离散数学PowerPoint 演示文稿12

合集下载

离散数学集合论部分PPT课件

离散数学集合论部分PPT课件
其中P(x)为任何谓词公式。 如:A={x|x∈R ∧ x2+1=0}。 该方程无实数解。 注意: φ ≠{φ } 由定义可知,对任何集合A,有A。这是因为任意元素x,公式xxA总是 为真。
第23页/共193页
注意: 与{}是不同的。 {}是以为元素的集合, 而没有任何元素,能 用构成集合的无限序列: ,{},{{}},···
例 设A={{1,2,3}, 1,2,3}, 则 {1,2,3} A 且 {1,2,3} A 。
第27页/共193页
重要结论
➢对任意集合A, 有A A。 ➢空集是任意集合的子集,且空集是唯一的。 ➢对于任意两个集合A、B,A=B的充 要条件是AB且BA。(这个结论非常简单, 但它非常重要,很多证明都是用这个Fra bibliotek法或思路来证明。)
第2页/共193页
集合的基本概念
例:
1. 二十六个英文字母可以看成是一个集合;
2. 所有的自然数看成是一个集合; 3. 重庆邮电大学计算机学院2010级的本科学生可以看成是一个集合; 4. 这间教室中的所有座位可以看成是一个集合。
第3页/共193页
集合的元素
组成一个集合的那些对象或单元称为这 个集合的元素。通常,用小写的英文字母a, b, c,…表示集合中的元素。元素可以是单 个的数字也可以是字母,还可以是集合。
下列选项正确的是( 3 );
(1) 1A
(2){1,2,3} A
(3){{4,5}} A (4) ØA
例3.4 下列各选项错误的是(2);
(1) Ø Ø
(2) Ø Ø
(3) Ø { Ø }
(4) Ø { Ø }
例3.5 在0 ___ Ø 之间填上正确的符号:(4)

离散数学_图论123页PPT

离散数学_图论123页PPT

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
Hale Waihona Puke 离散数学_图论1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

离散数学(集合论)ppt课件

离散数学(集合论)ppt课件
0 1 n n C C ... C 2 n n n
15
幂 集 定义
P(A) = { B | BA }
设 A={a,b,c},则 P(A)={,{a},{b},{c},{a,b},{a,c},{b,c}{a,b,c}}
计数: 6
2.真子集: A B A B A B
真包含
3.集合相等: A B A B 且 B A
14
n元集,m元子集
含有n个元素的集合简称n元集,它的含有m 个(m≤n)元素的子集称为它的m元子集. 例题3.2:A={a,b,c},求A的全部子集. 0元子集,即空集,只有1个. 1 1元子集,即单元集, c 个 {a},{b},{c} 3 2 元子集 个 {a,b},{a,c}{b,c} 2 3元子集1个c 3 {a,b,c} n元集的集合个数为:
2
当时德国数学家康托尔试图回答一些涉及无穷量 的数学难题,例如“整数究竟有多少?”“一个 圆周上有多少点?”0—1之间的数比1寸长线段 上的点还多吗?”等等。而“整数”、“圆周上 的点”、“0—1之间的数”等都是集合,因此对 这些问题的研究就产生了集合论。
3
1903年,一个震惊数学界的消息传出:集合论 是有漏洞的!这就是英国数学家罗素提出的著名 的罗素悖论。 可以说,这一悖论就象在平静的数 学水面上投下了一块巨石,而它所引起的巨大反 响导致了第三次数学危机。
19
集合基本运算的定义

交 相对补 对称差
AB = { x | xA xB }
AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA) = (AB)(AB)
绝对补

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。

离散数学PowerPoint 演示文稿12

离散数学PowerPoint 演示文稿12

练习与作业
1.求下列命题公式的真值表 (1) l (q→p) (2) lp∨q (3) l q→lp 思考:比较上述三题与 p→q 真值表 2.将下列命题符号化 (1)王威是100米冠军,又是200米冠军. (2)虽然天气很冷,老王还是来了. (3)他一边吃饭,一边看电视. (4) 如果天下大雨,他就乘公共汽车上班 (5) 只有天下大雨,他才乘公共汽车上班 (6)除非天下大雨,否则他不乘公共汽车上班 (7)不经一事,不长一智.
, ,
: :


定义1.1.5
令P与Q是两个命
题,由命题联结词把P和Q连接
成P Q,称P Q为命题P和Q 的双条件式复合命题, 简称双 条件命题, P Q读做“P当 且仅当Q”,称为双条件联结词。
表 1.1.5 P Q 0 0 0 1 1 0 1 1
的定义 PQ 1 0 0 1
例1.3 将下列命题符号化. (1)张路即聪明又用功. (2)张路不仅聪明,而且用功. (3)张路虽然不太聪明,但他很用功. (4)张路不是不聪明,而是不用功, 解 设 P:张路聪明,Q:张路用功. 则(1)到(4)分别符号化P∧Q, P∧Q lP∧Q , l(lP)∧lQ
定义.1.3
设P和Q
为两个命题,由命题

区别:
是逻辑联结词,
属于目标语言中的符号,它出现在
命题公式中;不是逻辑联结词,
表示两个命题公式的一种关系,不
属于这两个公式的任何一个公式中 的符号。
2.
序号 1
基本等价式——命题定律
定律名称 基本定律 双从否定律 AA
2
3 4 5
等幂律
交换律 结合律 分配律
A∧AA
,

《离散数学概述》PPT课件

《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律

交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。

【精品】离散数学PPT课件(完整版)

【精品】离散数学PPT课件(完整版)
一个简单命题.
13
联结词与复合命题(续)
3.析取式与析取联结词“∨” 定义 设 p,q为二命题,复合命题“p或q”称作p与q 的析取式,记作p∨q. ∨称作析取联结词,并规 定p∨q为假当且仅当p与q同时为假.
例 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“” 定义 设 p,q为二命题,复合命题 “如果p,则q” 称 作p与q的蕴涵式,记作pq,并称p是蕴涵式的 前件,q为蕴涵式的后件. 称作蕴涵联结词,并 规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
19
例 求下列复合命题的真值 (1) 2 + 2 = 4 当且仅当 3 + 3 = 6. (2) 2 + 2 = 4 当且仅当 3 是偶数. (3) 2 + 2 = 4 当且仅当 太阳从东方升起. (4) 2 + 2 = 4 当且仅当 美国位于非洲. (5) 函数 f (x) 在x0 可导的充要条件是它在 x0
解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学]PPT课件

离散数学]PPT课件
《定义》 设A是集合,A的所有子集(作为元素)的集合 称为A的幂集。
(c)同一集合可以用多种不同的形式表示。 (d)集合也可作为某一集合的元素。
例:S={a,{1,2},p,{q}}
§1集合的概念和表示法
(3)三个特殊集合:空集、全集合、集合族 《定义》如果一个集合包含了所要讨论的每一个集合,
则称该集合为全集合,简称全集,用E表示。 E={x | p(x) ∨ p(x)} p(x)为任何谓词公式
§1集合的概念和表示法
注意:区分“”和“”的关系: “”关系是指集合和该集合中元素之间的关系。
例:S={a,{b},c} 则a S,{b}S,c S 而“”关系是指二个集合之间的关系。
例:S1={a, b} S2={a,b,1,2} 则S1 S2 若A不包含于B,则也可表示成AB 《定理》设E是全集,A是一个集合,则一定有
《定义》不拥有任何元素的集合称为空集(或称零集), 用表示 ={x | p(x) ∧ p(x) }={ }
注意: ≠ {} 前者是空集,是没有元素的集合;后 者是以作为元素的集合。
§1集合的概念和表示法
《定义》集合中的元素均为集合,称这样的集合为集合 族。 例A={{a},{b},{c、d}}
2、集合之间的关系 《公理》给定二个集合A和B,当且仅当A和B具有同样
§1集合的概念和表示法
例:大于10的整数的集合:S1={x | x I ∧ x>10} 偶整数集合:S2={x | y (y I ∧ x=2y)} 有限个元素集合: S3={1,2,3,4,5}={x | x I ∧ (1 ≤ x ≤ 5) } S4={F,T}={x | x=T ∨ x=F} S5={1,4}={ x | (x²-5x+4=0) }

数学离散数学PPT课件

数学离散数学PPT课件
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))

离散数学PPT【共34张PPT】

离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
符号集

运算优级:
高 低
当合式公式比较复杂时,常常使用很 多圆括号,为了减少圆括号的使用量
可作以下约定:
①规定联结词的优先级由高到低的次序
为:l、∧、∨、→、
②相同的联结词按从左至右次序计算时,
圆括号可省略。
③最外层的圆括号可以省略。
2 lim(1 ) x x
例1.4 将下列命题符号化 (1)若3+3=6,则地球是运动的. (2)只要a是4的倍数 a就是2的倍数. (3) a是4的倍数,仅当a是2的倍数. (4)只有a是2的倍数 a才是4的倍数 解 设P 3+3=6 Q 地球是运动的 R a是4的倍数 S a是2的倍数 则 (1)可符号化为P→Q (2)__ (4)可符号化为R→S
每一种可能的真值指派,以及由它们
确定出的公式真值所列成的表,称为 该公式的真值表。
含n(n1)个命题变项的公式 A共 有
2 个赋值.
n
例1.7
p 0 0 0 0 1 1 1 1 q 0 0 1 1 0 0 1 1
求下列命题公式的真值表
(1)
r 1 0 1 0 1 0 1 0
(p∧lq)→r
lq 1 1 0 0 1 1 0 0 p∧lq 0 0 0 0 1 1 0 0 (p∧lq)→r 1 1 1 1 1 0 1 1
1.2
命题公式与赋值
1. 命题变元
在命题逻辑中,命题又有命题常 元和命题变元之分。一个确定的 具体的命题,称为命题常元;一 个不确定的泛指的任意命题,称 为命题变元。
命题变元不是命题,只有用一 个特定的命题取代才能确定它 的真值:真或假。这时也说对 该命题变元指派真值。 命题常元和命题变元均可用字 母P等表示。由于在命题逻辑 中并不关心具体命题的涵义, 只关心其真值,因此,可以形 式地定义它们如下:
定义1.1.4
→的定义 P→Q 1 1 0 1
自然语言中, “只要P就Q”,“P仅 当Q”,“只有P才Q” 等都可以符 号化 为P→Q的形式. 自然语言中, “如果P则Q”中的P与 Q往往有某种内在的联系,而在数 理逻辑中,P与Q不一定有联系. 在数学和其他自然科学中,“如果P 则Q”表示的前件P为真,后件Q为 真的推理关系,但数理逻辑中不同
例1.1 判断下列句子中哪些是命题.
(1) (2) (3) (4) (5) (6) (7) (8) (9) 2是素数. x+y>9. 太阳从西方升起. 乌鸦是黑色的. 这个男孩多勇敢啊! 明年中秋节的晚上是晴天. 您贵姓? 请把门开开! 地球外的星球上也有生物
如果一陈述句再也不能分解成更为简单 的语句,由它构成的命题称为原子命题. 原子命题是命题逻辑的基本单位。 命题分为两类,第一类是原子命题,原
两个命题,由命题联 结词∧将P和Q连接 成P∧Q,称P∧Q为
命题P和Q的合取式
复合命题,P∧Q读
做“P与Q” , 或“P
且Q”。 称∧为合取
表 1.1.2 ∧的定义 P Q P∧Q 0 0 0 0 1 0 1 0 0 1 1 1
联结词.
自然语言中,既…又…,不但…而且… 虽然…但是… 等都可以符号化为∧
主要内容
1.1 命题与联结词 1.2 命题公式与赋值 1.3 等值演算 1.4 析取范式与合取范式
1.5命题逻辑的推理理论
1.1 命题与联结词
1. 命题的概念
所谓命题,是指具有非真必假的陈述句。而 疑问句、祈使句和感叹句等因都不能判断其 真假,故都不是命题。命题仅有两种可能的 真值—真和假,且二者只能居其一真用1或T 表示,假用0或F表示。由于命题只有两种真 值,所以称这种逻辑为二值逻辑。命题的真 值是具有客观性质的,而不是由人的主观决 定的。
A∧FF,A∨TT
9 10 11
同一律 排中律 矛盾律
A∧TA,A∨FA A∨AT A∧AF
12
13
蕴涵 等值式 A→BA∨B
等价等值式
AB(A→B)∧ (B→A) (A∧B)∨(A∧B) A→BB→A AB AB
例1.3 将下列命题符号化. (1)张路即聪明又用功. (2)张路不仅聪明,而且用功. (3)张路虽然不太聪明,但他很用功. (4)张路不是不聪明,而是不用功, 解 设 P:张路聪明,Q:张路用功. 则(1)到(4)分别符号化P∧Q, P∧Q lP∧Q , l(lP)∧lQ
定义.1.3
设P和Q
为两个命题,由命题
A∧BB∧A,A∨BB∨A
(A∧B)∧CA∧(B∧C), (A∨B)∨CA∨(B∨C),
A∧(B∨C)(A∧B)∨(A∧C) A∨(B∧C)(A∨B)∧(A∨C)
6 7 8
德·摩根律 (A∧B) A∨ B
(A∨B) AA
克拉玛依职业技术学院
制作人:卢自娟 2007年9月10日
第一部分 数理逻辑
引言
数理逻辑主要包括两部分的 内容,命题逻辑和一阶逻辑.命题逻 辑是研究由命题为基本单位构成的 前提和结论之间的可推导关系. 一 阶逻辑又称谓词逻辑.
案例 :
一个公安人员审查一件盗窃案,已 知下列事实: (1) 甲或乙盗窃了 DVD (2) 若甲盗窃了DVD,则作案时间不能发 生在午夜前; (3)若乙的证词正确,则午夜时灯光未灭; (4)若乙的证词不正确,则作案时间发生 在午夜前; (5)午夜时屋里灯灭了. 试问:盗窃DVD的是甲还是乙
2x
3. 命题赋值
定义1.7
设 p1 , p2 ,, pn 是出现在 公式A中的全部命题变项,给 p1 , p2 ,, pn 各指定一个真值, 称为对A的一个赋值 或解释. 若指定的一组值使A的值为1, 则称这组值为A的成真赋值.若使A的值 为0,则称这组值为A的成假赋值.


定义1.8
对于公式中命题变元的
, ,
: :


定义1.1.5
令P与Q是两个命
题,由命题联结词把P和Q连接
成P Q,称P Q为命题P和Q 的双条件式复合命题, 简称双 条件命题, P Q读做“P当 且仅当Q”,称为双条件联结词。
表 1.1.5 P Q 0 0 0 1 1 0 1 1
的定义 PQ 1 0 0 1
为否定联结词 (否定联结词“l”的定义可
由表1.1.1表示之).
表 1.1.1 P 1 0
的定义 P 0 1
例: P:
10是素数
真值为F
真值为T 真值为T 真值为F
lp: 10不是素数
Q: 5是素数 lQ 5不是素数
由于“否定”修改了命题,它是对 单个命题进行操作,称它为一元联
定义1.2
设P和Q为
(2) (p→(q∨p)) ∨r
p 0 0 0 0 1 1 1 1 q 0 0 1 1 0 0 1 1 r 1 0 1 0 1 0 1 0
q∨p p→(q∨p) (p→(q∨p)) ∨r
0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
(3) l (p→q)
.
解 设R:谢丹生于1972年 S: 谢丹生于1973年 Q: 吕小洲学过德语 M:吕小洲学过法语 N:派老王到上海开会 H:派老李到上海开会 则: (1) 可符号化为R∨S ; (2)可符号化为Q∨M ; (3)可符号化为(N∧lH)∨(lN∧H)
设P和 Q为两个命题,由 命题联结词→把P 表 1.1.4 和Q连接成P→Q, P Q 称P→Q为命题P和 Q的条件式复 合命 0 0 题 , 简称条件命题 0 1 P→Q 读做 “P条 1 0 件Q”或者 “若P则 1 1 Q”。称→为条件联 结词
定义1.6
以真或1、假或
0为其变域的变元,称为命
题变元;真或1、假或0称为 命题常元。
2.合式公式
通常把含有命题变元的断言称为命题公
式.但这没能指出命题公式的结构, 因为
不是所有由命题变元、联结词和括号所
组成的字符串都能成为命题公式。常使
用归纳定义命题公式,以便构成的公式
有规则可循。由这种规定产生的公式称
练习与作业
1.求下列命题公式的真值表 (1) l (q→p) (2) lp∨q (3) l q→lp 思考:比较上述三题与 p→q 真值表 2.将下列命题符号化 (1)王威是100米冠军,又是200米冠军. (2)虽然天气很冷,老王还是来了. (3)他一边吃饭,一边看电视. (4) 如果天下大雨,他就乘公共汽车上班 (5) 只有天下大雨,他才乘公共汽车上班 (6)除非天下大雨,否则他不乘公共汽车上班 (7)不经一事,不长一智.
p
0 0 0 0 1
∧q∧r(记为A)
l (p→q) l (p→q) ∧q
0 0 0 0 1 0 0 0 0 0
q
0 0 1 1 0
r p→q
0 1 0 1 0 1 1 1 1 0
A
0 0 0 0 0
1
1 1
0
1 1
1
0 1
1
0 1
0
1 0
0
1 0
0
0 0
定义1.9
设A为一命题公式
(1) 若A在它的各种赋值下取值均为 真,则称A为永真式(或重言式); (2) 若A在它的各种赋值下取值均为 假,则称A为永假式(或矛盾式); (3) 若A不是永假式,则称A是可满 足的;
为合式公式。
定义1.6
合式公式是由下列规则
生成的公式: ①单个命题变项(或常项)是合式公式。 ②若A是一个合式公式,则(lA)也是一 个合式公式。 ③若A、B是合式公式,(A∧B)、(A∨B)、
(A→B)和(A B)都是合式公式。
④只有有限次使用①、②和③生成的公
式才是合式公式(也称公式)。

区别:
是逻辑联结词,
相关文档
最新文档