山大离散代数系统练习题
离散数学---本科 山大20年考试题库及答案
填空题(1/11)1、设无向图G有24条边,有4个3度的顶点,期顶点度数均小于3,则G中至少有( 22 ) 个顶点。
2、假设4={x|x*<10.x∈正整数},B={x|x是素数,x<10},c={13.5}(1)(C-4)U(B-4)=(2)(B∩O-d=3、一棵树有2个2度顶点,1个3度顶点,3个4度顶点,则有( 9 )叶。
.4.假设P:今天天气好,Q:我就去锻炼身体。
命题“如果今天天气好,我就去锻炼身体"符号化为_ P Q学生答案:5.假设A={x|x2 <30.x∈正整数},B={x| x是正奇数,x<20},C={13.5}(1)(C-0U(B-4)=(2)(B∩Q)-d=学生答案:6、假设4=1.23),f,&8h是4倒4的的数,其中:(af0= f()=f(3)=1,(b>8(1)=1,g(2)=3,g()=2,(e)h0)=3,h2)=h(3)=1,则:(1)是满射;(2)____是双射;学生答案:7.假设A={a.b}({}},B={a}{0},{(}}试求出:“的幂集p(4)=8、设无向图G有12条边,有3个3度的顶点,其余顶点度数均小于3,则G中至少有_11_个顶点。
9假设d= 1.23.423上的关系R=<1.2>},则:(1)r(R)=_(2)s(R)=_(3)t(R)=_10、假设A={x|x2 <30.x∈整数},B={x[x是素数,x<20},C=13.5)(1)(A∩B)UC=(2)(B-AUC=(3)(C-4)U(B-4)=(4)(B∩9-4=11、-棵树有2个2度顶点,1个3度顶点,3个4度顶点,则有_7_片叶。
二、综合题(59分)12、假设4、B是非空集合,并且P(4)=P(B)。
证明:d=B.学生答案:13、m≤二n(n-D)假设图G是n个顶点m条边的简单无向图,则”2学生答案:S={<xyxxy∈R.x→是整数}证明定义在实数集合R.上的关系”3是一个等价关系。
山东大学离散数学题库及答案
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些就是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个就是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧ ∃z C(y,z))→D(x)中,自由变元就是( ),约束变元就是( )。
答:x,y, x,z5、判断下列语句就是不就是命题。
若就是,给出命题的真值。
( )(1) 北京就是中华人民共与国的首都。
(2) 陕西师大就是一座工厂。
(3) 您喜欢唱歌不? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 就是,T (2) 就是,F (3) 不就是(4) 就是,T (5) 不就是 (6) 不就是6、命题“存在一些人就是大学生”的否定就是( ),而命题“所有的人都就是要死的”的否定就是( )。
答:所有人都不就是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义就是( )。
《离散数学》题库及答案解析
《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。
在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。
)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
离散数学习题集(十五套)-答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ;B . 32 ;C . 332⨯;D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( )A .若R ,S 是自反的, 则S R 是自反的;B .若R ,S 是反自反的, 则S R 是反自反的;C .若R ,S 是对称的, 则S R 是对称的;D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A .A ;B .P(A) ;C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D .{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为( )7、下列函数是双射的为( )A .f : I →E , f (x) = 2x ;B .f : N →N ⨯N, f (n) = <n , n+1> ;C .f : R →I , f (x) = [x] ;D .f :I →N, f (x) = | x | 。
离散数学试题十五套
度结点。
A.1; B.2; C.3; D.4 。
三、证明 26%
1、 R 是集合 X 上的一个自反关系,求证:R 是对称和传递的,当且仅当
< a, b> 和<a , c>在 R 中有<.b , c>在 R 中。(8 分)
2、 f 和 g 都是群<G1 ,★>到< G2, *>的同态映射,证明<C , ★>是<G1, ★>的一个
;是否有幂等 。
群或
。
9、n 个结点的无向完全图 Kn 的边数为
,欧拉图的充要条件是 。
10、公式 (P (P Q)) ((P Q) R 的根树表示为
。
二、选择 20% (每小题 2 分)
1、在下述公式中是重言式为(
)
A. (P Q) (P Q) ;B. (P Q) ((P Q) (Q P)) ;
)。
A.群; B.独异点; C.半群 。
三、证明 46%
1、 设 R 是 A 上一个二元关系,
10、
S { a,b | (a,b A) (对于某一个c A, 有 a, c R且 c,b R)} 试 证
子群。其中 C={x | x G1且f (x) g(x)} (8 分)
3、 G=<V, E> (|V| = v,|E|=e ) 是每一个面至少由 k(k 3)条边围成的连通
e k(v 2)
平面图,则
k 2 , 由此证明彼得森图(Peterson)图是非平面图。(11
分)
四、逻辑推演 16%
2、论域 D={1,2},指定谓词 P
P (1,1) P (1,2)
离散数学习题集(十五套含答案)
离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。
3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。
离散数学习题集(十五套)---答案.docx
离散数学试题与答案试卷一一、填空20%(每小题 2 分)1.设A{ x | ( x N )且 ( x5)}, B{ x | x E 且 x7}( N:自然数集, E+正偶数)则 A B。
2.A ,B , C 表示三个集合,文图中阴影部分的集合表达式为A B。
C 3.设 P,Q 的真值为0,R, S 的真值为1,则(P(Q(R P)))( R S)的真值 =。
4.公式( PR)(S R)P的主合取范式为。
5.若解释 I 的论域 D 仅包含一个元素,则xP( x)xP( x)在 I 下真值为。
6.设 A={1 ,2, 3, 4} , A 上关系图为则 R2 =。
7.设 A={a , b,c, d} ,其上偏序关系R 的哈斯图为则 R=。
8.图的补图为。
9.设 A={a , b,c, d},A上二元运算如下:*a b c da abc db bcd ac cd a bd d a b c那么代数系统<A ,*> 的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择20%(每小题 2 分)1、下列是真命题的有()A .{ a}{{ a}};B .{{}}{ ,{ }};C.{{},} ;D.{ }{{}} 。
2、下列集合中相等的有()A . {4 , 3}; B. {,3, 4} ;C. {4 ,, 3,3} ;D . {3 , 4} 。
3、设 A={1 ,2, 3} ,则 A 上的二元关系有()个。
A . 23;B . 32;C. 23 3;D.32 2。
4、设 R,S 是集合 A 上的关系,则下列说法正确的是()A .若 R, S 是自反的,则RS 是自反的;B .若 R, S 是反自反的,则 R S 是反自反的;C.若 R, S 是对称的,则RS 是对称的;D .若 R, S 是传递的,则RS 是传递的。
5、设 A={1 ,2, 3, 4} , P( A )(A 的幂集)上规定二元系如下R{s,t| s,t p( A)(| s || t |}则 P(A ) / R=()A . A; B. P(A) ; C. {{{1}} , {{1 , 2}} , {{1 ,2, 3}} , {{1 , 2, 3, 4}}} ;D. {{} ,{2}, {2 ,3} , {{2 , 3, 4}} , {A}}6、设 A={, {1} , {1 , 3} , {1 , 2, 3}} 则 A上包含关系“”的哈斯图为()7、下列函数是双射的为()A . f : I E , f (x) = 2x;B. f : N N N, f (n) = <n , n+1> ;C. f : R I , f (x) = [x]; D . f :I N, f (x)= | x | 。
山东大学网络教育离散数学卷(1)-参考答案
山东大学网络教育离散数学卷(1)-参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN山东大学网络教育离散数学试卷 (参考答案)一、 选择题1、设}}8,7,6{},5,4{},3,2,1{{=A ,下列选项正确的是:(3)(1)A ∈1 (2)A ⊆}3,2,1{ (3)A ⊂}}5,4{{ (4)A ∈∅2、对任意集合C B A ,,,下述论断正确的是:(1)(1)若C B B A ⊆∈,,则C A ∈ (2)若C B B A ⊆∈,,则C A ⊆(3)若C B B A ∈⊆,,则C A ∈ (4)若C B B A ∈⊆,,则C A ⊆3、假设},,{c b a A =上的关系如下,具有传递性的关系是:(4)(1)},,,,,{>><><><><<a b b a a a a c c a(2)},,,{>><><<a a a c c a(3)},,{>><<a c c a(4)},{><c a4、非空集合A 上的空关系R 不具备下列哪个性质:(1)(1)自反性 (2)反自反性 (3) 对称性 (4)传递性5、假设},,{c b a A =,}2,1{=B ,令:B A f →:,则不同的函数个数为:(2)(1)2+3个 (2)32个 (3)32⨯个 (4)23个6、假设},,{c b a A =,}2,1{=B ,下列哪个关系是A 到B 的函数:(3)(1)}2,1,2,1,2,1,{>><><><><><<=c c b b a a f(2)},,,,,,{>><><><><><<=c c a c b b a b b a a a f(3)}1,2,1,{>><><<=c b a f(4)},1,2,1{>><><<=c b a f7、一个无向简单图G 有m 条边,n 个顶点,则图中顶点的总度数为:(3)(1)2m (2)2n (3)m 2 (4)n 28、一个图是欧拉图是指:(1)(1)图中包含一条回路经过图中每条边一次且仅一次;(2)图中包含一条路经过图中每条边一次且仅一次;(3)图中包含一条回路经过图中每个顶点一次且仅一次;(4)图中包含一条路经过图中每个顶点一次且仅一次。
离散数学习题集十五套含答案
离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(N:自然数集,E+正偶数)则=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为ACB-⊕)(。
3.设P,Q 的真值为0,R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<>,<a,c>,<a,d>,<b,d>,<c,d>}IA。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:* a b c dabcda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;A BCB .若R ,S 是反自反的, 则S R 是反自反的;C .若R ,S 是对称的, 则S R 是对称的;D .若R ,S 是传递的, 则S R 是传递的。
离散数学单元测试题(三)(代数系统)
近世代数单元测试题(一) (院系:软件学院 年级:2007级)一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末括号里)1.设S={a,b},则S 上总共可定义的二元运算的个数是( )A.4B.8C.16D.32 2.设集合{1,2,3,...,10}A =,下面定义的哪种运算关于集合A 是不封闭的( )。
A .*max{,}x y x y =B .*min{,}x y x y =C .*(,)x y GCD x y = 即,x y 的最大公约数D .*{,}x y LCM x y = 即,x y 的最小公倍数3.下面定义的哪种运算关于给定的集合是封闭的( )。
A . 集合S ={1,-1}关于普通的减法运算B . 集合S ={0,1}关于普通的加法运算C . 集合}|12{+∈-=Z x x S 关于普通的加法运算D . 集合{2|}n S n Z +=∈关于普通的乘法运算4.在自然数集N 上,下列哪种运算是可结合的?( )A.a *b =a -bB.a *b =max{a ,b }C.a *b =a +2bD.a*b =|a-b |5.对自然数集N ,下列哪种运算是不可结合( )。
A .*3a b a b =++B .*min{,}a b a b =C .*2a b a b =+D .*(mod3)a b ab = 6.设 是正整数集+Z 上的二元运算,其中{}b a b a ,m ax = (即取a 与b 中的最大者),那么 在+Z 中( )A .不适合交换律;B .不适合结合律;C .存在单位元;D .每个元都有逆元。
二、填空题1.集合A={a , b , c }上总共可定义的二元运算的个数为______。
2、设S 是非空有限集,代数系统(),,P S <>中,()P S 对运算的单位是________,()P S 对运算的单位元____。
4.设{0,1,2,...,1}n n =-Z ,在代数系统,,n <⊕⊗>Z 中,,⊕⊗分别表示模n 的加法和乘法,则n Z 对⊕运算的单位元是______, n Z 对⊗的单位元是_______。
离散数学智慧树知到期末考试章节课后题库2024年泰山学院
离散数学智慧树知到期末考试答案章节题库2024年泰山学院1.答案:假命题2.从1到300的整数中,只能被3、5和7之中的一个数整除的数有多少个()答案:1243.答案:可满足式4.答案:15.答案:非闭式真命题###真命题6.答案:对7.答案:错8.答案:对9.答案:对10.“若2+2=4当且仅当3+3不等于6”的真值为真。
()答案:错11.“若2+2=4,则3+3不等于6”的真值为真。
()答案:错12.“若2+2=4当且仅当3+3=6”的真值为真。
()答案:对13.答案:14.任何两个重言式的合取或析取,仍然是一个重言式。
()答案:对15.若解释I使命题公式A为真,使公式A®B也为真,则解释I使公式B为( )。
答案:真,16.n个命题变项可以产生()个互不等值的极小项。
答案:17.下列哪个命题公式是重言式?( )答案:18.在一阶逻辑中将命题符号化时,针对不同的个体域,同一个命题符号化之后的结果可能相同也可能不同。
()答案:对19.答案:20.下列公式中,逻辑有效式是()。
答案:21.答案:22.答案:23.答案:24.设L(x,y):x大于y,则L(x,y)是一个命题。
()答案:错25.在一阶逻辑中,任何合式公式都存在与之等值的前束范式,并且前束范式是唯一存在的。
()答案:错26.答案:对27.答案:对28.答案:错29.答案:错30.若R和S都是非空集A上的等价关系,则RÇS是A上的等价关系。
()答案:对31.集合A上的偏序关系的三个性质是()。
答案:反对称性###自反性###传递性32.集合A上的等价关系的三个性质是()。
答案:对称性###自反性###传递性33.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10, x,y∈A},则R的性质为()。
答案:对称的34.A上的恒等关系既是等价关系又是偏序关系。
()答案:对35.不含平行边的图称为简单图。
()答案:错36.下面图中强连通图为()。
离散数学习题集(十五套)---答案
离散数学习题集(十五套)---答案离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7xx=+xBEx且(N:自A且∈Nxx|5)},{<(=)∈(|{<然A⋃B=2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。
3.设P,Q 的真值为0,R,S的真值为1,则→∨⌝P⌝∨⌝的真值Q→∧)))((R()PR(S= 。
4.公式P∨∧)()(的主合取范式为∧RSRP⌝∨。
5.若解释I的论域D仅包含一个元素,则xP∀→∃在I下真值为x)()(xxP。
6.设A={1,2,3,4},A上关系图为则R2 =。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R=。
8.图的补图为。
9.设A={a,b,c,d} ,A上二元运算如下:* a bc da b c d a b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ;B . 32 ;C . 332⨯;D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( )A .若R ,S 是自反的, 则S R ο是自反的;B.若R,S 是反自反的,则SRο是反自反的;C.若R,S 是对称的,则SRο是对称的;D.若R,S 是传递的,则SRο是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st sR=p=则P(A)/ R=()A<>∈∧s(|||{t)|},(|,A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A 上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f(n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
(完整word版)离散数学习题解+代数系统
离散数学习题解代数系统习题四 第四章代数系统1.设I 为整数集合。
判断下面的二元关系是否是I 上的二元运算a )+={(x ,y ),z|x ,y ,zI 且z=x+y}b )-={((x ,y ),z )|x,y ,zI 且z=x -y}c )×={((x,y),z )|x ,y ,zI 且z=x ×y}d )/={((x ,y),z)|x ,y ,zI 且z=x/y }e )R={((x,y ),z)|x,y,zI 且z=x y}f )={((x ,y),z )|x ,y ,zI 且z=yx }g)min = {((x ,y ),z )|x ,y ,zI 且z=max (x ,y)} h )min = {((x,y ),z)|x,y,zI 且z=min (x ,y )} i )GCD = {((x ,y ),z )|x ,y ,zI 且z= GCD(x ,y )} j )LCM={((x ,y ),z )|x ,y ,z ∈I 且z= LCM (x ,y )}[解] a )是。
由于两个整数之和仍为整数,且结果唯一,故知+:I 2→I 是I 上的一个二元运算. b )是。
由于两个整数之差仍为整数,且结果唯一,故知一:I 2→I 是I 上的一个二元运算。
c )是.由于两个整数这积仍为整数,且结果唯一,故知x :I 2→I 是I 上的一个二元运算。
d )不是:例如若x=5,y=6,则z=x/y=5/6∉I;当y=0时z=x|y=x/0无定义. e )不是。
例如若x=2,y= —2,则z=x y=2–2=221=I 41∉;若x=y=0,则z=x y=0,则z=I 2x ∉=χ; g )是。
由于两个整数中最大者仍为整数,且结果唯一。
故知max :I 2→I 是I 上的一个二元运算。
h )是。
由于两个整数中最小者仍为整数,且结果唯一。
故知min :I 2→I 是I 上的一个二元运算。
山东大学离散数学期末试题答案
数学建模作业姓名:王士彬学院:计算机科学与技术班级: 2014级计科2班学号:00701.在区域x∈[-2,2],y∈[-2,3]内绘制函数z=exp^(-x2-y2)曲面图及等值线图。
解:曲面图如下:>> x=-2::2;>> y=-2::3;>> [X,Y]=meshgrid(x,y);>> Z=exp(-X.^2-``Y.^2);>> mesh(X,Y,Z)>>等值线图如下:>> x=-2::2;>> y=-2::3;>> [X,Y]=meshgrid(x,y);>> Z=exp(-X.^2-Y.^2);>> mesh(X,Y,Z)>> surf(X,Y,Z)>> surf(X,Y,Z) >> contour(X,Y,Z) >>2.已知一组观测数据,如表1所示.(1)试用差值方法绘制出x ∈[-2,]区间内的光滑曲线,并比较各种差值算法的优劣.(2)试用最小二乘多项式拟合的方法拟合表中的数据,选择一个能较好拟合数据点的多项式的阶次,给出相应多项式的系数和偏差平方和.(3)若表中数据满足正态分布函数222/)(21)(σμπσ--=x e x y .试用最小二乘非线性拟合的方法求出分布参数σμ,值,并利用锁求参数值绘制拟合曲线,观察拟合效果.解:(1)分别用最领近插值,分段线性插值(缺省值),分段三次样条插值,保形分段三次插值方法绘制在x ∈[-2,]的光滑曲线,图形如下:样条插值效果最好,其次线性插值,最近点插值效果最差,在这里效果好像不太明显。
最近点插值优点就是速度快,线性插值速度稍微慢一点,但效果好不少。
所以线性插值是个不错的折中方法。
样条插值,它的目的是试图让插值的曲线显得更平滑,为了这个目的,它们不得不利用到周围若干范围内的点,不过计算显然要比前两种大许多。
《离散数学》考试试卷(试卷库14卷)及答案
《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。
(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。
离散数学习题集(十五套)-答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2= 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA B Ca bcda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择 20% (每小题 2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ; D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D. {3,4}。
3、设A={1,2,3},则A上的二元关系有()个。
A. 23 ;B. 32 ;C.332⨯; D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ; B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ; D.f :I→N, f (x) = | x | 。
(完整word版)离散数学习题集(十五套)
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是() A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
离散数学集合代数练习题
离散数学集合代数练习题离散数学中的集合代数是研究集合及其运算的数学分支。
以下是关于集合代数的练习题,旨在帮助学生掌握集合的基本概念和运算规则。
1. 给定两个集合A和B,其中A={1, 2, 3},B={2, 3, 4},请找出集合A和B的交集,并用集合表示法表示结果。
2. 假设集合C={x|x是偶数},集合D={x|x是3的倍数},求集合C和D的并集,并用集合表示法表示结果。
3. 集合E={a, b, c},集合F={b, c, d},计算集合E和F的差集E-F,并用集合表示法表示结果。
4. 给定全集U={1, 2, 3, 4, 5, 6},集合G={1, 3, 5},求集合G的补集,并用集合表示法表示结果。
5. 集合H={x|x是小于10的正整数},集合I={x|x是5的倍数},求集合H和I的交集,并用集合表示法表示结果。
6. 集合J={x|x是大于0且小于5的实数},集合K={x|x是大于等于3的实数},求集合J和K的并集,并用集合表示法表示结果。
7. 给定集合L={1, 2, 3, 4},集合M={2, 3, 5},计算集合L和M的对称差,并用集合表示法表示结果。
8. 集合N={x|x是小于20的质数},集合O={x|x是小于20的合数},求集合N和O的并集,并用集合表示法表示结果。
9. 集合P={x|x是2的幂次方},集合Q={x|x是4的倍数},求集合P 和Q的交集,并用集合表示法表示结果。
10. 给定全集U={1, 2, 3, 4, 5, 6, 7, 8},集合R={1, 3, 5, 7},求集合R的补集,并用集合表示法表示结果。
通过解答这些练习题,学生可以加深对集合代数的理解,并提高解决相关问题的能力。
离散数学代数系统练习
离散数学代数系统练习⼀、填空1.下列集合中,对普通加法和普通乘法都封闭。
()(A ){}1,0 (B ){}2,1 (C ){}N n n ∈2 (D ){}N n n ∈22、在⾃然数集N 上,下⾯哪种运算是可结合的?()(A )b a - (B )),max(b a (C )b a 2+ (D )b a -3、有理数集Q 关于下列哪个运算能构成代数系统?()(A )b a b a =* (B )()1ln 22++=*b a b a(C )()b a b a +=*sin (D )ab b a b a -+=*4、下列运算中,哪种运算关于整数集I 不能构成半群?()(A )()b a b a ,max =* (B )b b a =* (C )ab b a 2=* (D )b a b a -=*5.设代数系统?A ,·?,则()成⽴.A .如果?A ,·?是群,则?A ,·?是阿贝尔群B .如果?A ,·?是阿贝尔群,则?A ,·?是循环群C .如果?A ,·?是循环群,则?A ,·?是阿贝尔群D .如果?A ,·?是阿贝尔群,则?A ,·?必不是循环群6.设?L ,∧∨,?是格,?L ,≤?是由这个格诱导的偏序集,则()不成⽴.A .对任意a L b a ,,∈≤b b a b =∨?B .∧∨对是可分配C .∧∨,都满⾜幂等律D .?L,≤?的每对元素都有最⼩上界与最⼤下界7.在下列四个哈斯图表⽰的偏序集中()是格.8. 已知偏序集的哈斯图,如图所⽰,是格的为( )9. 6阶有限群的任何⼦群⼀定不是()。
(A) 2阶(B) 3 阶(C) 4 阶(D) 6 阶10. 下列哪个偏序集构成有界格()(1) (N,≤)(2) (Z,≥)(3) ({2,3,4,6,12},|(整除关系))(4) (P(A),?)11. 下⾯代数系统中(G、*)中()不是群A、G为整数集合*为加法B、G为偶数集合*为加法C、G为有理数集合*为加法D、G为有理数集合*为乘法12. 设是阶⼤于1的群,则下列命题中()不真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设<A,*>到<B,>是两个代数系统,eB 是 B 的单位元。令 f:AB,定义为:对任意的 aA,f(a)=e。证明 A 和 B 两个代数系统同态。
2、若<S,*>是可交换独异点,T 为 S 中所有等幂元的集合,则<T,* >是<S,* >的 子独异点。
3、设<S,+,·>是环,且对任意的 a∈S 都有 a·a=a,证明:对任意的 a∈S,都有 a+a =0,0 是加法单位元。
m
7、设<S,+, ·>是环,1 是其乘法幺元,在 S 上定义运算 和 :
ab=a+b+1,ab=a+b+a·b。
(1)证明<S,,>是一个环。 (2)给出<S,,>的关于运算 和 的单位元。
8、假设 A 是非空集合,P(A)是其幂集,对于集合的对称差运算 和交运算,
10、 已知 G={0,1,2,3,4,5}, +6 为模 6 加法, 试说明<G,+6>是否构成群?是否为循环群?若是, 生成元是什么?它是否有子群?若有,子群是什么? +6 0 1 2 3 4 5 0 0 1 2 3 4 5 1 1 2 3 4 5 0 2 2 3 4 5 0 1 3 3 4 5 0 1 2 4 4 5 0 1 2 3 5 5 0 1 2 3 4
4、<G,*>是个群,u∈G,定义 G 中的运算“”为 ab=a*u-1*b,对任意 a,b∈G,求证:<G,
>也是群。 5、设 p 是素数, m 是正整数,证明 p 阶群必是 p 阶子群。 n 6、设 R 是环, a R ,若存在正整数 n 使得 a 0 ,则称 a 是幂零元。试证明 0 是整环中唯 一的幂零元。
证明<P(A), ,>是含有单位元的可交换环,但不是整环。 (注:集合的对称差运 算为:AB=(A-B)(B-A)) 9、设 G , 是一个群,H 是 G 的非空子集,则 H , 是 G , 的子群的充分必要条 件是:对于任意的 a, b H ,则有 a 1 b H 。