人教版七年级数学上册第一章--《有理数》总复习教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《有理数》总复习
一、内容分析
小结与复习分作两个部分。第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:
小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。本章的主要内容可以概括为有理数的概念与有理数的运算两部分。因此,本章总复习的二课时这样安排(测验课除外):
第一课时复习有理数的意义及其有关概念;
第二课时复习有理数的运算。
三、教学方法的确定:
设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:
第一课时:
本节课将复习有理数的意义及其有关概念。其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;
1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:
对有理数的五个概念:有理数、数轴、相反数、绝对值、倒数的理解与运用。
三、教学难点:
对绝对值概念的理解与应用。
四、教学过程:
(一)知识梳理:
1、正数与负数:(给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。)
回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?
2、有理数的分类:(通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。)
(1)请说出下列各数哪些是整数、分数、正整数、负分数、非负数?(课本P62第一题)
3.5 , -3.5, 0, | -2|, -2, -531, -3
1, 0.5; (2)请将上面的各数按一定的标准分成两类,并说明你是根据什么来分类的?若要分成三类,又该怎样分?分类的标准又是什么?
3、相反数、倒数、绝对值:
说出8个数的相反数、倒数、绝对值。
4、数轴:
(1)请你画一条数轴;并说一说画数轴时要注意什么?
(2)在你所画的数轴上表示出上面的8个数。
5、有理数大小的比较:
(1)请你将上面的8个数用“>”连接起来,并说明你是怎样解决这个问题的?(2)说一说比较两个有理数的大小有哪些方法?
6、有理数的乘方:
(1)a n(其中n是正整数)表示什么意思?其中a、n的名称分别是什么?(2)当a、n满足什么条件时,a n的值大于0?
7、科学记数法、近似数和有效数字:(通过2个问题引导学生回顾)
(1)将数13445000000000用科学记数法表示(保留三个有效数字)
(2)请你说出1.6与1.60这两个近似数有什么不同?
(二)课堂练习:
1下列说法是否正确,请把不正确的说法改正过来:
(1)若一个数的绝对值等于5,则这个数是5 。
(2)若一个数的倒数等于它的本身,则这个数是1。
(3)若一个数的平方等于4,则这个数是2 。
(4)若一个的立方等于它的本身,则这个数是0或1 。
(5)(- 2 ) 2 与 –22 互为相反数。
(6)只有负数的绝对值才等于它的相反数。
(7)所有的有理数都能用数轴上的点表示出来。
2、选择题:
(1)下列说法正确的是()
A 若a >b ,则|a|>|a|
B 若a >b ,则a 2>b 2
C 若a >b 则a 1>b
1 D 若a >|b|,则a >b (2)一个数的偶次幂与它的奇次幂互为相反数,这个数是( )
A 、1
B 、-1
C 、0
D 、-1或0
(3)如果a 、b 互为相反数,x 、y 互为倒数,m 的绝对值为1,那么代数式
xy m m
b a -++2的值是 ( )
A 、0
B 、1
C 、-1
D 、2
3、写出符合下列条件的数。
(1)最小的正整数;(2)最大的负整数;(3)大于-3且小于2的所有整数;
(4)绝对值最小的有理数;(5)绝对值小于5的所有整数;
(6)在数轴上,与表示-1的点的距离为2的所有数。
4、比较下列各组数的大小:
(1)- 5/6和-7/8;
(2)-(-0.01)和- 10。
(3)-π和-3.14;
5、观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。
(1)-23,-18,-13, , ;
(2)64
5,324,163,82--, , ; (3)-2,-4,0,-2,2, , 。
(三)课堂小结:
要注意的几个问题
(1)有理数的两种分类经常用到,应注意它们的区别;
(2)数轴的三要素缺一不可,利用数轴可直观地比较有理数的大小;
(3)相反数指的是两个仅符号不同的数,数轴上表示一对相反数的两个点到原点的距离相等,它们的和为0;而倒数指的是两个乘积为1的数;
(4)一个数的绝对值总是非负数,数a 的绝对值是数轴上表示数a 的点到原点的距离;
(四)布置作业:
课本P62第2、3、6题。
课本P63第12、13题。