1222[(2)2]v t =+=∴t dv a dt==222t n a a a =+有:n a ==1-4. 解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- (1)22012y v t at =+ (2)12y y d += (3)(注意到1y 为负值,有11y y =-) 联立求解,有:t =。

解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:t ==1-5解:(1)如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;(2)联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+(为抛物线方程); (3)∵201()2r v t i h g t j =+-,∴0d rv i g t j d t=- , 即:0v v i g t j =-,d v g j d t=-在落地瞬时,有:t =∴0d r v i j d t = 又∵v ==,∴212220[()]g t dvdt v gt ==+。

大学物理上海交大参考答案

大学物理上海交大参考答案

大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。

其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。

学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。

本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。

第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。

答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。

2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。

答案:根据牛顿第二定律F = ma,可以得到F = ma。

第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。

所以气体对外界所做的功为W = P1(V1 - V2)。

2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。

所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。

第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。

答案:电容器储存的电能为E = (1/2)CU^2。

2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。

答案:电感器的电压为U = IX。

第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。

答案:光线的折射率为n = sinθ1 / sinθ2。

2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。

大学物理上海交通大学后题全部答案

大学物理上海交通大学后题全部答案

习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。

解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:4123.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。

11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。

解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。

解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。

解:以O 为坐标原点建立xOy 坐标,如图所示。

①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。

(完整版)(上海交大)大学物理上册课后习题答案1质点运动

(完整版)(上海交大)大学物理上册课后习题答案1质点运动

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v ϖ=,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)rt i t j =++v v v,式中r ϖ的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。

解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)从0=t 到1=t s 的位移为:j i j j i r r r ϖϖϖϖϖϖϖϖ243)54()0()1(+=-+=-=∆(3)由d rv dt =v v ,有速度:82v t i j =+v v v0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v ,式中r ϖ的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v ϖ=,有速率:12222[(2)2]21v t t =+=+∴tdv a dt=21t =+,利用222t n aa a =+有: 22221n t a a a t =-=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。

容器与大气相通排出一部分气体后,气压下降了。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。

9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

9-4.高压氧瓶:71.310p Pa =⨯,30V L =,每天用51 1.010p Pa =⨯,1400V L =,为保证瓶内6' 1.010p Pa ≥⨯,能用几天解:由''pV p V =,可得:761.31030'390' 1.010pV Pa LV L p Pa⨯⨯===⨯, ∴'360V V V L ∆=-=;而:11'p V p V ∆=∆,有:615' 1.010********.010p V Pa LV L p Pa∆⨯⨯∆===⨯, 那么:能用的天数为36009400/Ln L ==天天 。

9-5.如图,长金属管下端封闭,上端开口,置于压强为0p 的大气中。

在封闭端加热达11000T K =,另一端保持2200T K =,设温度沿管长均匀变化。

现封闭开口端,并使管子冷却到100K ,求管内压强。

解:根据题意,管子一端11000T K =,另一端保持2200T K =, 所以,温度沿管长线性分布,设管长为l ,函数关系为:()200T x kx =+,其中:lk 800=。

由公式:molmpV RT M =,考虑到金属管上端开口,有:0()moldmp Sd x RT x M =, ∴0000001ln 200200l l l mol p S p S m R d l p S d x k x M T k x k===++⎰⎰()00200800ln ln 5200800p S l p Vk l ⋅+==⋅ 当封闭开口端,并使管子冷却到100K 时,有''molmp V RT M =,而'100T K =,再考虑到管子封闭前后的m 不变,有:0'ln 58p p =。

9-6.氢分子的质量为243.310g -⨯,如果每秒有2310个氢分子沿着与容器器壁的法线成 45角的方向以510/cm s 的速率撞击在22.0cm 面积上(碰撞是完全弹性的),则器壁所承受的压强为多少 解:由:02cos 45F t n mv ⋅∆=⋅,再根据气体压强公式:F p S=,有:F p S=27330432102 3.310102cos 45212310 2.310Pa n mv t S --⨯⨯⨯⨯⋅===∆⋅⨯⨯⨯ 。

9-7.一容器内储有氧气,其压强 1.0p atm =,温度300T K =,求容器内氧气的(1)分子数密度;(2)分子间的平均距离; (3)分子的平均平动动能; (4)分子的方均根速度。

解:(1)由气体状态方程nkT p =得:5253231.013102.4510/1.3810300p n m kT -⨯===⨯⨯⋅; (2)分子间的平均距离可近似计算:93.4410e m -===⨯;(3)分子的平均平动动能:2321331.3810300 6.211022k T J ε--==⋅⨯⋅=⨯;(4)分子的方均根速度:m/s 44.48332==molM RTv 。

9-8.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2/1/21=V V ,则其内能之比21/E E 为多少解:根据pV RT ν=,有:11112222p V Tp V T νν=,因题设条件为12p p =,2/1/21=V V ,可得:2/1/2211=T T νν,又∵氦气是单原子分子,知:3521=i i , 那么内能之比为:1111222251523262i RT E i E RT νν==⨯= 。

9-9.水蒸气分解为同温度的氢气和氧气,即H 2O→H 2+,内能增加了多少解:水蒸气分解后,一份的水分子的内能变成了份的双原子的内能,而水分子的自由度为6,氢气和氧气作为刚性双原子分子,其自由度均为5,利用气体内能公式:2iE RT ν=,所以内能的变化为:05560.5 1.522225%662RT RT RTE E RT +⨯-∆=== 。

9-10.体积为20L 的钢瓶中盛有氧气(视为刚性双原子气体),使用一段时间后,测得瓶中气体的压强为2atm ,此时氧气的内能为多少解:由理想气体状态方程:pV RT ν=,以及双原子气体内能公式:52E RT ν=, 可得到:5345552 1.01310201010222E RT pV J ν-===⨯⨯⨯⨯⨯= 。

9-11.已知某种理想气体,其分子方均根率为400/m s ,当其压强为1atm 时,求气体的密度。

解: ∵m V ρ=,由气体方程:m pV RT μ=p RTμρ⇒=,又∵==,∴5323 1.01310 1.9/400kg m ρ⨯⨯===。

9-12.容器的体积为2V 0,绝热板C 将其隔为体积相等的A 、B 两个部分,A 内储有1mol 单原子理想气体,B 内储有2mol 双原子理想气体,A 、B 两部分的压强均为p 0。

(1)求A 、B 两部分气体各自的内能;(2)现抽出绝热板C ,求两种气体混合后达到平衡时的压强和温度。

解:(1)由理想气体内能公式:RT iE 2ν=A 中气体为1mol 单原子理想气体:00333222A A A E RT RT p V ===,B 中气体为2mol 双原子理想气体:00552522B B B E RT RT p V =⨯==;(2)混合前总内能:,000000042523V P V P V P E =+=混合后内能不变,设温度为T ,有:003542E RT RT p V =+=∴ 00813p V T R=;00000003833122221313N p V p nkT kT RT R p V V V R ====⨯=9-13.金属导体中的电子,在金属内部作无规则运动(与容器中的气体分子类似),设金属中共有N 个自由电子,其中电子的最大速率为 m v ,电子速率在~v v d v +之间的概率为:20 00 m Av d v v v d N N v v ⎧≤⎪=⎨>⎪⎩,式中A 为常数.则电子的平均速率为多少解:由平均速率的定义:0()v v f v d v ∞=⎰,考虑到:()d Nf v d v N=, 有:2414m v m v v A v d v Av =⋅=⎰ 。

9-14.大量粒子(100102.7⨯=N 个)的速率分布函数图象如图所示,试求:(1)速率小于m/s 30的分子数约为多少(2)速率处在m/s 99到m/s 101之间的分子数约为多少(3)所有0N 个粒子的平均速率为多少(4)速率大于m/s 60的那些分子的平均速率为多少 解:根据图像信息,注意到()d Nf v Nd v=。

图形所围的面积为分子的全部数目,有:()1N f v d v N ==⎰,所以,利用 13012012a +⨯=(),有:24103a -=⨯,809.610N a =⨯。

(1)速率小于m/s 30的分子数:100130 1.44102NN a =⨯⨯=⨯个;(2)速率处在m/s 99到m/s 101之间的分子数:10110120099899()(26 6.410)0vN N f v d v N a a d v ==-=⨯∆⎰⎰个;【或:100201019089 6.415(2)()2(2)6030v N N a a v vN a ∆=--⨯=-=】 (3)所有0N 个粒子的平均速率:先写出这个分段函数的表达式:(030)30(3060)()2(60120)600(120)avv av f v v a a v v ⎧≤≤⎪⎪≤≤⎪=⎨⎪-≤≤⎪⎪>⎩由平均速率定义:0()v v f v d v ∞=⎰,有:306012003060(2)54/3060a vv v v d v v a d v v a a d v m s =⋅+⋅+⋅-=⎰⎰⎰; (4)速率大于60/m s 的那些分子的平均速率:120606012060(2)]6080/(2)]60v v a a d v v m s va a d v >-==-⎰⎰。

9-15.理想气体分子沿x 方向的速度分布函数:2122()()2x m v kTx mf v e kTπ-=,试据此推导压强公式nkT P =(已知:220x x e d x β∞-=⎰解:由于压强为2x v nm p =,关键在求出N 个分子在x 方向上速度分量平方的平均值:,而:212222200()()2xmv kT i x x x x x x m k T v v f v d v v e d v kT mπ-∞∞===⎰⎰故:21Ni xi vp n mn k T N===∑ 。

9-16.在麦克斯韦分布下,(1)计算温度1300T K =和=2T 600K 时氧气分子最可几速率1p v 和2p v ;(2)计算在这两温度下的最可几速率附近单位速率区间内的分子数占总分子数的比率;(3)计算300K 时氧分子在p 2v 处单位速率区间内分子数占总分子的比率。

相关文档
最新文档