应用时间序列分析简答题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。
2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义:
(1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。
3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p
ˆ和移动平均阶数q ˆ的过程即是模型识别过程。ARMA 模型定阶基本原则如下表:
4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k
1i it i 0t y εχββ++=∑=
假定回归残差序列{t ε}平稳,我们称响应序列{t y }与自变量序列之间具有协整关系。
5.简单论述模型的检验方法及其思想?移动平均法的基本思想:假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们用一定时间间隔内的平均值作为某一期的估计值。具体方法:n 期移动平均和n 期中心化移动平均。
6.简单论述模型的检验方法及其思想?(1)模型参数的显着性检验,主要检验模型各参数是否与零有显着性差异。(2)检验残差序列是否为白噪声序列,检验方法如下:?自相关系数准则?()Q 2χ检验准则(3)模型的平稳性和科尼性检验。