2017-2018学年度上学期期末考试八年级数学试卷

合集下载

(完整word版)2017-2018八年级数学上期末试题含答案

(完整word版)2017-2018八年级数学上期末试题含答案

一.选择题(共12 小题,满分 36 分,每题 3 分)1.以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B.C.D.2.王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?(A.0 根B.1 根C.2 根D.3 根3.以以下图,已知△ ABE≌△ ACD,∠1=∠ 2,∠ B=∠ C,不正确的等式是()A .AB=AC B.∠ BAE= ∠ CAD C. BE=DC D AD = DE)4.如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠ β的度数是()A. 180° B . 220°C. 240° D . 300°5.以下计算正确的选项是()A .2a+3b=5ab B.( x+2 )2=x 2+4 C.( ab3)2=ab6 D.(﹣ 1)0=16.如图,给出了正方形 ABCD 的面积的四个表达式,此中错误的选项是()A.( x+a)( x+a) B . x2+a2+2ax C.( x﹣ a)(x﹣ a) D .( x+a) a+( x+a)x 7.( 3 分)以下式子变形是因式分解的是()A .x2﹣ 5x+6= B.x2﹣5x+6= C.( x﹣ 2)( x﹣ 3)=x 2﹣ 5x+6 D.x2﹣ 5x+6=x( x﹣ 5)+6 ( x﹣ 2)( x﹣ 3)( x+2)( x+3 )8.若分式存心义,则 a 的取值范围是()A .a=0 B.a=1 C.a≠﹣ 1 D.a≠09.化简的结果是()A .x+1 B.x﹣ 1 C.﹣ x D.x10.以下各式:① a0=1;② a2 ?a3=a5;③ 2 ﹣ 2﹣;④ ﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0;⑤ x2+x 2=2x 2,此中=正确的选项是()A.① ②③B.① ③⑤C.② ③④D.② ④⑤11.跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公交车均匀每小时走x 千米,依据题意可列方程为()A .B.C.D.12.如图,已知∠ 1=∠ 2,要获得△ ABD ≌△ ACD ,从以下条件中补选一个,则错误选法是()A. AB=AC B . DB=DC C.∠ ADB= ∠ ADC D.∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)分解因式: x3﹣ 4x2﹣ 12x= _________ .14.( 4 分)若分式方程:有增根,则 k= _________ .15.( 4 分)以下图,已知点 A 、 D 、B 、 F 在一条直线上, AC=EF , AD=FB ,要使△ ABC ≌△ FDE ,还需增添一个条件,这个条件能够是_________ .(只需填一个即可)16.( 4 分)如图,在△ ABC 中, AC=BC ,△ABC 的外角∠ ACE=100 °,则∠ A= _______ 度.17.( 4 分)如图,边长为m+4 的正方形纸片剪出一个边长为 m 的正方形之后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为 4,则另一边长为_________ .三.解答题(共 7 小题,满分64 分)18.先化简,再求值: 5( 3a2b﹣ ab2)﹣ 3( ab2+5a2b),此中 a= , b=﹣.19.( 6 分)给出三个多项式:x2+2x﹣ 1,x2+4x+1 ,x2﹣ 2x.请选择你最喜爱的两个多项式进行加法运算,并把结果因式分解.20.( 8 分)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)如图, CE=CB , CD=CA ,∠ DCA= ∠ ECB ,求证: DE=AB .23.( 12 分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?参照答案一.选择题(共12 小题,满分36 分,每题 3 分)1.( 3 分))在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B.C.D.考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解: A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;C、不是轴对称图形,不切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.(3 分)王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上 AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ ACD 及△ ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A. AB=AC B.∠ BAE= ∠CAD C.BE=DC D. AD=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ ABE ≌△ ACD ,∠ 1=∠2,∠ B= ∠C,∴AB=AC ,∠ BAE= ∠ CAD , BE=DC , AD=AE ,故 A、 B、C 正确;AD 的对应边是AE 而非 DE ,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠ β的度数是()A. 180°B.220°C.240°D. 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠ α+ ∠ β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣60°=120°;∴∠ α+∠ β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为180 °,四边形的内角和是360°等知识,难度不大,属于基础题5.( 3 分)以下计算正确的选项是()2=x2+4 C.( ab3)2=ab6 D.(﹣ 1)0=1A . 2a+3b=5ab B.( x+2 )考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析:A、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D、任何不为0 的数的 0 次幂都等于1.解答:解: A、不是同类项,不可以归并.故错误;B、(x+2)2=x2+4x+4 .故错误;C、(ab3)2=a2b6.故错误;D、(﹣ 1)0=1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()2+a2+2ax C.( x﹣ a)(x﹣a)D.(x+a)a+(x+a )xA .(x+a)( x+a)B.x考点:整式的混淆运算.剖析:依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答:解:依据图可知,5应选 C.评论:本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)以下式子变形是因式分解的是()A . x2﹣5x+6=x ( x ﹣5) +6B.x 2﹣5x+6= (x﹣2)(x ﹣ 3)C.( x﹣ 2)( x﹣3)=x 2﹣ 5x+6D. x2﹣ 5x+6= ( x+2 )( x+3 )考点:因式分解的意义.剖析:依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解: A、 x 2﹣ 5x+6=x ( x﹣ 5)+6 右侧不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6= ( x﹣2)(x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6 是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣ 5x+6= ( x﹣ 2)( x ﹣3),故本选项错误.应选 B.评论:本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)若分式存心义,则 a 的取值范围是()A . a=0 B.a=1 C.a≠﹣1 D. a≠0考点:分式存心义的条件.专题:计算题.剖析:依据分式存心义的条件进行解答.解答:解:∵分式存心义,∴ a+1≠0,∴ a≠﹣ 1.应选 C.评论:本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点:(1)分式无心义 ? 分母为零;(2)分式存心义 ? 分母不为零;9.( 3 分)化简的结果是()A . x+1 B.x ﹣ 1 C.﹣ x D. x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:= ﹣===x,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.10.(3分)以下各式:①a0=1;②a2?a3=a5;③ 2﹣2=﹣;④ ﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,此中正确的选项是()A.① ②③B.① ③⑤C.② ③④D.② ④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;② 切合同底数幂的乘法法例,故本小题正确;﹣2 ﹣p( a≠0, p 为正整数),故本小题错误;③ 2 = ,依据负整数指数幂的定义 a =④ ﹣( 3﹣5) +(﹣ 2)4÷8×(﹣ 1)=0 切合有理数混淆运算的法例,故本小题正确;⑤x2+x2=2x2,切合归并同类项的法例,本小题正确.应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公交车均匀每小时走x 千米,依据题意可列方程为()A .B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.(3 分)如图,已知∠1= ∠2,要获得△ ABD ≌△ ACD ,还需从以下条件中补选一个,则错误的选法是()A. AB=AC B.DB=DC C.∠ ADB= ∠ADC D.∠ B=∠ C考点:全等三角形的判断.剖析:先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中C、AB=AC 与∠ 1=∠2、AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答:解: A、∵ AB=AC ,∴,∴△ ABD ≌△ ACD (SAS);故此选项正确;B、当 DB=DC 时, AD=AD ,∠ 1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ ADB= ∠ ADC ,∴,∴△ ABD ≌△ ACD (ASA );故此选项正确;D、∵∠ B= ∠C,∴,∴△ ABD ≌△ ACD (AAS );故此选项正确.应选: B.评论:本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即AAS 、 ASA 、 SAS、SSS,但 SSA 没法证明三角形全等.二.填空题(共 5 小题,满分20 分,每题 4 分)13.(4分)分解因式:x3﹣ 4x2﹣12x= x( x+2 )( x ﹣6).考点:因式分解 -十字相乘法等;因式分解-提公因式法.剖析:第一提取公因式 x,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答:解: x3﹣ 4x2﹣12x=x(x2﹣4x﹣12)=x( x+2)( x﹣6).故答案为: x( x+2 )( x ﹣6).评论:本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.(4 分)若分式方程:有增根,则k= 1 或 2.考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣2=0, 2﹣x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2)+1﹣kx= ﹣ 1,整理得:( 2﹣ k)x=2 ,当 2﹣k=0 时,此方程无解,∵分式方程有增根,∴ x﹣ 2=0,2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣k )x=2 得: k=1 .故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4 分)以下图,已知点 A、 D 、B 、 F 在一条直线上, AC=EF , AD=FB ,要使△ ABC ≌△ FDE ,还需增添一个条件,这个条件能够是∠A= ∠ F 或 AC∥ EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ ABC ≌△ FDE,已知 AC=FE ,AD=BF ,则 AB=CF ,具备了两组边对应相等,故增添∠A= ∠ F,利用 SAS 可证全等.(也可增添其余条件).解答:解:增添一个条件:∠A= ∠ F,明显能看出,在△ ABC 和△ FDE 中,利用 SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠ F 或 AC∥ EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、AAS 、 SAS、SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.(4 分)如图,在△ ABC 中, AC=BC ,△ ABC 的外角∠ ACE=100 °,则∠ A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠A= ∠ B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵ AC=BC ,∴∠ A=∠B,∵∠ A+ ∠ B=∠ ACE ,∴∠ A=∠ ACE=×100°=50°.故答案为: 50.评论:本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为 4,则另一边长为 2m+4 .考点:平方差公式的几何背景.剖析:依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则 4x=(m+4 )2﹣ m2=(m+4+m)(m+4﹣m),解得 x=2m+4 .故答案为: 2m+4.评论:本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.(6 分)先化简,再求值: 5( 3a 2b ﹣ab 2)﹣ 3( ab 2+5a 2b ),此中 a=, b=﹣ .考点: 整式的加减 —化简求值.剖析:第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变. 解答:解:原式 =15a 2b ﹣ 5ab 2﹣3ab 2﹣ 15a 2 b=﹣ 8ab 2,当 a= ,b=﹣ 时,原式 = ﹣8× ×= ﹣ .评论:娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6 分)给出三个多项式: x 2+2x ﹣ 1, x 2+4x+1 , x 2﹣ 2x .请选择你最喜爱的两个多项式进行加法运算,并把结果因式分解.考点: 提公因式法与公式法的综合运用;整式的加减. 专题: 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答:解:状况一:x 2+2x ﹣ 1+ x 2+4x+1=x 2+6x=x (x+6).状况二:x 2+2x ﹣ 1+ x 2﹣2x=x 2 ﹣1=(x+1)( x ﹣ 1).状况三:x 2+4x+1+ x 2﹣ 2x=x 2+2x+1= ( x+1 )2.评论:本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点. 熟记公式构造是分解因式的重点.平方差公式:a 2﹣b 2=( a+b )(a ﹣ b );完整平方公式: a 2±2ab+b 2=(a ±b )2.20.(8 分)解方程:.考点: 解分式方程.剖析: 察看可得最简公分母是( x+2 )( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解. 解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2),得 x ( x+2 )﹣( x+2 )( x ﹣2)=8.( 4 分)化简,得 2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,(x+2 )( x ﹣2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. (8 分)评论:本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.(10 分)已知:如图, △ ABC 和△ DBE 均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析:(1)要证 AD=CE ,只需证明△ ABD ≌△ CBE,因为△ABC 和△ DBE 均为等腰直角三角形,因此易证得结论.(2)延伸 AD ,依据( 1)的结论,易证∠AFC= ∠ ABC=90 °,因此 AD ⊥ CE.解答:解:( 1)∵△ ABC 和△ DBE 均为等腰直角三角形,∴ AB=BC ,BD=BE ,∠ ABC= ∠ DBE=90 °,∴∠ ABC ﹣∠ DBC= ∠ DBE ﹣∠ DBC ,即∠ ABD= ∠ CBE,∴△ ABD ≌△ CBE ,∴ AD=CE .(2)垂直.延伸AD 分别交 BC 和 CE 于 G 和 F,∵△ ABD ≌△ CBE ,∴∠ BAD= ∠ BCE,∵∠ BAD+ ∠ ABC+ ∠BGA= ∠ BCE+ ∠ AFC+ ∠ CGF=180°,又∵∠ BGA= ∠ CGF,∴∠ AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.(10 分)如图, CE=CB ,CD=CA ,∠ DCA= ∠ ECB,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠ DCE=∠ ACB ,依据 SAS 证△DCE ≌△ ACB ,依据全等三角形的性质即可推出答案.解答:证明:∵∠ DCA= ∠ ECB,∴∠ DCA+ ∠ ACE= ∠ BCE+∠ ACE ,∴∠ DCE=∠ ACB ,∵在△ DCE 和△ ACB 中,∴△ DCE ≌△ ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.(12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.(1)这项工程的规准时间是多少天?(2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:( 1)设这项工程的规准时间是x 天,依据题意得:( + )×15+ =1.解得: x=30 .经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.(2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18 ×( 6500+3500) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.(12 分)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点 P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线l 的对称点 B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ ABC 中,点 D、 E 分别是 AB 、 AC 边的中点, BC=6 ,BC 边上的高为4,请你在BC 边上确立一点P,使△ PDE 得周长最小.(1)在图中作出点P(保存作图印迹,不写作法).(2)请直接写出△PDE 周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料 DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D′,连结 D ′E,与 BC 交于点 P, P 点即为所求;(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:( 1)作 D 点对于 BC 的对称点 D′,连结 D ′E,与 BC 交于点 P,P点即为所求;(2)∵点 D 、E 分别是 AB 、 AC 边的中点,∴ DE 为△ ABC 中位线,∵ BC=6,BC 边上的高为 4,∴ DE=3,DD ′=4,∴ D′E===5,∴△ PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△ PDE周长的最小值,求出DP+PE 的最小值即但是解题重点.。

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

B第9题图八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠题 10Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( ) 腰三角A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________ 第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为°,求此等腰三角形的顶角为 17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N △PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年度 八年级数学期末测试卷(含答案)

2017-2018学年度 八年级数学期末测试卷(含答案)

2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。

2017--2018学年度八年级 (上)数学期末测试卷及答案

2017--2018学年度八年级 (上)数学期末测试卷及答案

A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

2017-2018学年第一学期期末八年级数学试题(含答案)

2017-2018学年第一学期期末八年级数学试题(含答案)

2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。

八年级2017-2018学年第一学期数学期末测试题及答案

八年级2017-2018学年第一学期数学期末测试题及答案

AP 6 2,PC 8 2,所以AP PC 14 2........................8分 在备用图中,作点A关于BC的对称点A,连结AC,交BD于点P,. 此时AP PC值最小.........10分 过点A作AQ CD交CD的延长线于点Q,在Rt△AQC中, 根据勾股定理计算AC 14 2,即AP PC 14 2,所以 t 3时的值是使得AP PC的值最小的值....12分
A.25 海里 B.30 海里 C. 32 海里 D.34 海里

14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(

A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称
D.向下平移了 2 个单位 D
所以△ABD 为等腰三角形…………………..8 分 23、解(1)作图略……………4 分,描对一个点給一分.
(2)∵AB=3,AC=4,根据勾股定理得 BC=5,……6 分 ∴周长为 12……………………………7 分 △ABC 的面积为 6,……………8 分
24、证明:(1) ∵ EAC DAB,∴ BAC DAE,…………2 分
.
C
D
B
20. 现在有一个边长为 a 的正方形纸片 1 张、边长为 b 的正方形纸片 2 张,边长分别 为 a、b 的长方形纸片 3 张,把它们拼成一个长方形,请你利用此图中的面积关系,分
解因式: a 2 3ab 2b2 =
.
a a
b
b
b
a
b b
a
a
b
得分 评卷人

(完整word版)2017-2018八年级数学上期末试题含答案

(完整word版)2017-2018八年级数学上期末试题含答案

.B...8.若分式有意义,则a的取值范围是()9.化简的结果是()10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中13.(4分)分解因式:x3﹣4x2﹣12x=_________.14.(4分)若分式方程:有增根,则k=_________.15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12小题,满分36分,每小题3分)1.(3分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()B..2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()2,∠B=∠C,不正确的等式是()3.(3分)如下图,已知△ABE≌△ACD,∠1=∠4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()8.(3分)若分式有意义,则a的取值范围是()9.(3分)化简的结果是()=﹣==10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()=(11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()B..=+,12.(3分)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()∴∴二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).14.(4分)若分式方程:有增根,则k=1或2.x==2解:∵∵分式方程15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)16.(4分)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.A=∠×17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.a=﹣时,原式×﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.x1+x1+x x20.(8分)解方程:.解:原方程即:(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.,23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?+)15+(+)24.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.==5。

2017-2018学年人教版八年级上册期末数学试卷含答案

2017-2018学年人教版八年级上册期末数学试卷含答案

2017-2018学年八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,63.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣45.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,98.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.410.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y211.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.912.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是______.14.等边三角形ABC中,边长AB=6,则高AD的长度为______.15.当k=______时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=______.17.如图,直线L是一次函数y=kx+b的图象,b=______,k=______,当x>______时,y >0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为______.三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为______,点B的坐标为______;(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.【考点】无理数.【分析】根据无理数是无限不循环小数小数,逐项判断即可.【解答】解:A、0.3333是有理数,故A选项不符合题意;B、π是无理数,故B选项符合题意;C、=4,是有理数,故C选项不符合题意;D、是有理数,故D选项不符合题意;故选B.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.3.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.8.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.4【考点】线段垂直平分线的性质.【分析】根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.【解答】解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8﹣5=3,故选C.10.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,将点A(﹣5,y1)和B(﹣2,y2)分别代入直线方程y=﹣3x+2,分别求得y1与y2的值,然后进行比较.【解答】解:根据题意,得y1=﹣3×(﹣5)+2=17,即y1=17,y2=﹣3×(﹣2)+2=8;∵8<17,∴y1>y2.故选D.11.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【考点】解三元一次方程组.【分析】先用含a的代数式表示x,y,即解关于x,y的方程组,再代入3x﹣5y﹣7=0中可得a的值.【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.12.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.【考点】一次函数综合题.【分析】根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【解答】解:当y=0时,x﹣=0,解得x=1,∴点E的坐标是(1,0),即OE=1,∵OC=4,∴EC=OC﹣OE=4﹣1=3,∴点F的横坐标是4,∴y=×4﹣=2,即CF=2,∴△CEF的面积=×CE×CF=×3×2=3.故选B.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.14.等边三角形ABC中,边长AB=6,则高AD的长度为3.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可解题.【解答】解:由等边三角形三线合一,∴D为BC的中点,∴BD=DC=3,在Rt△ABD中,AB=6,BD=3,∴AD==3.故答案为3.15.当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得k的值.【解答】解:根据题意,得k2﹣9=0且k﹣3≠0,解得k=﹣3.故当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.故答案为:﹣3.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=80°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据角平分线求得∠DAE的度数,再根据∠DAE是△ABD的外角,求得∠D的度数,最后根据三角形内角和定理,求得∠ACD的度数.【解答】解:∵AD平分∠CAE,∠CAD=65°,∴∠DAE=65°,∵∠DAE是△ABD的外角,∴∠D=∠DAE﹣∠B=65°﹣30°=35°,∴△ACD中,∠ACD=180°﹣65°﹣35°=80°.故答案为:80°17.如图,直线L是一次函数y=kx+b的图象,b=﹣3,k=,当x>2时,y >0.【考点】待定系数法求一次函数解析式.【分析】根据图形确定直线所经过的两点的坐标,代入一次函数y=kx+b可求出k和b的值.【解答】如图所示直线L过(2,0),(0,﹣3),根据题意列出方程组,解得,则当x>2时,y>0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.【考点】解二元一次方程组;零指数幂;二次根式的混合运算.【分析】(1)根据二次根式混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)原式=+1+1=4+1+1=6;(2),①×2﹣②得,x=2,把x=2代入①得,4﹣y=,解得y=﹣1,故方程组的解为.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.【考点】全等三角形的判定;平行线的判定.【分析】(1)根据角平分线的性质得出DC=DE,由HL定理得出△ACD≌△AED;(2)根据平角的定义得出∠1+∠CFD+∠2=180°,再由∠1与∠D互余,CF⊥DF得∠1=∠C,从而得出AB∥CD.【解答】证明:(1)∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED,(2)∵CF⊥DF,∴∠C+∠D=90°,∵∠1与∠D互余,∴∠1=∠C,∵∠1+∠CFD+∠2=180°,∴AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?【考点】坐标与图形性质.【分析】(1)根据点的坐标标出各点,依次连接可得;(2)由图可知位于坐标轴上的点,由坐标可得其特点;(3)观察图象即可得知.【解答】解:(1)如图,(2)点(1,0)、(3,0)在x轴上,x轴上的点纵坐标为0;点(0,4)在y轴上,y轴上的点横坐标为0;(3)(0,4),(2,4),(4,4)三点所在直线与x轴平行,此线段上点的纵坐标相等,都等于4.22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;3【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+2]=70,= [(70﹣85)2+2+2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【考点】一次函数的应用.【分析】(1)由图可知:10﹣14小时的时间段内小明全家在旅游景点游玩,因此时间应该是4小时;(2)可根据14小时和15小时两个时间点的数值,用待定系数法求出函数的关系式;(3)可根据8小时和10小时两个时间段的数值求出函数关系式,那么这个函数关系式应该是s=90x﹣720,那么出发时的15升油,可行驶的路程是15÷=135千米,代入函数式中可得出x=9.5,因此9:30以前必须加一次油,如果刚出发就加满油,那么可行驶的路程=35÷=315千米>180千米,因此如果刚出发就加满油,到景点之前就不用再加油了.也可以多次加油,但要注意的是不要超出油箱的容量.【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(4,0),点B的坐标为(0,3);(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)令y=0求出x的值,再令x=0求出y的值即可求出A、B两点的坐标;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.【解答】解:(1)令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).(每空1分)(2)设OC=x,则AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴OC=.(3)设P点坐标为(x,0),当PA=PB时,=,解得x=;当PA=AB时,=,解得x=9或x=﹣1;当PB=AB时,=,解得x=﹣4.∴P点坐标为(,0),(﹣4,0),(﹣1,0),(9,0).26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM 是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN 全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.2016年9月19日第21页(共21页)。

2017-2018学年八年级数学上学期期末考试卷(考试版)

2017-2018学年八年级数学上学期期末考试卷(考试版)

学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料绝密★启用前2017-2018学年上学期期末卷八年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版八上第11~15章。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列交通标志图案是轴对称图形的是A .B .C .D .2.在下列长度的四组线段中,不能组成三角形的是 A .3 cm ,4 cm ,5 cm B .5 cm ,7 cm ,8 cm C .3 cm ,5 cm ,9 cmD .7 cm ,7 cm ,9 cm3.下列分解因式正确的是A .3(1)(1)m m m m m -=-+B .26(1)6x x x x --=--C .()222a ab a a a b ++=+D .()222x y x y -=-4.下列各式计算正确的是 A .2a 2+a 3=3a 5B .(-3x 2y )2÷(xy )=9x 3yC .(2b 2)3=8b 5D .2x •3x 5=6x 55.如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°,则∠DAC 的大小是A .15°B .30°C .25°D .20°6.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是A .AM=CNB .∠M=∠NC .AB=CDD .AM ∥CN7.如图,在四边形ABCD 中,∠A =140°,∠D =90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC 等于A .115°B .125°C .105°D .135°8.某单位向一所希望小学赠送1080本课外书,现用A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为 ABCD9.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A′DB 的度数为学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料A .10°B .15°C .20°D .25° 10.如图,△ABC 和△ADE 是等边三角形,AD 是△ABC 的角平分线,有下列结论:①AD ⊥BC ;②EF =FD ;③BE =BD ,其中正确结论的个数是A .0B .1C .2D .3第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:20213(π3)()3-+---= .12.若5a b +=,3ab =,则22a b +=____________. 13.若关于x 的分式方程1322x mx x -=+--无解,则m 的值为 ______ . 14.如图,是一个风筝骨架.为使风筝平衡,须使∠AOP =∠BOP .我们已知PC ⊥OA ,PD ⊥OB ,那么PC和PD 应满足_________,才能保证OP 为∠AOB 角平分线.15.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积是12 cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最短为______cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)解方程:(1)263x x x x -=--; (2)115126x +=+. 17.(本小题满分9分)如图,在△ABC 中,CD 是AB 边上的高,BE 为角平分线,若∠BFC =113°,求∠BCF 的度数.18.(本小题满分9分)如图,△A C B 和△ADE 均为等边三角形,点C 、E 、D 在同一直线上,在△ACD中,线段AE 是CD 边上的中线,连接BD .求证:CD =2BD .19.(本小题满分9分)如图,△ABC 中,90BAC AB AC AD BC ∠==⊥,,,垂足是D ,AE 平分BAD ∠,交BC 于点E ,在△ABC 外有一点F ,使FA AE FC BC ⊥⊥,. (1)求∠ACF 的度数;(2)求证:BE CF =;(3)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N,连接ME .求证:ME BC ⊥.20.(本小题满分9分)如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料使点E ,A 在直线DC 同侧,连接AE .求证:(1)△AEC ≌△BDC ; (2)AE ∥BC .21.(本小题满分10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕,第二次购进时发现每件文具的进价比第一次上涨了2.5元,老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,已知两批文具的售价均为每件15元. (1)第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?22.(本小题满分10分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC .(1)证明:BC =DE ;(2)若AC =12,求四边形ABCD 的面积.23.(本小题满分11分)小丽同学要画∠AOB 的平分线,却没有量角器和圆规,于是她用三角尺按下面方法画角平分线:①在∠AOB 的两边上,分别取OM=ON ; ②分别过点M 、N 作OA 、OB 的垂线,交点为P ; ③画射线OP ,则OP 为∠AOB 的平分线. (1)请问:小丽的画法正确吗?试证明你的结论;(2)如果你现在只有刻度尺,能否画一个角的角平分线?请你在备用图中试一试.(不需要写作法,但是要让读者看懂,你可以在图中标明数据)。

2017-2018八年级上期末数学试卷及答案

2017-2018八年级上期末数学试卷及答案

2017-2018八上期末数学试卷及答案一、你一定能选对(本大题共10小题,每小题3分,共30分)。

下列各题均有四个各选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.下列四个汽车标志图中,不是轴对称图形的是( )2.使分式1xx -有意义的x 的取值范围是( ) A.x ≠1 B.x ≠0 C.x ≠-1 D.x ≠0且x ≠1. 3.下列运算正确的是( )A. 2x+3y=5xyB.x 8÷x 2=x 4C.(x 2y)3=x 6y 3D.2x 3·x 2=2x 64.如图,已知AB=CD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( ) A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x 2+2x+1=(x+1)2C.x 2-2xy-y 2=(x-y)2D.x 2+4=(x+2)2 6.点A 关于y 轴对称点是( ) A. (3,-4) B.(-3,4) C.(3,4) D.(-4,3) 7.下列各式从左到右的变形正确的是( ) A.2b a b +=12a + B. b a =22b a ++ C.a bc -+=-a b c+ D.22a a +-=224(2)a a --8.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的DCBA三角形的个数有(不包含△ABC 本身)( ) A. 4个 B.3个 C.2个 D.1个 9.已知P=717m-1, Q=m 2-1017m(m 为任意实数),则P 与Q 的大小关系为( ) A.P>Q B.P=Q C.P<Q D.不能确定10.如图△ABC 与△CDE 都是等边三角形,且∠EBD=65°,则∠AEB 的度数是( ) A. 115° B.120° C.125° D.130°二.填空题(每题3分,共18分) 11.若分式8x x的值为0,则x=_____. 12.计算: 6a 2b ÷2a=_____.13.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=AD, ∠A=36°,则∠DBC=______.14.信息技术的存储设备常用B 、KB 、MB 、GB 等作为存储设备的单位,例如,我们常说的某计算机的硬盘容量是320GB,某移动硬盘的容量是80GB,某个文件夹的大小是156KB 等,其中1GB=210MB,1MB=210KB,1KB=210B(字节),对于一个容量为8GB 的内存盘,其容量为____B(字节).15.已知(x+p)(x+q)=x 2+mx+3,p 、q 为整数,则m=___.16.如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,B C且MO=MA,则MN的最小值为_______.三.解下列各题(本大题共8小题,共72分)17.(8分)计算: (1) (3x+1)(x+2) (2) 123p++1 23p-18.(8分)因式分解: (1)4x2-9 (2) -3x2+6xy-3y219(8分)先化简,再求值: (m+2-52m-)×243mm--,其中m=4.20(8分)如图,“丰收1号”小麦试验田是一块边长为a米的正方形试验田上修建两条宽为1米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为1米的蓄水池后余下的部分,两块试验田的小麦都收获了500千克.(1) “丰收1号”试验田的面积为_____平方米;“丰收2号”试验田的面积为_____平方米;(2)“丰收1号”小麦试验田的单位面积产量是“丰收1号”小麦试验田的单位面积产量的多少倍?21(8分)如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,交AC 于点F,过点E 作EG//BC 交AC 于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG 的长.22(10分)从2007年4月18日开始,我国铁路第六次提速,某次列车平均提速v km/h.(1) 若提速前列车的平均速度为x km/h,行驶1200km 的路程,提速后比提速前少用多长时间?(2)若v=50,行驶1200km 的路程,提速后所用时间是提速前的45,求提速前列车的平均速度?(3)用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.23(10分)已知:在△ABC 中, ∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 交于点F.(1)如图1,若AE 、CD 为△ABC 的角平分线. ①求证: ∠AFC=120°;②若AD=6,CE=4,求AC 的长?图1(2)如图2,若∠FAC=∠FCA=30°,求证:AD=CE.24(12分)如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分∠AOB 交AB 于点C,点D 为线段AB 上一点,过点D 作DE//OC 交y 轴于点E,已知AO=m,BO=n,且m 、n 满足n 2-12+36+|n-2m|=0. (1)求A 、B 两点的坐标?(2)若点D 为AB 中点,求OE 的长?(3)如图2,若点P(x,-2x+6)为直线AB 在x 轴下方的一点,点E 是y 轴的正半轴上一动点,以E 为直角顶点作等腰直角△PEF,使点F 在第一象限,且F 点的横、纵坐标始终相等,求点P 的坐标.图2Axx2017~2018学年度上学期期末试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11、812、3ab 13、36°14、23315、4或-4 16、32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17、解:(1)原式=2362x x x +++…………(2分) =2372x x ++…………(4分) (2)112323p p ++- 解:原式=()()()()2-32323232323p p p p p p +++-+-…………(6分) =()()2-3232323p p p p +++-…………(7分)=2449pp -…………(8分) 18、解:(1)原式=()2223x -…………(2分) =(2x +3)(2x -3) …………(4分)(2)原式=22-3(2)x xy y -+…………(6分)=2-3()x y -…………(8分)19、解:原式=()()3422522--⋅---+m m m m m …………(2分)=()322292--⋅--m m m m =()()()322233--⋅--+m m m m m …………(4分)=2(m +3) …………(6分)当m =2时,原式=2×(2+3)=10…………(8分)20、解:(1) “丰收1号”试验田的面积为_(a -1)2_平方米;“丰收2号”试验田的面积为 (a 2-1)平方米.…………(4分) (2)()225005001-1a a ÷-…………(5分) =()()()211500500-1a a a +-⋅=()()()211500500-1a a a +-⋅=11a a +-…………(7分) ∴“丰收1号”小麦的单位面积产量是“丰收2号”小麦的单位面积产量的11a a +-倍……(8分)21、(1)∵BF 平分∠ABC∴∠ABF =∠CBF∵∠AFB =180°-∠ABF -∠BAF ∠BED =180°-∠CBF -∠ADB 又∵∠BAC =∠ADB∴∠AFB =∠BED …………(2分) ∵∠AEF =∠BED ∴∠AFB =∠AEF ∴AE =AF …………(4分)(2)如图,在BC 上截取BH =AB ,连接FH在△ABF 和△HBF 中∵⎪⎩⎪⎨⎧=∠=∠=BF BF HBF ABF BH AB ∴△ABF ≌△HBF (SAS )∴AF =FH ,∠AFB =∠HFB …………(5分) ∵∠AFB =∠AEF ∴∠HFB =∠AEF ∴AE ∥FH ∴∠GAE =∠CFH ∵EG ∥BC ∴∠AGE =∠C ∵AE =AF∴AE =FH …………(6分)H GFED CBA在△AEG 和△FHC 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠FH AE C AGE CFH GAE∴△AEG ≌△FHC (AAS ) ∴AG =FC =4…………(7分)∴FG =AG + FC -AC =1. …………(8分) 注:本题两问其它解法参照评分 22、解:(1)由题意得:12001200-x x v +…………(2分)…………(3分)∴提速后比提速前少用 小时. …………(4分) (2)依题意有:120041200505x x=⨯+…………(6分) 解得:x =200…………(7分)经检验x =200是原方程的解,且符合题意…………(8分) ∴提速前列车的平均速度为:200千米/时 (3) 提速前列车的平均速度为:50sv千米/时. …………(10分)1200()1200()()120012001200()x v xx x v x x v x v x x x v +=-+++-=+1200()v x x v =+1200()v x x v +23、(1)①∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =BAC ∠21,∠FCA =BCA ∠21…………(1分) ∵∠B =60°∴∠BAC +∠BCA =120°…………(2分)∴∠AFC =180-∠FAC -∠FCA =180-)21BCA BAC ∠+∠(=120°…………(3分)②在AC 上截取AG =AD =6,连接FG ∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =∠FAD ,∠FCA =∠FCE ∵∠AFC =120°∴∠AFD =∠CFE =60°…………(4分)在△ADF 和△AGF 中∵⎪⎩⎪⎨⎧=∠=∠=AF AF GAF DAF AG AD ∴△ADF ≌△AGF (SAS )∴∠AFD =∠AFG =60°…………(5分) ∴∠GFC =∠CFE =60° 在△CGF 和△CEF 中∵GFC EFC CF CF GCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CGF ≌△CEF (ASA ) ∴CG =CE =4∴AC =10…………(6分)GFDE BCA(2)在AE 上截取FH =FD ,连接CH ∵∠FAC =∠FCA =30° ∴FA =FC …………(7分)在△ADF 和△CHF 中∵⎪⎩⎪⎨⎧=∠=∠=HF DF CFH AFD CF AF ∴△ADF ≌△CHF (SAS )∴AD =CH ,∠DAF =∠HCF …………(8分) ∵∠CEH =∠B +∠DAF =60°+∠DAF ∠CHE =∠HAC +∠HCA =60°+∠HCF ∴∠CEH =∠CHE …………(9分) ∴CH =CE∴AD =CE …………(10分) 注:本题两问其它解法参照评分24、(1)∵2123620n n n m -++-= ∴()0262=-+-m n n …………(1分)∵()260n -≥,-20n m ≥ ∴()260n -=,-20n m =∴ m =3,n =6…………(2分)∴点A 为(3,0),点B 为(0,6)…………(3分)(2)延长DE 交x 轴于点F ,延长FD 到点G ,使得DG =DF ,连接BG 设OE =xHFDE BCA∵OC 平分∠AOB ∴∠BOC =∠AOC =45° ∵DE ∥OC∴∠EFO =∠FEO =∠BEG =∠BOC =∠AOC =45°…………(4分) ∴OE =OF =x在△ADF 和△BDG 中∵ ⎪⎩⎪⎨⎧=∠=∠=DG DF BDG ADF BD AD∴△ADF ≌△BDG (SAS )∴BG =AF =3+x ,∠G =∠AFE =45°…………(5分) ∴∠G =∠BEG =45° ∴BG =BE =6-x∴6-x =3+x …………(6分) 解得:x =1.5∴OE =1.5…………(7分)(3)分别过点F 、P 作FM ⊥y 轴于点M ,PN ⊥y 轴于点N 设点E 为(0,m )∵点P 的坐标为(x ,-2x +6) 则PN =x ,EN =m +2x-6…………(8分)∵∠PEF =90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵MFE PENFME PNE EF EP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6…………(9分) ∴点F为(m+2x-6,m+x)…………(10分) ∵F点的横坐标与纵坐标相等∴m+2x-6=m+x…………(11分)解得:x=6∴点P为(6,-6)…………(12分)注:本题其它解法参照评分。

2017-2018学年八年级上册期末数学试卷及答案解析

2017-2018学年八年级上册期末数学试卷及答案解析

2017-2018学年八年级上册期末数学试卷一.单选题(共10题;共30分)1.下列两个三角形的对应元素中,不能判断两个三角形全等的是()A. SSAB. AASC. SASD. ASA2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A. 35°B. 40°C. 45°D. 50°3.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=()A. B. C. 3 D.4.三角形三边之比分别为(1):2:(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A. 1个B. 2个C. 3个D. 4个5.如图在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是( )A. ∠B=∠E,BC=EFB. BC=EF,AC=DFC. ∠A=∠D,∠B=∠ED D. ∠A=∠D,BC=EF6.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A:∠B:∠C=l:2:3B. 三边长为a,b,c的值为1,2,C. 三边长为a,b,c的值为,2,4D. a2=(c+b)(c﹣b)7.某码头上有20名工人装载一批货物,已知每人往一艘轮船上装载2吨货物,装载完毕恰好用了6天,轮船到达目的地后,另一批工人开始卸货,计划平均每天卸货v吨,刚要卸货时遇到紧急情况,要求船上的货物卸载完毕不超过4天,则这批工人实际每天至少应卸货()A. 30吨B. 40吨C. 50吨D. 60吨8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A. 17°B. 34°C. 56°D. 6 8°9.如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是()A. B. C. D.10.如图所示,在3×3的网格中,每个网格线的交点称为格点,已知图中A、B为两格点,请在图中再寻找另一格点C,使△ABC成为等腰三角形.则满足条件的C点的个数为()A. 10个B. 8个C. 6个D. 4个二.填空题(共8题;共24分)11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是________ .12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.13.如图,△ABC≌△CDA,则AB与CD的位置关系是________,若AD=3cm,AB=2cm,则四边形ABCD的周长=________cm.14.已知M(a,3)和N(4,b)关于y轴对称,则a+b的值为________.15.点A(0,3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是________.16.已知P(5,5),点B、A分别在x的正半轴和y的正半轴上,∠APB=90°,则OA+OB=________.17.m的6倍与4的差不小于12,列不等式为________.18.在Rt△ABC中,AC=9,BC=12,则AB=________.三.解答题(共6题;共36分)19.用反证法证明:若两条直线都平行于第三条直线,则这两条直线平行.20.已知某开发区有一块四边形的空地ABCD,如图所示,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求这块空地的面积?21.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的D 点处,折痕BE与AC交于点E.若AD=BD,求折痕BE的长.22.如图1,在四边形ABCD中,∠CDB=2∠ABD,∠ABC=105°,∠A=∠C=45°.(1)求∠ABD;(2)求证:CD=AB;(3)如图2,过点C作CF⊥BD于点E,交AB于点F,若AB=3,则BF+BE等于多少?23.当k满足条件时,关于x的一元二次方程kx2+(k﹣1)x+k2+3k=0是否存在实数根x=0?若存在求出k值,若不存在请说明理由.24.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.四.综合题(共10分)25.如图①,现有一张三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.(1)填空:△ADC是________三角形;(2)若AB=15,AC=13,BC=14,求BC边上的高AE的长;(3)如图②,若∠DAC=90°,试猜想:BC、BD、AE之间的数量关系,并加以证明.浙江省绍兴外国语学校2017-2018学年八年级上册期末数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】全等三角形的判定【解析】【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,而没有SSA.【解答】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.故选A.【点评】本题考查三角形全等的判定方法.做题时要根据已知条件结合判定方法逐个验证.2.【答案】A【考点】等腰三角形的性质【解析】【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.3.【答案】A【考点】翻折变换(折叠问题)【解析】【解答】解:如图所示:由题意可得:∠1=∠2=30°,则∠3=30°,可得∠4=∠5=60°,∵AB=DC=BE=3,∴tan60°==,解得:EF=.故选:A.【分析】利用翻折变换的性质得出:∠1=∠2=30°,进而结合锐角三角函数关系求出FE的长.4.【答案】A【考点】勾股定理的逆定理【解析】【解答】设每份为k,则(1)(k)2+(2k)2≠(k)2;(2)(3k)2+(4k)2=(5k)2;(3)k2+(2k)2≠(3k)2;(4)(4k)2+(5k)2≠(6k)2,∴可以构成直角三角形的是1个.故选A.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.【答案】D【考点】全等三角形的判定【解析】【解答】解:A、添加∠B=∠E,BC=EF可用SAS判定两个三角形全等,故A选项正确;B、添加BC=EF,AC=DF可用SSS判定两个三角形全等,故B选项正确;C、添加∠A=∠D,∠B=∠E可用ASA判定两个三角形全等,故C选项正确;D、添加∠A=∠D,BC=EF后是SSA,无法证明三角形全等,故D选项错误.故选:D.【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等,而SSA是不能判定三角形全等的.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.【答案】C【考点】三角形内角和定理,勾股定理的逆定理【解析】【解答】解:A、∵∠A:∠B:∠C=1:2:3,∴∠C= ×180°=90°,故是直角三角形,故本选项错误;B、∵12+()2=22,∴能构成直角三角形,故本选项错误;C、∵22+()2≠42,∴不能构成直角三角形,故本选项正确;D、∵a2=(c+b)(c﹣b),∴a2=c2﹣b2,∴能构成直角三角形,故本选项错误.故选C.【分析】由直角三角形的定义,只要验证最大角是否是90°;由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.7.【答案】D【考点】一元一次不等式的应用【解析】【解答】解:设这批工人实际每天至少应卸货v吨,根据题意得:2×6×20≤4v,解得:v≥60,答:这批工人实际每天至少应卸货60吨;故选D.【分析】设这批工人实际每天至少应卸货v吨,根据每人往一艘轮船上装载2吨货物,装载完毕恰好用了6天和共有20人求出总的货物,再根据船上的货物卸载完毕不超过4天,列出不等式,求解即可.8.【答案】D【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.【分析】首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.9.【答案】C【考点】函数的图象【解析】【解答】解:当长方体铁块浸没在水中这段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,当铁块全部进入空气中,弹簧称的读数保持不变.根据弹簧称的读数保持不变﹣逐渐增大﹣保持不变.得出函数的图象.选项中C的图像与描述一致,故选C.10.【答案】B【考点】等腰三角形的判定【解析】【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故选B.【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.二.填空题11.【答案】三角形的稳定性【考点】三角形的稳定性【解析】【解答】解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的稳定性.【分析】根据三角形的三边如果确定,则形状大小完全确定,即三角形的稳定性.12.【答案】DC=BC或∠DAC=∠BAC【考点】全等三角形的判定【解析】【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.13.【答案】平行;10【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△CDA,∴∠BAC=∠ACD,∴AB∥DC,则AB与CD的位置关系是平行,∵AD=3cm,AB=2cm,∴BC=3cm,DC=2cm,则四边形ABCD的周长=3+3+2=2=10(cm).故答案为:平行,10.【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.14.【答案】﹣1【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵M(a,3)和N(4,b)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加计算即可得解.15.【答案】(,0)或(﹣,0)【考点】坐标与图形性质【解析】【解答】解:∵A(0,3),B(0,﹣4),∴OA=3,OB=4,设点C(x,0),∵△ABC的面积为15,∴×(OB+OA)×OC=15,即×7•|x|=15,解得:x= 或x=﹣,∴点C的坐标为(,0)或(﹣,0),故答案为:(,0)或(﹣,0).【分析】由A、B的坐标得出AB的长,设点C(x,0),由△ABC的面积为15知×7•|x|=15,解之求得x的值可得答案.16.【答案】10【考点】坐标与图形性质,全等三角形的判定与性质【解析】【解答】解:过P作PM⊥y轴于M,PN⊥x轴于N,如图所示:∵P(5,5),∴PN=PM=5,∵x轴⊥y轴,∴∠MON=∠PNO=∠PMO=90°,∴∠MPN=360°﹣90°﹣90°﹣90°=90°,则四边形MONP是正方形,∴OM=ON=PN=PM=5,∵∠APB=90°,∴∠APB=∠MON,∴∠MPA=90°﹣∠APN,∠BPN=90°﹣∠APN,∴∠APM=∠BPN,在△APM和△BPN中,,∴△APM≌△BPN(ASA),∴AM=BN,∴OA+OB=OA+0N+BN=OA+ON+AM=ON+OM=5+5=10故答案为:6.【分析】过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=5,证△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.17.【答案】6m﹣4≥12【考点】一元一次不等式的定义【解析】【解答】解:由题意得:6m﹣4≥12,故答案为:6m﹣4≥12【分析】首先表示“m的6倍与4的差”为6m﹣4,再表示“不小于12”可得6m﹣4≥12.18.【答案】15或3【考点】勾股定理【解析】【解答】解:①当BC 边为斜边时,利用勾股定理可得:AB===3 ; ②当AB 边为斜边时,利用勾股定理可得:AB===15,故答案为:15或3.【分析】本题需要分类讨论:①当BC 边为斜边时,利用勾股定理可得AB 的长; ②当AB 边为斜边时,利用勾股定理可得AB 的长. 三.解答题19.【答案】证明:如图所示:已知l 1‖l 3 , l 2‖l 3 , 假设l 1不平行于l 2 , l 1‖l 3 则 l 2不平行于l 3与条件l 2‖l 3矛盾, 所以l 1‖l 2 .【考点】反证法【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此得出假设与已知定理矛盾,进而得出答案.20.【答案】解:连接BD ,如图所示: 在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52 ,在△CBD 中,CD 2=132BC 2=122, 而122+52=132, 即BC 2+BD 2=CD 2,∴∠DBC=90°,S 四边形ABCD =S △BAD +S △DBC =AB•AD+BD•BC=36m 2;答:这块空地的面积为36m 2.【考点】勾股定理的应用【解析】【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.21.【答案】解:∵折叠△ABC纸片使点C落在AB边上的D点处,∴BC=BD,∠CBE=∠ABE,∵BD=AD,∴BC= AB,∴∠A=30°,∴BC= AC= ×6=2 ,∵∠ABC=90°﹣∠A=60°,∴∠CBE= ∠ABC=30°,在Rt△BCE中,∵∠CBE=30°,∴CE= BC=2,∴BE=2CE=4【考点】翻折变换(折叠问题)【解析】【分析】根据折叠的性质得BC=BD,∠CBE=∠ABE,由于BD=AD,所以BC= AB,则根据含30度的直角三角形三边的关系得∠A=30°,可计算出BC= AC=2 ,然后在Rt△BCE中,利用∠CBE=30°,可计算出CE= BC=2,BE=2CE=4.22.【答案】解:(1)∵∠ABC=105°,∠A=∠C=45°,∴∠ADC=360°﹣45°﹣45°﹣105°=165°,设∠ABD=y,则∠CDB=2y,∠ADB=180°﹣45°﹣y=135°﹣y,∴135°﹣y+2y=165°,解得:y=30°,即∠ABD=30°;(2)证明:作DM⊥AB于E,BN⊥CD于F,如图所示:设DN=x,∵BN⊥CD,∠C=45°,∴∠CBN=∠C=45°,∴△BCN是等腰直角三角形,∴CN=BN,∵∠CDB=2×30°=60°,∴∠DBN=30°,∴BD=2DN=2x,∴BN=CN=x,∴CD=x+x,∵DM⊥AB,∴DM=BD=x,BM=DM=x,∵∠A=45°,∴△ADM是等腰直角三角形,∴AM=DM=x,∴AB=AM+BM=x+x,∴CD=AB;(3)解:由(2)得:CD=AB=3,x+x=3,解得:x=,∴BD=9﹣3,∵CF⊥BD,∴∠DCE=90°﹣60°=30°,∴DE=CD=,∴BE=BD﹣DE=9﹣,∵∠ABD=30°,∴BF==6﹣9,∴BF+BE=6﹣9+9﹣=;【考点】全等三角形的判定与性质【解析】【分析】(1)由四边形内角和定理求出∠ADC=165°,设∠ABD=y,则∠CDB=2y,∠ADB=135°﹣y,得出方程135°﹣y+2y=165°,解方程即可;(2)作DM⊥AB于E,BN⊥CD于F,设DN=x,证出△BCN是等腰直角三角形,得出CN=BN,求出∠DBN=30°,由含30°角的直角三角形的性质得出BD=2DN=2x,求出BN=CN=x,得出CD=x+x,同理得出AB=AM+BM=x+x,即可得出结果CD=AB;(3)由(2)得:x+x=3,求出x=,得出BD=9﹣3,由含30°角的直角三角形的性质得出DE=CD=,得出BE=BD﹣DE=9﹣,由三角函数求出BF=6﹣9,即可得出结果.23.【答案】解:,解①得:k≤4,解②得:k≥﹣7,则不等式组的解集是:﹣7≤k≤4,把x=0代入方程解得k=0或k=﹣3,∵k=0不满足方程为一元二次方程,∴k=﹣3.【考点】解一元一次不等式组【解析】【分析】首先解不等式求得k的范围,然后把x=0代入方程求得k的值,根据解不等式组得到的k的范围进行判断.24.【答案】解:设一次函数解析式为y=kx+b,将x=3,y=1;x=﹣2,y=﹣4代入得:,解得:k=1,b=﹣2.则一次函数解析式为y=x﹣2【考点】待定系数法求一次函数解析式【解析】【分析】一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式.四.综合题25.【答案】(1)等腰(2)解:设CE=x,则BE=14﹣x,在Rt△AEC中,由勾股定理得:AE2=AC2﹣CE2,∴AE2=132﹣x2在Rt△ABE中,由勾股定理得:AE2=AB2﹣BE2,∴AE2=152﹣(14﹣x)2∴132﹣x2=152﹣(14﹣x)2解得:x=5,在Rt△AEC中,由勾股定理得:(3)解:猜想BC、BD、AE之间的数量关系为:BC﹣BD=2AE.证明如下:由(1)得:△ADC是等腰三角形,又∠DAC=90°,∴△ADC是等腰直角三角形又AE是CD边上的高,∴DE=CE,,∴△AED与△AEC都是等腰直角三角形,∴DE=AE=EC,即CD=2AE.∵BC﹣BD=CD∴BC﹣BD=2AE.【考点】翻折变换(折叠问题)【解析】【解答】解:(1)∵三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.∴AD=AC,∴△ADC是等腰三角形;故答案为:等腰.【分析】(1)根据折叠得到AD=AC,所以△ADC是等腰三角形;(2)设CE=x,利用勾股定理得到方程132﹣x2=152﹣(14﹣x)2解得:x=5,在Rt△AEC中,由勾股定理即可解答;(3)猜想BC、BD、AE之间的数量关系为:BC﹣BD=2AE.由△ADC是等腰三角形,又∠DAC=90°,得到△ADC是等腰直角三角形又AE是CD边上的高,所以△AED与△AEC 都是等腰直角三角形,即可得到CD=2AE.由BC﹣BD=CD,即可解答.。

2017-2018学年度上学期期末考试八年级数学试卷

2017-2018学年度上学期期末考试八年级数学试卷

2017-2018学年度上学期期末考试八年级数学试题一、选择题(每小题3分,共30分)1.已知a ﹣b=3,ab=2,则a 2﹣ab+b 2的值为( ) A .9 B .13 C .11 D .8 2,。

已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个 B 。

5个 C.4个 D 。

3个3。

一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A 。

15或16B 。

16或17 C.15或17 D 。

15。

16或174。

如图,△ACB ≌△A ’CB',∠BCB'=30°,则∠ACA'的度数为( )A 。

20°B 。

30°C 。

35°D 。

40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A 。

15cmB 。

20cmC 。

25cm D.20cm 或25cm6。

如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D 。

∠ABC =∠ABD7。

如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10 B 。

7 C.5 D 。

4 8.若()22316m x x+-+是完全平方式,则m 的值等于( ) A 。

3 B. -5 C 。

7 D. 7或-19.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有( ) A .1种 B .2种 C .3种 D .4种10.某种微粒的直径为0。

00000508米,那么该微粒的直径用科学记数法可以表示为( )A 。

0。

508×10-7米B 。

5。

08×10-7米 C. 50。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年八年级上期末数学试卷及答案

2017-2018学年八年级上期末数学试卷及答案

2017-2018学年八年级上期末数学试卷一.单选题(共10题;共30分)1.已知(5﹣3x+mx2﹣6x3)(1﹣2x)的计算结果中不含x3的项,则m的值为()A. 3B. ﹣3C. ﹣D. 02.已知代数式x2-2x+1的值为9,则2x2-4x+3的值为( )A. 18B. 12C. 19D. 173.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠EB. BC=EC,AC=DCC. BC=EC,∠A=∠DD. ∠B=∠E,∠A=∠D4.下列等式从左到右的变形是因式分解的是()A. x(x﹣1)=x2﹣xB. x2﹣2x+1=x(x﹣2)+1C. x2﹣xy=x(x﹣y)D. 12a2b=3a2•4b5.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,BE=4,则AD的长是()A. 1B. 2C. 6D. 26.若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是()A. 2B. ±2C. -2D. 27.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A. ﹣3 B. 3 C. 0 D. 1 8.某校初一新生来自甲、乙、丙三所不同小学,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲小学的为180人,则下列说法不正确的是()A. 扇形甲的圆心角是72°B. 学生的总人数是900人C. 丙校的人数比乙校的人数多180人D. 甲校的人数比丙校的人数少180人9.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A. AE=CFB. BE=FDC. BF=DED. ∠1=∠210.如图,在△ABC中,,∠CAB的平分线AD交BC于点D,BC=8,BD=5,那么点D到AB的距离是().A. 3B. 4C. 5D.6.二.填空题(共8题;共24分)11.已知矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4,则矩形对角线的长是________.12.在平行四边形ABCD中,AB=3,BC=5,AC=4,则平行四边形ABCD的面积是________13.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法________.(填“正确”或“不正确”)14.在等腰三角形ABC中,AC为腰,O为BC中点,OD平行AC,∠C=30°,求∠AOD= ________15.如图在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=________16.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是________ 三角形.17.三角形的三边分别为a,b,c,且(a﹣b)2+(a2+b2﹣c2)2=0,则三角形的形状为________.18.如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长________.三.解答题(共6题;共36分)19.在△ABC中∠C=90°,DE垂直平分斜边AB,分别交AB,BC于D,E;①若AC=1cm,BC= cm(其中≈1.732),求△ACE的周长;②若∠CAB=∠B+30°,求∠AEB的度数.20.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.21.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?22.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.23.若a﹣3是a2+5a+m的一个因式,求m的值.24.用反证法证明“一个三角形中不可能有两个角是钝角”已知:△ABC求证:∠A、∠B、∠C中不能有两个角是钝角证明:假设.四.综合题(共10分)25.如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于M,BN⊥MN于N.(1)求证:MN=AM+BN.(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.吉林省长春市农安县西北片初中区2017-2018学年八年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】B2.【答案】C3.【答案】C4.【答案】C5.【答案】D6.【答案】A7.【答案】A8.【答案】D9.【答案】A10.【答案】A二.填空题11.【答案】812.【答案】1213.【答案】正确14.【答案】60°或23.79°15.【答案】70°16.【答案】直角17.【答案】等腰直角三角形18.【答案】2,4,,,三.解答题19.【答案】解:①∵DE是AB的垂直平分线,∴AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=1+ ≈2.732cm②在△ABC中,∠C=90°,∴∠BAC+∠B=90°,∵∠CAB=∠B+30°,∴∠B=30°,∠CAB=60°∵AE=BE,∴∠BAE=∠B=30°,∴∠AEB=180°﹣(∠BAE+∠B)=120°20.【答案】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC= =5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD= AB•BC+ AC•CD= ×3×4+ ×5×12=36.故四边形ABCD的面积是36.21.【答案】解:由题意可知OM=ON,OC=OC,CM=CN,∴,∴△OMC≌△ONC.(SSS)∴∠COM=∠CON,即OC平分∠AOB22.【答案】(1)证明:∵AB是CD的垂直平分线,∴AC=AD,又∵AB⊥CD∴∠CAB=∠DAB(等腰三角形的三线合一);(2)证明:∵ME⊥A C,MF⊥AD,∠CAD=90°,即∠CAD=∠AEM=∠AFM=90°,∴四边形AEMF是矩形,又∵∠CAB=∠DAB,ME⊥A C,MF⊥AD,∴ME=MF,∴矩形AEMF是正方形.23.【答案】解:∵a﹣3是多项式a2+5a+m的一个因式,∴设另一个因式为:(a+p),∴a2+5a+m=(a﹣3)(a+p),即:a2+5a+m=a2+(p﹣3)a﹣3p,∵p﹣3=5,m=﹣3p,∴p=8,m=﹣24.∴m的值为﹣24.24.【答案】证明:假设∠A、∠B、∠C中有两个角是钝角,不妨设∠A、∠B为钝角,∴∠A+∠B>180°,这与三角形内角和定理相矛盾,故假设不成立原命题正确.四.综合题25.【答案】(1)证明:∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,∵∠ACB=90°,∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,∴∠MAC=∠NCB,在△AMC和△CNB中,∠AMC=∠CNB,∠MAC=∠NCB,AC=CB,△AMC≌△CNB(AAS),AM=CN,MC=NB,∵MN=NC+CM,∴MN=AM+BN(2)证明:结论:MN=BN﹣AM.∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,∵∠ACB=90°,∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,∴∠MAC=∠NCB,在△AMC和△CNB中,∠AMC=∠CNB,∠MAC=∠NCB,AC=CB,△AMC≌△CNB(AAS),AM=CN,MC=NB,∵MN=CM﹣CN,∴MN=BN﹣AM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年度上学期期末考试
八年级数学试题
一、选择题(每小题3分,共30分)
1.已知a- 3, 2,则a2-2的值为()
A. 9
B. 13
C. 11
D. 8
2,.已知三角形的三边长分别是3, 8, x,若x的值为偶数,则x
的值有()
A.6个
B.5 个
C.4 个
D.3 个
3. 一个多边形截去一个角后,形成的多边形的内角和是2520 °,则原多边形的边数是()
A.15 或16
B.16 或17
C.15 或17
D.15.16 或
17
4. 如图,△旦△ A'' ,Z ' = 30°,则/ '的度数为()
A.20 °
B.30 °
C.35 °
D.40 °
5. 等腰三角形的两边长分别为5和10 ,则此三角形的周长是-
()
A.15
B. 20
C. 25
D.20 或25
6. 如图,已知/ = /,贝V添加下列一个条件不能使△旦△的是
()
= = C. / C=Z D D. Z = Z
7. 如图,已知在△中,是边上的高,平分/,交于点E,= 5, = 2, 则△的面积等于()
A.10
B.7
C.5
D.4
8 .若I 是完全平方式,则m的值等于()
A. 3
B. -5
C.7
D. 7 或-1
9. 长为10,乙5, 3的四根木条,选其中三根首尾顺次相连接组
成三角形,选法有()
A. 1种
B. 2种
C. 3种
D. 4种
10. 某种微粒的直径为0.00000508米,那么该微粒的直径用科学
记数法可以表示为()
A. 0.508 X 10 -7米
B. 5.08 X 10-7米
C. 50.8 X 10 -7米
D. 5.08 X 10 -6米
11. 一个长方体的长、宽、高分别为34、2x和x,则它的体积为()
A. ㈢
B. 耳
C. 三
D. ㈢
12. 下列因式分解正确的是()
A. 、\ =——= ■
B. ■
C. 9-6()+()』=(3)』|
D. ■ —|
13. 如图,等边△的边长为1 , D E分别是、上的两点,将△沿直
线折叠,点A落在点到|处,且点W在△外部,则阴影部分图形的周长为()
A. 1
B. 1.5
C. 2
D. 3
14. 如图,在△中,,,,则/的度数为()
A.国
B.
第14题图
15. 如上图,等腰△中,/= 90°,丄于点D,/的平分线分别交、于E、F两点,M为的中点,的延长线交于点N,连接,下列
结论:①二:②△为等腰三角形;③平分/;④=丄;⑤=,其中正确结论的个数是()
A. 2个
B. 3个
二、解答题(共9小题,75分)
16. (本题满分6分)因式分解
⑴,「一
~1 (2)
17. (本题满分6分)计算与化简:
(1) ■
(2) 已知,求1 一I 的值。

18. (本题满分7分)△在平面直角坐标系中的位置如图所示. A、
B、C三点在格点上.
(1) 作出△关于x轴对称的AA 1B C,并写出点C的坐标;
(2) 作出△关于y对称的△ AB2C2,并写出点C2的坐标.
19•(本题满分7分)如图,已知点B、C、D在同一条直线上,△ 和△都
C. 4个
D. 5个
是等边三角形.交于 F ,交于H.
(1)求证:△旦△; (2)求证://.
第19题图
20. (本题满分8分)如图,已知:E 是/的平分线上一点,丄,丄,
C 、
D 是垂足,连接,且交于点 F .
(1) 求证:是的垂直平分线.
(2) 若/ 60°,请你探究,之间有什么数量关系?并证明你的结 论.
I ------◎ ----- 4-
21. (本题满分8分)如图,△中,/ 90° ,,点D 在斜边上,且, 过点B 作丄交直线于点E.
(1) 求/的度数
;
Th
(2) 求证:2.
22. (10分)请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形面积的和(只需表示,不必化简);
(2)由(1),你能得到怎样的等量关系?(请用等式表示)
23. (本题满分11分)如图①,,,//a,、相交于点M 连接.
(1) 求证:;
(2) 用含a 的式子表示/的度数;
(3) 当a =90°时,取,的中点分别为点 P 、Q 连接,,如图②,
判断△的形状,并加以证明.
(3)如果图中的 求:①E 的值; ②旦的值.
回(「回>何|)满

5
A
圈L
24. (12分)(2015秋?武昌区期中)如图,在平面直角坐标系中,已知
A (0, a)、
B ( - b, 0)且a、b 满足* - 220.
(1)求证://;
(2)如图1,若丄,求/的度数;
(3)如图2,若D是的中点,//, F在的延长线上,/ 45°,连接, 试探究和的数量和位置关系.
11 / 9。

相关文档
最新文档