应用时间序列分析简答题
统计基础知识第五章时间序列分析习题及答案
第五章时间序列分析一、单项选择题1.构成时间数列的两个基本要素是( C )(2012年1月)A.主词和宾词B.变量和次数C.现象所属的时间及其统计指标数值D.时间和次数2.某地区历年出生人口数是一个( B )(2011年10月)A.时期数列 B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2010年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10)万元万元万元万元6.下列指标中属于时点指标的是( A ) (2009年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时间数列中,各项指标数值可以相加的是( A ) (2009年10)A.时期数列B.相对数时间数列C.平均数时间数列D.时点数列8.时期数列中各项指标数值( A )(2009年1月)A.可以相加B.不可以相加C.绝大部分可以相加D.绝大部分不可以相加10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月)%+15%+18%%×15%×18%C.(108%+115%+118%)-1 %×115%×118%-1二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月)A.相邻两个环比发展速度之商等于相应的定基发展速度B.环比发展速度的连乘积等于定基发展速度C.定基发展速度的连乘积等于环比发展速度D.相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3.常用的测定与分析长期趋势的方法有( ABC ) (2011年1月)A.时距扩大法B.移动平均法C.最小平方法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2010年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于( AC )(2010年1)A.增加一个百分点所增加的绝对量B.增加一个百分点所增加的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比发展速度6.计算平均发展速度常用的方法有( AC )(2009年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.简单算术平均法E.加权算术平均法7.增长速度( ADE )(2009年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于发展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2008年10月)A.反映总体各单位标志值的一般水平B.根据同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E.由动态数列计算三、判断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
第七章时间序列分析答案
第七章时间数列分析一、填空题1、时间指标数值2、逐期增长量累计增长量3、增长水平(或增长量)发展速度4、本期水平去年同期水平5、年距发展速度 1(或100%)6、几何平均法方程法7、同季(月)平均法趋势与季节模型法8、平均季节比重法平均季节比率法9、报告期水平基期水平10、序时平均数(或动态平均数)平均数11、和差12、季节变动长期趋势13、逐期增长量环比增长速度14、长明显1-5 A C C A D 6-10 A B A D B三、多选题1、CDE2、ABDE3、ABCE4、ACDE5、BDE6、BD7、ABCD8、ACE9、AE 10、ACE四、简答题1、序时平均数与一般平均数的异同。
答:(1)相同之处。
二者都是将具体数值抽象化,用一个代表性的数指来代表总体的一般水平。
(2)不同之处。
①计算的依据不同。
一般平均数是根据变量数列计算的,而序时平均数则是根据时间数列计算的;②对比的指标不同。
一般平均数是总体标志总量与总体单位总量对比的结果,而序时平均数则是时间数列各期发展水平的总和与时期项数对比的结果;③说明的问题不同。
一般平均数说明现象在同一时间、不同空间上所达到的一般水平,而序时平均数则说明现象在同一空间、不同时间上所达到的一般水平。
2、时期数列与时点数列的区别。
答:①时期数列中的指标值为时期数,时点数列中的指标值为时点数;②时期数列中的指标值具有可加性,而时点数列中的指标值则不具有可加性;③时期数列中指标值的大小与时间间隔的长短有直接关系,而时点数列中指标值的大小与时间间隔的长短则没有直接关系;④时期数列中的指标值是通过连续调查取得的,而时点数列中的指标值则是通过一次性调查取得的。
3、时间数列的编制原则。
答:(1)基本原则:保持数列中的各项指标数值具有可比性。
(2)具体原则:①时间长短统一;②总体范围统一;③指标口径统一;④计算方法统一;⑤计量单位统一。
4、计算和应用平均速度应注意的问题。
应用统计学时间序列习题及答案
计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。
多元时间序列分析简答题
多元时间序列分析简答题1. 请简要解释什么是时间序列分析。
时间序列分析是一种统计方法,用于分析和预测依赖于时间顺序的数据。
它研究随时间推移的观测值,并试图识别出其中的模式、趋势和周期性变化。
时间序列分析常用于经济学、金融学、气象学和其他领域的数据分析和预测。
2. 时间序列分析的应用领域有哪些?时间序列分析广泛应用于多个领域,包括经济学、金融学、天气预报、市场研究等。
在经济学中,时间序列分析可以用于预测市场趋势、评估政策效果和经济走势。
在金融学中,时间序列分析可以用于预测股市走势、计算风险指标和构建投资组合。
在天气预报中,时间序列分析可以用于识别气象变化的周期性和趋势。
在市场研究中,时间序列分析可以用于分析顾客行为和市场需求的变化。
3. 时间序列分析的主要步骤是什么?时间序列分析一般包括以下主要步骤:1. 数据收集:收集包含时间项和相关变量的数据。
数据收集:收集包含时间项和相关变量的数据。
2. 数据预处理:对数据进行必要的处理,如去除季节性、填补缺失值和平滑数据。
数据预处理:对数据进行必要的处理,如去除季节性、填补缺失值和平滑数据。
3. 模型选择:根据数据特点和目标,选择适当的时间序列模型,例如自回归移动平均模型 (ARMA)、自回归积分移动平均模型(ARIMA) 或季节性自回归积分移动平均模型 (MA)。
模型选择:根据数据特点和目标,选择适当的时间序列模型,例如自回归移动平均模型 (ARMA)、自回归积分移动平均模型 (ARIMA) 或季节性自回归积分移动平均模型 (SARIMA)。
4. 参数估计:根据选定的模型,估计模型中的参数。
参数估计:根据选定的模型,估计模型中的参数。
5. 模型诊断:对估计的模型进行检验和诊断,以评估其准确性和可靠性。
模型诊断:对估计的模型进行检验和诊断,以评估其准确性和可靠性。
6. 预测和应用:基于建立的时间序列模型,进行数据预测并应用于实际问题。
预测和应用:基于建立的时间序列模型,进行数据预测并应用于实际问题。
应用统计学时间序列习题及答案
计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。
应用时间序列分析考试重点
且
1 1 , 2 1
,可以导出
2 12
<1,
1 2 = 12 1 2
模型的可逆性:
=
1 (1 1 )(1 2 ) <1, 1 2 = 12 1 2 = 1 (1 1 )(1 2 ) <1, 即 为 平 稳 域 。 3 、 MA
1、时间序列:按时间顺序排列的一组随机变量。2、平稳性:序列所有的统计性质都不随着时间的推移而变化时,叫严平稳; 当一个时间序列满足均值为常数,且自协方差函数只与时间长度有关时,叫弱平稳。3、随机过程:是一连串随机事件动态关系 的定量描述。4、白噪声序列:也叫纯随机序列,各项之间没有任何相关关系,且存在方差齐性,服从正态分布,最简单的平稳 序列。5、随机游走:是非平稳的,未来的发展趋势无法预测。6、单整与协整:单整是指时间序列显著平稳,不存在单位根, 则称序列为零阶单整序列;协整是指几个时间序列本身是非平稳的,但具有长期均衡关系,以它们建立的回归模型的残差序列 是平稳的,称这几个时间序列存在协整关系。二、方法、重要模型与公式 1、AR 模型的平稳性检验:a、特征根判别或特征系数判别:所
模 型 model:
,
2 2
2
2 1 12 22
Ex t
,
k 0, k 3 (3)ARMA
0
,自协方差函数:
xt 0 1 xt 1 ... p xt p t 1 t 1 2 t 2 .... q t q
,
可逆 4、ARMA 模型(1) AR 模型:model: xt 0 1 xt 1 2 xt 2 .... p xt p t 性质:均值
中 心 化 后 为 0 方 差 : AR(p) :
时间序列分析练习题
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平
0.05 下,若
k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22
时间序列期末试题及答案
时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。
题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。
3. 什么是季节性、趋势性和周期性?请分别举一个例子。
4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。
题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。
请计算该时间序列的移动平均值,并绘制移动平均图。
2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。
| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。
该时间序列数据是否呈现ARCH效应?请解释原因。
4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。
2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。
时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。
时间序列练习题答案
时间序列练习题答案一、选择题1. 时间序列分析中的自回归模型(AR)是指:A. 模型中的误差项B. 模型预测值依赖于自身过去的值C. 模型预测值依赖于其他变量的值D. 模型预测值依赖于未来的值2. 移动平均模型(MA)的主要特征是:A. 预测值依赖于过去的误差项B. 预测值依赖于过去的观测值C. 预测值依赖于未来的误差项D. 预测值依赖于未来的观测值3. 以下哪个不是时间序列分析中的平稳性检验方法?A. 单位根检验B. 协整检验C. KPSS检验D. 方差比检验4. 时间序列的差分操作通常用于:A. 消除季节性效应B. 消除趋势C. 消除周期性变化D. 消除随机波动5. 季节性调整的目的是:A. 消除随机波动B. 消除季节性效应C. 消除长期趋势D. 消除周期性变化二、简答题1. 简述自回归积分滑动平均模型(ARIMA)的基本组成部分。
2. 解释什么是时间序列的平稳性,并说明为什么在时间序列分析中需要考虑平稳性。
3. 描述季节性时间序列的特点,并说明如何识别和处理季节性效应。
三、计算题1. 给定以下时间序列数据:\[ y_t = \{10, 15, 20, 25, 30, 35, 40, 45, 50, 55\} \] 假设这是一个一阶自回归模型AR(1),其中自回归系数φ=0.8。
请计算下一个时间点的预测值。
2. 假设一个时间序列模型的ACF(自相关函数)在滞后1时显著不为0,而在滞后2及以后时显著为0。
根据这个信息,推测该时间序列可能属于哪种类型的模型?四、案例分析题1. 某公司销售数据呈现明显的季节性变化,如何在时间序列分析中对数据进行季节性调整?2. 一个时间序列模型的ADF(Augmented Dickey-Fuller)检验结果表明存在单位根,这意味着什么?如何对数据进行处理以消除单位根?五、论述题1. 论述时间序列分析在金融领域中的应用,并举例说明。
2. 讨论时间序列分析中的因果关系检验方法,并说明在实际应用中如何选择合适的方法。
【分享】应用时间序列分析课后答案
【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验学习成果起着至关重要的作用。
今天,我就来和大家分享一下我所整理的应用时间序列分析课后答案,希望能对正在学习这门课程的同学们有所帮助。
首先,我们来谈谈为什么时间序列分析如此重要。
在现实生活中,许多现象都随着时间的推移而发生变化,比如股票价格的波动、气温的变化、销售量的起伏等等。
通过对这些时间序列数据的分析,我们可以揭示隐藏在数据背后的规律和趋势,从而做出更准确的预测和决策。
接下来,让我们直接进入课后答案的分享。
在第一章的课后习题中,有一道关于时间序列平稳性检验的题目。
对于这道题,我们需要先计算序列的均值和方差,如果均值和方差不随时间变化,那么初步可以判断该序列是平稳的。
然后,再通过自相关函数(ACF)和偏自相关函数(PACF)来进一步确定平稳性。
具体的计算过程和判断方法,答案中都有详细的步骤和解释。
再来看第二章关于模型识别的课后题。
在这部分,我们要根据给定的时间序列数据的自相关和偏自相关函数的特征,来判断适合的模型类型。
比如,如果 ACF 呈现拖尾,PACF 截尾,那么可能适合的模型是 AR 模型;反之,如果 ACF 截尾,PACF 拖尾,则可能是 MA 模型。
而当 ACF 和 PACF 都呈现拖尾时,就需要考虑 ARMA 模型了。
在第三章关于参数估计的习题中,涉及到了最小二乘法、极大似然估计等方法。
答案中会给出具体的计算公式和推导过程,帮助我们理解如何通过数据来估计模型的参数。
这部分的内容相对较难,需要我们认真思考和反复练习。
第四章的课后作业主要是关于模型诊断和检验。
我们需要通过残差分析来判断模型的拟合效果,如果残差是白噪声,说明模型拟合较好;否则,就需要对模型进行进一步的改进和调整。
答案中会有关于如何进行残差分析的详细示例和判断标准。
第五章则侧重于时间序列的预测。
这部分的课后题会让我们运用所建立的模型对未来的值进行预测,并计算预测误差。
时间序列分析参考答案
时间序列分析参考答案时间序列分析参考答案时间序列分析是一种研究随时间变化的数据模式和趋势的统计方法。
它可以帮助我们理解数据的变化规律,预测未来的趋势,以及制定相应的决策。
在本文中,我们将探讨时间序列分析的基本概念、方法和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每月的销售额。
时间序列分析的目标是找出数据中的模式和趋势,以便进行预测和决策。
时间序列分析的基本概念包括趋势、季节性和周期性。
趋势是指数据在长期内的整体变化方向,可以是上升、下降或平稳。
季节性是指数据在一年中周期性重复出现的变化模式,比如节假日销售额的增长。
周期性是指数据在较长时间内出现的波动,通常周期长度大于一年。
二、时间序列分析的方法时间序列分析的方法包括描述性分析、平稳性检验、模型建立和预测等。
描述性分析是对时间序列数据进行可视化和统计分析,以了解数据的基本特征。
常用的描述性分析方法包括绘制折线图、直方图和自相关图等。
折线图可以显示数据的整体趋势和季节性变化,直方图可以展示数据的分布情况,自相关图可以帮助我们发现数据的相关性。
平稳性检验是判断时间序列数据是否具有平稳性的方法。
平稳性是指数据的均值和方差在时间上保持不变。
常用的平稳性检验方法包括单位根检验和ADF检验等。
模型建立是根据时间序列数据的特征,选择合适的模型来描述数据的变化规律。
常用的模型包括AR模型、MA模型和ARMA模型等。
AR模型是自回归模型,表示当前观测值与过去观测值之间的线性关系;MA模型是移动平均模型,表示当前观测值与过去观测值的误差之间的线性关系;ARMA模型是自回归移动平均模型,综合考虑了自回归和移动平均的效果。
预测是利用已知的时间序列数据,通过建立模型来预测未来的观测值。
常用的预测方法包括滚动预测、指数平滑法和ARIMA模型等。
滚动预测是指根据当前观测值和过去观测值的模型,逐步预测未来的观测值;指数平滑法是基于历史数据的加权平均值,对未来的观测值进行预测;ARIMA模型是自回归移动平均差分整合模型,可以处理非平稳的时间序列数据。
【分享】应用时间序列分析课后答案
【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程时,课后答案对于我们巩固知识、检验学习成果以及发现自身的不足之处都具有重要的意义。
下面,我将为大家分享一下这门课程的课后答案,并结合答案对一些重点和难点问题进行分析和讲解。
首先,让我们来看看第一章的课后答案。
第一章主要介绍了时间序列分析的基本概念和方法,包括时间序列的定义、分类以及平稳性的概念等。
在课后习题中,有这样一道题:“请解释什么是时间序列,并举例说明。
”答案是:“时间序列是按时间顺序排列的一组数据。
例如,某地区每天的气温记录、股票市场每天的收盘价、某工厂每月的产量等都是时间序列。
”通过这道题,我们可以更清晰地理解时间序列的概念,并且能够将其与实际生活中的例子相结合,加深对知识的理解。
另一道题是:“判断一个时间序列是否平稳的方法有哪些?”答案为:“常见的方法有观察序列的均值、方差是否随时间变化;自相关函数是否只与时间间隔有关,而与时间起点无关等。
”这道题帮助我们掌握了判断时间序列平稳性的关键要点。
第二章主要讲解了时间序列的模型,如 AR 模型、MA 模型和ARMA 模型等。
比如,有这样一道习题:“请简述 AR(1)模型的表达式和特点。
”答案是:“AR(1)模型的表达式为 Xt =φXt-1 +εt,其中φ 为自回归系数,εt 为白噪声。
其特点是当前值主要由前一期的值和随机扰动项决定。
”通过这个答案,我们能够明确 AR(1)模型的数学形式和基本特征。
还有一道题是:“比较 AR 模型和 MA 模型的异同。
”答案从模型的表达式、参数含义、适用情况等方面进行了详细的比较,让我们对这两种模型有了更全面的认识。
第三章涉及时间序列的预测方法。
像“简述时间序列预测的基本步骤”这道题,答案是:“首先对时间序列进行平稳性检验和预处理;然后选择合适的模型进行拟合;接着对模型进行参数估计和诊断检验;最后利用模型进行预测。
”这个答案为我们提供了一个清晰的预测流程框架。
时间序列分析期末题库试题及答案
时间序列分析期末题库试题及答案(以下是一个范例,您可以根据需要进行修改和调整)时间序列分析期末题库试题及答案时间序列分析是一门研究随时间变化的数据模式和规律的统计学方法,广泛应用于物理学、经济学、环境科学等领域。
在进行时间序列分析时,掌握相关的试题及其答案是提高分析能力和应对考试的重要途径。
本文将为您提供一份时间序列分析期末题库试题及答案,希望能帮助您更好地掌握这门学科。
一、简答题1. 请解释什么是时间序列分析。
答:时间序列分析是一种统计学方法,用于研究随时间变化的数据。
它可以揭示出数据内在的趋势、季节性和周期性等模式,帮助我们进行预测和决策。
2. 时间序列分析的主要步骤有哪些?答:时间序列分析的主要步骤包括:数据收集和整理、数据可视化、确定模型、模型识别和拟合、模型检验和评估、模型预测和应用。
3. 请解释平稳时间序列的概念。
答:平稳时间序列是指其数学期望、方差和自协方差不随时间的变化而发生显著变化的时间序列。
平稳时间序列的均值和方差不依赖于时间,具有稳定的趋势和季节性。
4. 如何进行时间序列的平稳性检验?答:常见的平稳性检验方法包括ADF检验、KPSS检验和单位根检验。
这些方法可以通过检验时间序列数据的单位根是否存在来判断其是否平稳。
5. 时间序列分析中的自相关和偏自相关函数有什么作用?答:自相关函数(ACF)和偏自相关函数(PACF)用于分析时间序列数据的相关性。
ACF可以帮助确定数据的季节性和周期性,而PACF可以帮助确定数据的自回归阶数。
二、计算题请根据以下时间序列数据,回答下面的问题:年份 | 销售额(万元)-----------------------2015 | 2002016 | 2302017 | 2502018 | 2802019 | 3002020 | 3201. 请绘制销售额的时间序列图。
答:(在此插入相应的时间序列图)2. 根据观察的时间序列图,总结该时间序列的趋势和季节性。
时间序列分析
第七章 时间序列分析一、单项选择题1.根据时期序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法2.间隔相等的时点序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法3.逐日登记资料的时点序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法4.具有可加性的时间序列是 ( ) A.时点序列 B.时期序列 C.平均指标动态序列 D.相对指标动态序列5.间断性的间隔不相等时点序列计算序时平均数,应采用 ( ) A.以每次变动持续的时间长度对各时点水平加权平均 B.以数列的总速度按几何平均法计算 C.用各间隔长度对各间隔的平均水平加权平均 D.对各时点水平简单算术平均6.时间序列中的派生序列是 ( ) A. 时期序列和时点序列 B.绝对数时间序列和相对数时间序列C.绝对数时间序列和平均数时间序列D.相对数时间序列和平均数时间序列7.某企业生产某种产品,其产量年年增加5万吨,则该产品产量的环比增长速度 ( ) A.年年下降 B.年年增长 C.年年保持不变 D.无法做结论8.某企业工业生产固定资产原值变动资料(单位:千元〉:1998年1月1日8000当年新增2400, 当年减少400试确定工业生产固定资产原值平均价值 ( ) A.10000 B.9000 C.5000 D.15009.某车间月初工作人员数资料如下 ( ) 一月 二月 三月 四月 五月 六月 七月 280 284 280 300 302 304 320 计算该车间上半年月平均工人数计算式是:A.i iif f α∑∑B.i iif f α∑∑C.inα∑ D.12311122...1n a a a a n -++++-10.2003年上半年某商店各月初棉布商品库存〈千元〉为 一月 二月 三月 四月 五月 六月 七月 42 34 36 32 36 33 38试确定上半年棉布平均商品库存。
第4章_时间序列分析
校级精品课程《统计学》习题第四章时间序列一、单项选择题1.时间序列是()A.分配数列B.分布数列C.时间数列D.变量数列2.时期序列和时点序列的统计指标()。
A.都是绝对数B.都是相对数C.既可以是绝对数,也可以是相对数D.既可以是平均数,也可以是绝对数3.时间序列是( )。
A.连续序列的一种B.间断序列的一种C.变量序列的一种D.品质序列的一种4.最基本的时间序列是( )。
A.时点序列B.绝对数时间序列C.相对数时间序列D.平均数时间序列5.为便于比较分析,要求时点序列指标数值的时间间隔( )。
A.必须连续B.最好连续C.必须相等D.最好相等6.时间序列中的发展水平( )。
A.只能是总量指标B.只能是相对指标C.只能是平均指标D.上述三种指标均可7.在平均数时间序列中各指标之间具有( )。
A.总体性B.完整性C.可加性D.不可加性8.序时平均数与一般平均数相比较()。
A.均抽象了各总体单位的差异B.均根据同种序列计算C.序时平均数表明现象在某一段时间内的平均发展水平,一般平均数表明现象在规定时间内总体的一般水平D.严格说来,序时平均数不能算作平均数9.序时平均数与一般平均数的共同点是( )。
A.两者均是反映同一总体的一般水平B.都是反映现象的一般水平C.两者均可消除现象波动的影响D.都反映同质总体在不同时间的一般水平10.时期序列计算序时平均数应采用( )。
A.加数算术平均法B.简单算术平均法C.简单算术平均法D.加权算术平均数11.间隔相等连续时点序列计算序时平均数,应采用( )。
A.简单算术平均法B.加数算术平均法C.简单序时平均法D.加权序时平均法12.由间断时点序列计算序时平均数,其假定条件是研究现象在相邻两个时点之间的变动为( )。
A.连续的B.间断的C.稳定的D.均匀的13.时间序列最基本速度指标是( )。
A.发展速度B.平均发展速度C.增减速度D.平均增减速度14.用水平法计算平均发展速度应采用( )。
时间序列分析技巧例题和知识点总结
时间序列分析技巧例题和知识点总结时间序列分析在许多领域都有着广泛的应用,从经济预测到气象研究,从股票走势分析到工业生产监控等。
为了帮助大家更好地理解和掌握时间序列分析的技巧,下面将通过一些具体的例题,并结合相关知识点进行详细的阐述。
一、时间序列的基本概念时间序列是按时间顺序排列的一组数据。
它的特点是数据的产生与时间有关,且前后数据之间可能存在一定的依赖关系。
时间序列通常可以分为平稳序列和非平稳序列。
平稳序列的统计特性(如均值、方差等)不随时间变化;而非平稳序列则反之。
二、常见的时间序列模型1、自回归模型(AR)简单来说,就是当前值由过去若干个值的线性组合加上一个随机误差项决定。
例如,AR(1)模型表示为:$Y_t =\phi Y_{t-1} +\epsilon_t$ ,其中$\phi$ 是自回归系数,$\epsilon_t$ 是随机误差。
2、移动平均模型(MA)认为当前值是由当前和过去若干个随机误差的线性组合。
比如,MA(1)模型:$Y_t =\epsilon_t +\theta \epsilon_{t-1}$,$\theta$ 是移动平均系数。
3、自回归移动平均模型(ARMA)结合了自回归和移动平均的特点。
三、时间序列分析的步骤1、数据预处理检查数据的完整性和准确性。
对异常值进行处理,可以采用删除、替换或修正的方法。
2、平稳性检验常用的方法有单位根检验,如 ADF 检验。
如果序列非平稳,需要进行差分处理使其平稳。
3、模型识别与定阶通过观察自相关函数(ACF)和偏自相关函数(PACF)的形状来初步判断模型的类型和阶数。
4、参数估计利用最小二乘法等方法估计模型的参数。
5、模型诊断检查残差是否为白噪声,如果不是,可能需要重新选择模型或调整参数。
6、预测使用确定好的模型进行未来值的预测。
四、例题分析假设我们有一组某商品的月销售量数据,如下:|时间|销售量||||| 1 月| 100 || 2 月| 120 || 3 月| 110 || 4 月| 130 || 5 月| 125 || 6 月| 140 || 7 月| 135 || 8 月| 150 || 9 月| 145 || 10 月| 160 || 11 月| 155 || 12 月| 170 |首先,我们对数据进行平稳性检验。
应用时间序列分析习题标准答案
第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.0940.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.0660.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列不LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2)非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=-229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。
时间序列分析习题(1)
第九章时间序列分析习题一、填空题1.时间序列有两个组成要素:一是,二是。
2.在一个时间序列中,最早出现的数值称为,最晚出现的数值称为。
3.时间序列可以分为时间序列、时间序列和时间序列三种。
其中是最基本的序列。
4.绝对数时间序列可以分为和两种,其中,序列中不同时间的数值相加有实际意义的是序列,不同时间的数值相加没有实际意义的是序列。
5.已知某油田1995年的原油总产量为200万吨,2000年的原油总产量是459万吨,则“九五”计划期间该油田原油总产量年平均增长速度的算式为。
6.发展速度由于采用的基期不同,分为和两种,它们之间的关系可以表达为。
7.设i=1,2,3,…,n,a i为第i个时期经济水平,则a i/a0是发展速度,a i/a i-1是发展速度。
8.计算平均发展速度的常用方法有方程式法和.9.某产品产量1995年比1990年增长了105%,2000年比1990年增长了306.8%,则该产品2000年比1995增长速度的算式是。
10.如果移动时间长度适当,采用移动平均法能有效地消除循环变动和。
11.时间序列的波动可分解为长期趋势变动、、循环变动和不规则变动。
12.用最小二乘法测定长期趋势,采用的标准方程组是。
二、单项选择题1.时间序列与变量数列( )A都是根据时间顺序排列的B都是根据变量值大小排列的C前者是根据时间顺序排列的,后者是根据变量值大小排列的D前者是根据变量值大小排列的,后者是根据时间顺序排列的2.时间序列中,数值大小与时间长短有直接关系的是( )A平均数时间序列B时期序列C时点序列D相对数时间序列3.发展速度属于( )A比例相对数B比较相对数C动态相对数D强度相对数4.计算发展速度的分母是( )A报告期水平B基期水平C实际水平D计划水平则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人B150.2万人C150.1万人D无法确定7.由一个9项的时间序列可以计算的环比发展速度( )A有8个B有9个C有10个D有7个8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的科技投,3,2000年比1995年增长了58.6%,则该企业1996—2000年间科技投入的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法 三、多项选择题1.对于时间序列,下列说法正确的有( )A 序列是按数值大小顺序排列的B 序列是按时间顺序排列的C 序列中的数值都有可加性D 序列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点序列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的 3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A 增长速度=%100⨯基期水平增长量 B 增长速度= %100⨯报告期水平增长量C 增长速度= 发展速度—100%D 增长速度=%100⨯-基期水平基期水平报告期水平E 增长速度=%100⨯基期水平报告期水平5.采用几何平均法计算平均发展速度的公式有( ) A 1231201-⨯⨯⨯⨯=n n a a a a a a a a nx B 0a a n x n = C 1a a nx n = D R n x = E n x x ∑=6根据上述资料计算的下列数据正确的有( )A第二年的环比增长速度二定基增长速度=10%B第三年的累计增长量二逐期增长量=200万元C第四年的定基发展速度为135%D第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度-18.测定长期趋势的方法主要有( )A时距扩大法B方程法C最小平方法D移动平均法E几何平均法9.关于季节变动的测定,下列说法正确的是( )A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间序列的可比性原则主要指( )A时间长度要一致B经济内容要一致C计算方法要一致D总体范围要一致E计算价格和单位要一致四、判断题1.时间序列中的发展水平都是统计绝对数。
应用时间序列分析简答题
1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。
序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。
优点:原理简单;操作方便;易于理解。
缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。
2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义:(1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。
因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。
(2)时间序列数据分析的结构有它的特殊性。
对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。
(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。
序列的平稳性概念的提出可以有效地解决这个困难。
3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。
这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数pˆ和移动平均阶数q ˆ的过程即是模型识别过程。
ARMA 模型定阶基本原则如下表:4.简述单整和协整分析的含义。
(1)单整是处理伪回归问题的一种方式。
如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。
一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。
序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。
优点:原理简单;操作方便;易于理解。
缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。
2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义:
(1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。
因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。
(2)时间序列数据分析的结构有它的特殊性。
对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。
(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。
序列的平稳性概念的提出可以有效地解决这个困难。
3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。
这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p
ˆ和移动平均阶数q ˆ的过程即是模型识别过程。
ARMA 模型定阶基本原则如下表:
4.简述单整和协整分析的含义。
(1)单整是处理伪回归问题的一种方式。
如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。
一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。
(2)假定回归模型t k
1i it i 0t y εχββ++=∑=
假定回归残差序列{t ε}平稳,我们称响应序列{t y }与自变量序列之间具有协整关系。
5.简单论述模型的检验方法及其思想?移动平均法的基本思想:假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。
根据这种假定,我们用一定时间间隔内的平均值作为某一期的估计值。
具体方法:n 期移动平均和n 期中心化移动平均。
6.简单论述模型的检验方法及其思想?(1)模型参数的显着性检验,主要检验模型各参数是否与零有显着性差异。
(2)检验残差序列是否为白噪声序列,检验方法如下:?自相关系数准则?()Q 2χ检验准则(3)模型的平稳性和科尼性检验。