脉冲编码调制(PCM)系统讲解
第3章 脉冲编码调制(PCM).
注意:
(1 )在一定的取值范围内把量化值多取几个(量化级增多),也 就是把量化间隔变小,则量化噪声就会减小。
如,量化间隔取成0.5->量化值变成14个->量化噪声变为0.25。
显然量化噪声与量化间隔成反比。 (2)在实际中,不可能对量化分级过细,过多的量化值将直接导致
系统的复杂性、经济性、可靠性、方便性、维护使用性等指标的
2 再将无限个可能的抽样值(不是指抽样点的个数,而是每个
抽样点的可能取值)变成有限个可能取值,我们称之为量化; 3 对量化后的抽样值用二进制(或多进制)码元进行编码,就 可得到所需要的数字信号。所谓编码就是用一组符号(码组)取 代或表示另外一组符号(码组或数字)的过程。 这种将模拟信号经过抽样、量化、编码三个处理步骤变成数 字信号的A/D转换方式称为脉冲编码调制(PCM,Pulse Code Modulation)。
y
=2 55
=3 0 =0
0
0 .2
0 .4
0 .6
0 .8
1 .0
x
0
0 .2
0 .4
0 .6
0 .8
1 .0
x
(a) A 律压缩特性
(b) 律压缩特性
图3―5 两种对数压缩特性示意图
μ 律最早由美国提出, A 律则是欧洲的发明,它们都是 CCITT
(国际电报电话咨询委员会)允许的标准。 目前,欧洲主要采用 A律,北美及日本采用 μ律,我国采用A律
y 1.0 7/8 6/8 5/8 4/8 3/8 2/8 1/8 1/16 1/8 1/128 1/64 1/32 0 0.2 1/4 1/2 1.0 x
(2) 把输出信号的幅度也归一化(纵坐标),并均匀分成8个区间,
脉冲编码调制PCM及其数字通信的特点
A / D变化
m(t) 抽样
量化 mq(t) 编码
信道 干扰
ms(t)
低通 滤波
译码
m(t)
mq(t)
PCM系统原理框图
•2
7
量化电平数 5 M= 8 3
1 0
4 .3 8 2 .2 2
5 .2 4 2 .9 1
精 确 抽样 值 量化值
Ts
2 .2 2
4 .3 8
5 .2 4
2 .9 1
2
4
5
3
•4
数字通信的许多优点都是用比模拟通信占据更宽的系统 频带为代价而换取的。以电话为例,一路模拟电话通常只 占据4kHz带宽,但一路接近同样话音质量的数字电话可能 要占据 20~60kHz的带宽,因此数字通信的频带利用率不 高。另外,由于数字通信对同步要求高,因而系统设备比 较复杂。不过,随着新的宽带传输信道(如光导纤维)的 采用、 窄带调制技术和超大规模集成电路的发展,数字通 信的这些缺点已经弱化。随着微电子技术和计算机技术的 迅猛发展和广泛应用,数字通信在今后的通信方式中必将 逐步取代模拟通信而占主导地位。
•5
脉冲编码调制(PCM)
脉冲编码调制(PCM)简称脉码调制,它是一种用 一组二进制数字代码来代替连续信号的抽样值,从而 实现通信的方式。由于这种通信方式抗干扰能力强, 它在光纤通信、数字微波通信、卫星通信中均获得了 极为广泛的应用。
PCM是一种最典型的语音信号数字化的波形编码 方式, 其系统原理框图如图所示。首先,在发送端进 行波形编码(主要包括抽样、量化和编码三个过程), 把模拟信号变换为二进制码组。编码后的PCM码组的 数字传输方式可以是直接的基带传输,也可以是对微 波、光波等载波调制后的调制传输。在接收端,二进 制码组经译码后还原为量化后的样值脉冲序列,然后 经低通滤波器滤除高频分量,便可得到重建信号。 •1
通信原理-脉冲编码调制(PCM)
第3章 脉冲编码调制(PCM)
通常我们用模拟信号(Analogsignal)和数字信号 (Digitalsignal)的英文头一个字母把模拟信号变成数 字信号的过程简称为A/D转换,把数字信号变成模拟信 号的过程简称为D/A转换。图1―3中的信源编码实际上 就是A/D转换,信源解码也就是D/A转换。
第3章 脉冲编码调制(PCM)
3.2 抽样
PCM过程可分为抽样、量化和编码等三步,第一 步是对模拟信号进行信号抽样。所谓抽样就是不断地 以固定的时间间隔采集模拟信号当时的瞬时值。图 3―1是一个抽样概念示意图,假设一个模拟信号f(t)通 过一个开关,则开关的输出与开关的状态有关,当开 关处于闭合状态,开关的输出就是输入,即y(t)=f(t), 若开关处在断开位置,输出y(t)就为零。
第3章 脉冲编码调制(PCM)
而 收 信 端 恢 复 的 只 能 是 量 化 后 的 信 号 m(t) , 而 不 能恢复出k(t),这样就使得收、发的信号之间有误差。 显然,这种存在于收、发信号之间的误差是由量化造 成的,我们称其为量化误差或量化噪声。比如在上例 中,量化间隔为1,由于采用“四舍五入”进行量化, 因此量化噪声的最大值是0.5。一般地说,量化噪声的 最大绝对误差是0.5个量化间隔。这种量化间隔都一样 的量化叫做均匀量化。
第3章 脉冲编码调制(PCM)
那么如果我们在一定的取值范围内把量化值多取 几个(量化级增多),也就是把量化间隔变小,则量 化噪声就会减小。比如,把量化间隔取成0.5,则上例 的量化值就变成14个,量化噪声变为0.25。显然量化噪 声与量化间隔成反比。但是在实际中,我们不可能对 量化分级过细,因为过多的量化值将直接导致系统的 复杂性、经济性、可靠性、方便性、维护使用性等指 标的恶化。比如,7级量化用3位二进制码编码即可; 若量化级变成128,就需要7位二进制码编码,系统的 复杂性将大大增加。
脉冲编码调制(PCM)系统.
脉冲编码调制(PCM)系统摘要:脉冲编码调制(PulseCodeModulation),简称PCM。
是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。
PCM的优点就是音质好,缺点就是体积大。
PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
关键字:脉冲编码调制、取样、量化、编码、解码Abstract:Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses.Keywords:Pulse code modulation, modulation, demodulation目录一、工作原理 (4)1.1 取样 (5)1.2 量化 (5)1.3 编码 (7)1.4 再生 (10)1.5 解码 (10)二、芯片选择 (11)2.1 TP3067管脚定义 (13)三、电路设计 (14)四、心得体会 (16)一、工作原理:脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。
脉冲编码调制PCM
脉冲编码调制(PCM)什么是脉冲编码调制(PCM)脉冲编码调制(Pulse Code Modulation,简称PCM)是一种数字通信技术,用于将模拟信号转化为数字信号进行传输。
PCM是一种有损压缩算法,它将连续模拟信号离散化成固定的采样值,并使用一定的编码方案进行表示。
脉冲编码调制的原理脉冲编码调制的原理主要包括三个步骤:采样、量化和编码。
采样采样是指对连续的模拟信号进行间隔一定时间采集取样。
采样过程中,将模拟信号的幅度值在时间轴上不断取样并离散化。
采样率是指每秒钟采集的样本数,通常以赫兹(Hz)为单位。
较高的采样率可以更准确地还原模拟信号。
量化量化是指将采样得到的模拟信号幅度值映射到离散的数值上,以减少数据量。
量化的单位被称为量化水平或量化位数,通常以比特(bit)为单位。
较高的量化位数可以提供更高的精度,但也会增加数据量。
编码编码是将量化后的离散信号转换为二进制码流,以便通过数字通信系统进行传输。
常用的编码方式包括直接二进制编码(Differential Pulse Code Modulation,DPCM)、调制码(Delta Modulation,DM)和PAM(脉冲幅度调制)等。
脉冲编码调制的应用脉冲编码调制广泛应用于音频、视频和数据传输等领域。
以下是一些常见的应用场景:电话通信脉冲编码调制被广泛应用于传统的电话通信系统中。
通过PCM,模拟信号可以转换成数字化的信号,并通过电话网络进行传输。
音频编码在音频编码中,PCM被用于将模拟音频信号转换为数字音频信号,以便于储存和传输。
常见的音频编码标准包括CD音质的16位PCM编码和DVD音质的24位PCM编码。
数字视频在数字视频处理中,PCM常用于将模拟视频信号转换为数字视频信号,以实现高质量的视频编码和传输。
PCM可以通过降低采样率和量化位数,来减小视频数据的体积。
数据传输PCM也广泛用于数据传输领域,特别是在传输需要高精度和可靠性的信号时。
5.10 脉冲编码调制(PCM) 信号系统课件
的范围内。
•组合多种新源传输时具有灵活性;
•便于实现各种数字信号处理功能。
缺点: PCM信号传输时占用频带加宽,例如
语音信号
300Hz~3400Hz 4kHz
抽样率
8kHz
8位脉冲编码
64kHz
X
在实际的数字通信系统中,除直接传送PAM信 号之外,还有多种传输方式,其中应用最为广泛的一 种调制方式称为脉冲编码调制(PCM)。
在PCM通信系统中,把连续信号转换成数字(编 码)信号进行传输或处理,在转换过程中需要利用 PAM信号。
X
PCM通信系统简化框图
f t
信源
抽样
发送端
fs0 t
量化编码
pt
5.10 脉冲编码调制(PCM)
•PCM通信系统简化框图 •量化 •编码原理示意图 •PCM的优缺点
北京邮电大学电子工程学院 2002.3
引言
第 2
页
利用脉冲序列对连续信号进行抽样产生的信号成 为脉冲幅度调制(PAM)信号,这一过程的实质是 把连续信号转换为脉冲序列,而每个脉冲的幅度与各 抽样点信号的幅度成正比。
A/D
第 3 页
f D t
至数字信道
fˆD t
D/A
自数字信道
fs0 t
接收端
1 补偿 Sa(x)
f t
终端
X
第 4 页
X
第 5 页
X
PCM的优缺点
第 6
页
•提高了信噪比:
模拟通信系统——中继器——噪声累加;
PCM——数字通信系统——再生器——噪声不会累加;
合理设计A/D,D/A变换器可将量化噪声限制在相当微弱
脉冲编码调制PCMPPT学习教案
i
01 2 3
4
5
6
78
y = i/8
0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
x=(2i - 1)/255 0 1/255 3/255 7/255 15/255 31/255 63/255 127/255 1
斜率 255 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024
误差大小
1 2 4 8
第41页/共43页
第42页/共43页
§3.4 标量量化
一、标量量化
量化过程就是把一个连续幅度值的无限数集合映射成一
个离散幅度值的有限集合。
3.9
4.2
3.4
3.2
2.8
1.2
x 模拟入
Q(x) 量化器
y 量化值
4 3
3
011
100
011
3 1
011
001
4 100
第12页/共43页
重建电平
yk xk
x k+1
分层电平
x k+2
§3.5 最佳量化器
段号
12 3
45
6
7
8
由于其第1段和第2段的斜率不同, 不能合并为一条直线,故考虑 交流电压正负极性后,共得到 15段折线。
第36页/共43页
μ律:
0—1/255作为第一区间; 1/255—3/255作为第二区间; 3/255—7/255作为第三区间; 7/255—15/255作为第四区间; 15/255—31/255作为第五区间; 31/255—63/255作为第六区间; 63/255—127/255作为第七区间; 127/255—1作为第八区间;
PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线
PCM(脉冲编码调制)介绍及PCM编码的原理摘要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
另外,还可以存储,时间标度变换,复杂计算处理等。
而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。
这里重点讨论模拟信号数字化的基本方法——脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。
本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PCM的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM 译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。
关键词:脉冲编码调制抽样非均匀量化编码译码AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, its advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications systems, reliability and confidentiality.Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog signal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than uniform quantizationKeywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前言 (1)2 PCM原理 (2)2.1 引言 (2)2.2 抽样(Sampling) (3)2.2.1. 低通模拟信号的抽样定理 (3)2.2.2 抽样定理 (4)2.2.3. 带通模拟信号的抽样定理 (7)2.3 量化(Quantizing) (8)2.3.1 量化原理 (8)2.3.2均匀量化 (10)2.3.3 非均匀量化 (11)2.4 编码(Coding) (18)2.5 译码 (24)2.6 PCM处理过程的其他步骤 (26)2.7 PCM系统中噪声的影响 (27)3 算例分析 (29)3.1 无噪声干扰时PCM编码 (30)3.2 噪声干扰下的PCM编码 (36)结论 (42)致谢 (43)参考文献 (44)附录 (45)1 前言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
脉冲数字调制
脉冲数字调制脉冲数字调制(Pulse Code Modulation,PCM)是一种数字信号处理技术,它将模拟信号转换为离散的数字信号。
通过将模拟信号的振幅进行采样和量化,然后编码成二进制码字,PCM能够准确地表示原始模拟信号,并方便地进行传输和存储。
在PCM中,首先需要对模拟信号进行采样,即以一定的频率对模拟信号进行离散取样。
采样频率越高,所得到的数字信号越接近原始模拟信号。
然后,对每个采样值进行量化,即将其映射到离散的量化水平上。
量化的精度决定了数字信号的分辨率,通常用位数来表示。
例如,8位量化可以表示256个不同的量化水平。
经过采样和量化后,PCM将每个采样值编码成二进制码字。
编码方式有多种,常见的是使用二进制补码表示。
编码后的二进制码字可以方便地进行传输和存储,同时也能够保持较高的信号质量。
通过解码,可以将数字信号恢复成模拟信号,从而实现信号的重建。
脉冲数字调制在通信和音频领域具有广泛的应用。
在通信中,PCM 常用于语音信号的数字化和传输。
通过采样和量化,人的声音可以被准确地数字化,并可以通过网络或其他传输介质进行传输,从而实现远程通信。
在音频领域,PCM被广泛应用于音频录制和存储。
将模拟音频信号转换为数字信号后,可以方便地进行后续处理、编辑和存储,同时也提高了音频的保真度。
除了通信和音频领域,脉冲数字调制还在其他领域有着重要的应用。
例如,在工业控制系统中,PCM可以将模拟传感器信号转换为数字信号,以实现精确的测量和控制。
在医学图像处理中,PCM可以将模拟医学图像转换为数字信号,以便进行图像增强、分析和诊断。
尽管脉冲数字调制在各个领域都有广泛的应用,但也存在一些限制和挑战。
首先,高采样率和高量化精度会增加系统的复杂性和成本。
其次,传输和存储数字信号需要更大的带宽和存储空间。
此外,由于量化误差和编码误差的存在,PCM无法完全还原原始模拟信号。
因此,在实际应用中,需要根据具体需求和资源限制进行合理的采样率和量化精度的选择。
简述脉冲编码调制技术 -回复
简述脉冲编码调制技术-回复脉冲编码调制(PCM)是一种用于数字通信系统中的传输技术,它将模拟信号转换为数字信号,并通过对数字信号进行编码和调制来进行传输和解调。
PCM技术被广泛应用于语音通信、数据通信、音频和视频传输等领域。
下面将详细介绍脉冲编码调制技术的原理、应用和优势。
一、脉冲编码调制的原理脉冲编码调制技术基于采样定理,即根据奈奎斯特定理,采样频率应为模拟信号的最高频率的两倍。
PCM技术首先对模拟信号进行采样,将模拟信号离散化为一系列的采样值。
然后,通过量化将采样值映射到离散的数字量级,并编码成二进制码字。
最后,通过调制将二进制码字转换为相应的数字信号进行传输。
在脉冲编码调制技术中,主要有以下几个步骤:1. 采样:将连续的模拟信号在一定的时间段内进行离散采样,得到一系列的采样值。
2. 量化:将采样值映射到离散的量化级别上。
量化级别的数量取决于所使用的量化器的分辨率。
3. 编码:将量化后的采样值转换为二进制码字。
编码可以使用不同的编码方案,如自然二进制编码、格雷码等。
4. 调制:将二进制码字转换为对应的数字信号进行传输。
常用的调制方式包括脉冲幅度调制(PAM)、脉冲位置调制(PPM)和脉冲宽度调制(PWM)等。
脉冲编码调制技术的原理主要包括采样、量化、编码和调制四个步骤。
这些步骤的顺序和参数设置对脉冲编码调制的性能和传输质量起着重要作用。
二、脉冲编码调制的应用脉冲编码调制技术被广泛应用于数字通信系统中,特别是语音和视频通信方面。
下面将介绍一些常见的应用领域。
1. 语音通信:PCM技术是传统电话系统中的基本技术,它将模拟语音信号转换为数字信号进行传输。
通过脉冲编码调制,语音信号可以被准确地表示和传输,从而保证通信质量。
2. 数据通信:在计算机网络和数据通信中,PCM技术通常用于将数据转换为数字信号进行传输。
例如,常见的以太网和无线网络以及串行通信协议等都使用脉冲编码调制技术进行数据传输。
3. 音频和视频传输:脉冲编码调制技术也被广泛应用于音频和视频传输领域。
项目六 脉冲编码调制PCM
2020/2/3
通信原理 13
项目六 脉冲编码调制PCM
补充--关于带通型连续信号的抽样 带通抽样定理:一个带通信号x(t),其上截止频率为fH,
标准,规定国际间通信采用A律特性。
2020/2/3
通信原理 30
项目六 脉冲编码调制PCM
(1)模拟压缩特性 1)μ律压缩特性
压缩器具有如下关系的压缩律:
y = ln(1 x) ,0 x 1 ln(1 )
y
1
1000 100
式中: y-- 归一化的压缩输出电压: 压缩器的输出电压
• 这样就使信噪比在大、小信号的整个范围内基本 一致。
• 这种采用非均匀分层的方法称为非均匀量化。
2020/2/3
通信原理 24
项目六 脉冲编码调制PCM
• 非均匀量化的基本思想:量化阶距随输入信号的 幅度不同而改变。
• 在信号幅度大时,量化阶距大,在信号幅度小时, 量化阶距小。
• 在量化级数不变的前提下,使得量化信噪比在大 小信号时基本一致。
信号。Ts=1/(2fH)是最大允许抽样间隔,它被称为奈奎
斯特间隔,相对应的最低抽样速率fs=2fH称为奈奎斯特
速率。
Xs()
2020/2/3
O
2
Ts
通信原理 12
项目六 脉冲编码调制PCM
• 如果采样频率远大于2fH ,所得到的采样信号将包 含大量冗余信息。
• 在实际应用中,通常采样频率取为 (2.5-5) fH 。 • 一路电话信号的频带为300~3400Hz,fm=3400Hz,
脉冲编码调制PCM
2.3 脉冲编码调制(PCM)
PCM调制系统
1
信号的压缩与扩张
2
PCM编码器和译码器
3
PCM系统的噪声性能
4
差分脉冲编码调制
5
PCM编码器和译码器
编码器 译码器 PCM编码和译码器集成电路
码位的选择和安排
13折线编码采用8位二进制码,对应256个量化级,即正、负输入幅度范围内各有128个量化级 需要将13折线中的每个折线段再均匀划分16个量化级 正、负输入的8个段落被划分成128个不均匀量化级 8位码的安排
脉冲编码调制系统
30/32PCM端机每帧共有32个时隙,传30路数字话音信号和2时隙的勤务信息。 30/32PCM端机输出的信号称为一次群信号。实际应用中,还可将多个一次群进行准同步复接(PDH):即四个基群 (一次群)复接组成二次群,四个二次群组成三次群,四个三次群组成四次群,四个四次群组成五次群,或进行同步复接(SDH)。
脉冲编码调制系统
以30/32PCM端机为例,介绍PCM的系统组成 话音信号的抽样频率为8000Hz,抽样的间隔时间Ts=1/fs=125s 为了时分复用将125 s分为32个时隙,即每个时隙为125 s /32=3.9 s 每个抽样脉冲用8bit编码,即8位二进制脉冲作一个码组,一次放入各个时隙。 为保证通信的正常进行,每帧的起始时刻由帧定时信号决定,收端也应有相应的帧定时信号,收发两端的帧定时信号必须同频同相,即实现帧同步。
目前用得较多
逐次比较编码器原理框图
全波整流
参考电源
PAM信号
US
|US|
UR
极性判决
D1
比较码 形成
或 门
a2-a8
a1
PCM 编码输出
2.3脉冲编码调制(PCM)
比较器
保持电路
重庆大学通信工程学院
比较器
数字通信原理
比较器是编码器的核心。作用是通过比较 样值电流I S和标准电流IW,对输入信号抽 样值实现非线性量化和编码。
每比较一次输出一位二进代码 当IS>IW时,出“l”码; 当IS>IW时,出“0”码。 对一个输入信号的抽样值需要进行7 次比较。
8位码的安排
重庆大学通信工程学院
8位码的安排
数字通信原理
极性码 C1
段落码 C2 C3 C4
段内码 C5 C6 C7C8
第1 位码C1的数值“1”或“0”分别表示信号的 正、负极性,称为极性码。 第2 至第4 位码C2C3C4为段落码,代表8 个段落 的起点电平。段落码与各段的关系 第5 至第8 位码C5C6C7C8为段内码,这4 位码的 16 种可能状态用来分别代表每一段落内的16 个 均匀划分的量化级。
比较器
保持电路
重庆大学通信工程学院
极性判决
数字通信原理
极性判决电路用来确定信号的极性。
输入PAM 信号样值为正时,出“l”码;
样值为负时,出“0”码;
将该信号经过全波整流变为单极性信号。
重庆大学通信工程学院
逐次比较编码器
数字通信原理
实现A律13 折线压扩特性的逐次比较型编 码器由整流器、极性判决、保持电路、比 较器及本地译码电路等组成。
重庆大学通信工程学院
逐次比较编码器
数字通信原理
实现A律13 折线压扩特性的逐次比较型编 码器由整流器、极性判决、保持电路、比 较器及本地译码电路等组成。
极性判决 本地译码电路
比较器
保持电路
重庆大学通信工程学院
本地译码器
脉冲编码调制PCM原理
脉冲编码调制PCM原理PCM(Pulse Code Modulation) 脉码调制是实现语音信号数字化的一种方法。
是对模拟信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。
PCM 对信号每秒钟取样8000 次;每次取样为8 个位,总共64 kbps。
取样等级的编码有二种标准。
北美洲及日本使用Mu-Law 标准,而其它大多数国家使用A-Law 标准。
一、语音信号的数字化语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。
1 抽样(Samping)抽样是把模拟信号以其信号带宽2倍以上的频率提取样值,变为在时间轴上离散的抽样信号的过程。
例如,话音信号带宽被限制在0.3~3.4kHz内,用8kHz 的抽样频率(fs),就可获得能取代原来连续话音信号的抽样信号。
对一个正弦信号进行抽样获得的抽样信号是一个脉冲幅度调制(PAM)信号。
对抽样信号进行检波和平滑滤波,即可还原出原来的模拟信号。
抽样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
语音信号经过抽样变成一种脉冲幅度调制(PAM)信号。
2 量化(quantizing)把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
即:抽样信号虽然是时间轴上离散的信号,但仍然是模拟信号,其样值在一定的取值范围内,可有无限多个值。
显然,对无限个样值一一给出数字码组来对应是不可能的。
为了实现以数字码表示样值,必须采用“四舍五入”的方法把样值分级“取整”,使一定取值范围内的样值由无限多个值变为有限个值。
量化后的抽样信号与量化前的抽样信号相比较,当然有所失真,且不再是模拟信号。
这种量化失真在接收端还原模拟信号时表现为噪声,并称为量化噪声。
量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。
pcm系统原理
pcm系统原理
PCM(脉冲编码调制)系统是一种用于数字信号传输的调制技术。
其原理是将模拟信号通过一系列的采样和量化操作,将模拟信号转换为一系列的数字信号样本,然后通过调制和解调操作将数字信号传输到接收端,并重新恢复为模拟信号。
首先,PCM系统对模拟信号进行采样,即以一定的时间间隔对模拟信号进行离散采样,得到一系列模拟信号样本。
采样定理要求采样频率应大于模拟信号中最高频率的两倍,以避免采样失真。
采样操作将模拟信号离散化为一系列数字信号样本。
接下来,PCM系统对采样得到的模拟信号样本进行量化。
量化操作将离散的模拟信号样本映射到一组有限的数字值上。
通常情况下,采用均匀量化的方法,将模拟信号样本映射到一个固定的数字范围内。
量化结果越精细,表示模拟信号的数字值越多,但同时也会增加数据传输的带宽需求。
然后,PCM系统对量化后的数字信号样本进行编码。
编码操作将每个数字信号样本映射为一系列二进制码字,以便在传输中进行传输。
具体的编码方法有很多种,常见的编码方式包括脉冲码调制(PCM)、Δ调制(DM)和自适应编码(ADPCM)等。
在信号传输的过程中,PCM系统采用一定的调制技术将编码后的数字信号样本转换为模拟信号,并进行传输。
接收端通过解调操作将接收到的模拟信号转换为数字信号样本,并进行解码操作,恢复原始的模拟信号。
总结来说,PCM系统通过采样、量化、编码和调制等操作,
将模拟信号转换为数字信号,并进行传输;接收端则通过解调和解码操作将接收到的数字信号重新恢复为模拟信号。
这种数字信号传输的方式能够有效地提高信号传输的质量和传输距离。
5.3 脉冲编码调制(PCM)
1 斜率:
0
0
0
111 110 101 100 011 010 001 000
1 x
5.3.1 PCM编码原理
3.码位的选择与安排
第 5 至第 8 位码 C5C6C7C8 为段内码,这 4 位码的 16 种可能状态 用来分别代表每一段落内的16个均匀划分的量化级。 段内码与16 个量化级之间的关系如表 5.6 所示。
m t
抽样
ms t
量化 A/D变换
mq t
编码
信道 m t 来自干扰 mq t 低通滤波
译码与低通滤波的组合称为数/模变换器(D/A变换器)。
抽 样 是 按 抽 样 定 理 把量化是把幅度上仍连续(无穷 时 间上连续的模拟 信 号 转 编 码 是 用二进制码组表 多个取值)的抽样信号进行幅 换成时间上离散 的 抽度离散,即指定 样 M个样值脉冲。 示量化后的 M个规定的电平, 信号; 把抽样值用最接近的电平表示;
码相同;段内码第一位若为0,除段内码第一位外,
其余码取反即可。
5.3.1 PCM编码原理
以非均匀量化时的最小量化间隔Δ =1/2048 作为均 匀量化的量化间隔
从13 折线的第一段到第八段所包含的均匀量化级数 共有2048 个均匀量化级
非均匀量化只有128 个量化级
3.码位的选择与安排
假设:
均匀量化需要编11 位码,而非均匀量化只要编7 位 码
5.3.1 PCM编码原理
1.PCM调制系统框图
脉冲编码调制(PCM)简称脉码调制,是一种用一 组二进制数字代码来代替连续信号的抽样值, 从而实现通信的方式。 PCM是一种最典型的语音信号数字化的波形编码 方式。 原理框图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。
1.3编码:
编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
为了用二元编码的码字表示量化样值,可先把样值换算成二进制数,然后,按着二进制数字的结构转化成电波形,即二元编码信号。常见的二进制码有:自然二进制码组(NBC),折叠二进制码组(FBC)和格雷二进制码组(RBC)。
三种常见二进制码组如下图所示
1.1取样:
取样就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。
取样如下图所示
取样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
0001
0101
关键字:
脉冲编码调制、取样、量化、编码、解码
Abstract:
Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses.
1.4再生………………………………………………10
1.5解码………………………………………………10
二、芯片选择………………………………………………11
2.1 TP3067管脚定义………………………………13
三、电路设计………………………………………………14
四、心得体会………………………………………………16
脉冲编码调制(PCM)系统
摘要:
脉冲编码调制(PulseCodeModulation),简称PCM。是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。PCM的优点就是音质好,缺点就是体积大。PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是 压缩律和A压缩律。美国采用 压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。
所谓A压缩律也就是压缩器具有如下特性的压缩律:
A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。实际中,往往都采用近似于A律函数规律的13折线(A=87.6)的压扩特性。这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现编码
Keywords:
Pulse code modulation, modulation, demodulation
一、工作原理………………………………………………4
1.1取样………………………………………………5
1.2量化………………………………………………5
1.3编码………………………………………………7
一、工作原理:
脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。接收机将收到的数字信号经再生、译码、平滑后恢复出原始的模拟信号。PCM系统的组成如下图所示。
PCM主要经过3个过程:抽样、量化和编码。抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。再经解码恢复并输出。
1.2量化:
把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
量化误差:量化后的信号和抽样信号的差值。量化误差在接收端表现为噪声,称为量化噪声。量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。
量化值序号
自然码NBC
折叠码FBC
雷码RBC
15
1111
1111
1000
14
1110
1ቤተ መጻሕፍቲ ባይዱ10
1001
13
1101
1101
1011
12
1100
1100
1010
11
1011
1011
1110
10
1010
1010
1111
9
1001
1001
1101
8
1000
1000
1100
7
0111
0000
0100
6
0110