2014中考复习备战策略_数学PPT第13讲_反比例函数
中考数学专题复习讲座第十三讲反比例函数
中考数学专题复习第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:互数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y= (k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x 与其对应函数值y之积,总等于】二、反比例函数的同象和性质:1、反比例函数y=kx(k≠0)的同象是它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的同象位于象限,在每一个象限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:反曲线y=kx(k≠0)上任意一点向两坐标轴作垂线→两线与坐标轴围成的形面积,即如图: AOBP=S△AOP=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个被定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的【重点考点例析】考点一:反比例函数的同象和性质例1 (2012•张家界)当a≠0时,函数y=ax+1与函数ayx在同一坐标系中的图象可能是()A. B.C. D.思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解:当a>0时,y=ax+1过一、二、三象限,y=ayx=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=ayx=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.例2 (2012•佳木斯)在平面直角坐标系中,反比例函数22a ayx-+ =图象的两个分支分别在()A.第一、三象限 B.第二、四象限C.第一、二象限 D.第三、四象限思路分析:把a2-a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.解:a2-a+2,=a2-a+14-14+2,=(a-12)2+7 4 ,∵(a-12)2≥0,∴(a-12)2+7 4 >0,∴反比例函数图象的两个分支分别位于第一、三象限.故选A.点评:本题考查了反比例函数图象的性质,先判断出a2-a+2的正负情况是解题的关键,对于反比例函数kyx=(k≠0):(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.例3 (2012•台州)点(-1,y1),(2,y2),(3,y3)均在函数6yx=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1 B.y2<y3<y1 C.y1<y2<y3 D.y1<y3<y2思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答.解:∵函数6yx=中k=6>0,∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,∵-1<0,∴点(-1,y1)在第三象限,∴y1<0,∵0<2<3,∴(2,y2),(3,y3)在第一象限,∴y2>y3>0,∴y2>y3>y1.故选D.点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.对应训练1.(2012•毕节地区)一次函数y=x+m(m≠0)与反比例函数myx=的图象在同一平面直角坐标系中是()A. B. C. D.1.C2.(2012•内江)函数1y xx=的图象在()A.第一象限 B.第一、三象限 C.第二象限 D.第二、四象限2.A2x中x≥0,1x中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.3.(2012•佛山)若A(x1,y1)和B(x2,y2)在反比例函数2yx=的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2.3.>考点二:反比例函数解析式的确定例4 (2012•哈尔滨)如果反比例函数1kyx-=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.3思路分析:根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.解答:解:根据题意,得-2=11k--,即2=k-1,解得k=3.故选D.点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.对应训练4.(2012•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数1b yx+ =的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.3yx=- B.1yx= C.2yx= D.2yx=-4.D4.分析:关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,则判别式等于0,据此即可求得b的值,然后根据反比例函数1byx+=的图象在每个象限内y随x的增大而增大,则比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.解:关于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1.∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0 ∴b<-1,∴b=-3.则反比例函数的解析式是:y=13yx-=,即2yx=-.故选D.考点三:反比例函数k的几何意义例5 (2012•铁岭)如图,点A在双曲线4yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6思路分析:先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线4yx=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE-S矩形AEOD即可得出k的值.解:∵双曲线kyx=(k≠0)上在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线4yx=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE-S矩形AEOD=k-4=8,∴k=12.故选A.点评:本题考查的是反比例函数系数k的几何意义,即反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.对应训练5.(2012•株洲)如图,直线x=t(t>0)与反比例函数21,y yx x-==的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.3 2 tC.32D.不能确定5.C5.解:把x=t分别代入21,y yx x-==,得21,y yt t==-,所以B(t,2t)、C(t,1t-),所以BC=2t-(1t-)=3t.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=133 22tt⨯⨯=.故选C.考点四:反比例函数与一次函数的综合运用例6 (2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数22yx=的图象交于A、B 两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图象的特点即可判断B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.解:A、12y xyx=+⎧⎪⎨=⎪⎩①②,∵把①代入②得:x+1=2x,解得:x1=-2,x2=1,代入①得:y1=-1,y2=2,∴B(-2,-1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当-2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=12×1×2=1,S△BOD=12×|-2|×|-1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;故选C.点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.对应训练6.(2012•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.x<-2或0<x<1 C.x>1 D.-2<x<16.A6.解:由函数图象可知一次函数y1=kx+b与反比例函数y2=mx(m≠0)的交点坐标为(1,4),(-2,-2),由函数图象可知,当-2<x<0或x>1时,y1在y2的上方,∴当y1>y2时x的取值范围是-2<x<0或x>1.故选A.【聚焦山东中考】1.(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数3yx-=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y31.A1.解:∵反比例函数y=-3 x 中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.2.(2012•菏泽)反比例函数2yx=的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定2.D3.(2012•滨州)下列函数:①y=2x-1;②y=5x-;③y=x2+8x-2;④y=22x;⑤y=12x;⑥y=ax中,y是x的反比例函数的有(填序号)。
北师大2014年中考数学复习方案课件(考点聚焦+归类探究+回归教材+中考预测):反比例函数(21张PPT)
考点聚焦
归类探究
回归教材
中考预测
第13讲┃反比例函数
比较反比例函数值的大小,在同一个象 限内根据反比例函数的性质比较,在不同象 限内,不能按其性质比较,函数值的大小只 能根据特征确定.
考点聚焦
归类探究
回归教材
中考预测
第13讲┃反比例函数
探究三 与反比例函数的k有关的问题 命题角度: 反比例函数中k的几何意义.
中 考 预 测
1.某闭合电路中,电源的电压为定值,电流 I(A)与 电阻 R(Ω)成反比例.如图 13-5 表示的是该电路中电流 I 与电阻 R 之间函数关系的图象,则用电阻 R 表示电流 I 的函数表达式为( C ) 2 3 A.I=R B.I=R 6 6 C.I= D.I=- R R
图13-5
考点聚焦 归类探究 回归教材 中考预测
k>0 k y= x k<0 (k≠0)
考点聚焦
归类探究
回归教材
中考预测
第13讲┃反比例函数
(3)反比例函数比例系数k的几何意义 推导:如图 13-1,过双曲线上任一点作 x 轴,y 轴的垂线 PM, 所得的矩形 PMON 的面积 S=PM·PN=|y|·|x|=|xy|.∵y PN
k = ,∴xy=k,∴S=|k|. x k 的几何意义:反比例函数图象上的点(x,y)具有两坐标之 积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标
(1)写出这一函数的表达式; (2)当气体体积为1 m3时,气压是多少? (3)当气球内的气压大于140 kPa时,气球将 爆炸.为了安全起见,气体的体积应不小于多少?考Leabharlann 聚焦归类探究回归教材
中考预测
第13讲┃反比例函数
中考数学考点总复习课件第13节反比例函数(共48张PPT(完整版)9
1.(2017·郴州)已知反比例函数y=
k x
的图象过点A(1,-2),则k的值为
(C )
A.1 B.2 C.-2 D.-1 2.(2017·广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线
y=
k2 x
(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的 函数解析式; (2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请 说明理由; (3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围 . 【思路引导】由表中的信息可知,v与t的乘积为定值300,所以,此函数为 反比例函数.
(2)(2017·眉山)已知反比例函数y=
2 x
,当x<-1时,y的取值范围为
__-__2_<__y_<__0____.
6.(2017·枣庄)如图,反比例函数y= 2x 的图象经过矩形OABC的边AB的中 点D,则矩形OABC的面积为___4__.
7.(2017·连云港)设函数y=
3 x
与y=-2x-6的图象的交点坐标为(a,b),
a-b =ax+b和y= x 分布的象限作出选择.(2)点A(-1,y1),B(1,y2),C(3,y3)
不在同一象限.(3)因为直线y=kx(k>0)和双曲线y=
6 x
都是关于原点对称的图
形,所以它们的交点关于原点对称,所以x1=-x2,y1=-y2,再由x1y1=x2y2
=6可求.
方法归纳 解决这类题,要运用数形结合的思想,紧紧抓住比例系数k的正负 以及相应的函数图象,而且反比例函数增减性要分象限讨论.
第13课时 反比例函数(共26张PPT)
A. 0<y<1 B. 1<y<2 C. 2<y<6 D. y>6
(4) (2014湘潭)如图,A、B两点在双曲线y=
4 x
上,
分别经过A、B两点向轴作垂线段,已知S阴影=1, 则S1+S2=( D ) A. 3 B.4 C.5 D. 6
变式训练(2016· 龙东)已知反比例函数 y= ,当 1<x<3 时,
{
{
例 7 (2016· 湖州)湖州市菱湖镇某养鱼专业户准备挖一个面积为
2000 平方米的长方形鱼塘. (1)求鱼塘的长 y(米)关于宽 x(米)的函数表达式; (2)由于受场地的限制,鱼塘的宽最多只能挖 20 米,当鱼塘的宽 是 20 米,鱼塘的长为多少米?
解: (1)由长方形面积为 2000 平方米,得到 xy=2000, 即 y= ; =100(米) , (2)当 x=20(米)时,y=
中,一次函数 y=ax+b(a≠0)的图形与反比例 函数 y= (k≠0)的图象交于第二、四象限内 的 A、B 两点,与 y 轴交于 C 点,过点 A 作 AH⊥y 轴,垂足为 H,OH=3,tan∠ AOH= , 点 B 的坐标为(m,﹣2). (1)求△ AHO 的周长; (2)求该反比例函数和一次函数的表达式.
k ,一次函数 y = x + b ,得 k = 1 × 4 , 1 + b = 4 ,解得 k = 4 , b = x 4 3,∴反比例函数的表达式是y=x,一次函数表达式是y=x+3. (2)设直线y=x+3与x轴交于点C,当x=-4时,y=-1, ∴B(-4,-1).当y=0时,x+3=0,x=-3,∴C(-3,0), 1 1 15 S△AOB=S△AOC+S△BOC= ×3×4+ ×3×1= . 2 2 2 (3)∵B(-4,-1),A(1,4),∴根据图象可知:当x>1或 -4<x<0时,一次函数值大于反比例函数值.
九年级中考数学一轮复习课件:第13课时-反比例函数图象性质及应用
反比例函
h=
函 数关系
的函数关系式为⑪______s___
数
3.行程问题:当路程s一定时,行驶时间t是
的
行驶速度v的反比例函数,即
t
=
s v
实 际 应 用
解题 步骤
1.分析实际问题情景,建立反比例函数模型 2.用待定系数法求出反比例函数关系式 3.确定自变量取值范围,注意函数中的自变量 的具体意义
4.利用反比例函数的性质解决问题
设∴yy乙乙==kxx++2b.(k≠0),依题意得: b
2
5,解得bk
1, 2
当y乙=10时,x=8.
∴乙容器进水管打开8分钟时,两容器水量相等;
(3)【思路分析】使两容器第12分钟时水量相等,为18 升,而当x=6时,y乙=8.再列式计算.
解:当x=6时,y乙=8.
∴(18-8)÷(12-6)= 5 (升/分),
第一部分 考点研究
第三章 函 数
第13课时 反比例函数图象性 质及应用
考点精讲
反 比 例 函 反比例函数及 数 其图象性质
1.定义:一般地,形如 y = kx(k为
常数,k≠0)的函数叫做反比例函 数.其中x是自变量,y是x的函 数,且x≠0
2.反比例函数的图象性质
图 象 性
3.反比例函数中比例系数k的 几何意义
12-8
(2)【思路分析】由图可知,甲容器在第3分钟时水量为:
5×(3-2)=5(升),则交点坐标为(3,5),设y乙=kx+b(k≠0), 利用待定系数法求得该函数解析式,把y=10代入求值即可.
解:存在.
由图可知,甲容器在第3分钟时水量为:5×(3-2)=5(升),
《反比例函数》PPT课件 (共19张PPT)
问题1:若每天背10个单词,那么所掌握的 单词总y(个)与时间x(天)之间的 关系函数式为 。
问题2:小明原来掌握了150个单词,以后每 天背10个单词,那么他所掌握单词总 量y(个)与时间x(天)之间的关系式为
问题3: 九年级英语全册约有单词1200个,小 明同学计划用x(天)全部掌握,那么平 均每天需要记忆的单词量y(个)与时 间x(天)之间的关系式为 。 问题4: 一个面积为6400㎡的长方形,那么花坛
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
第13讲 反比例函数及其应用课件(44张PPT)---2024年中考数学一轮复习
(3)如图②,E是线段AB上一点,作AD⊥x轴于点D,过点E作x轴的垂线,交
1
反比例函数图象于点F,若EF= AD,求出点E的坐标.
3
思路分析
设出点E,F的坐标,用“坐标”求“线段”,表示出线段EF,AD的
长,列出方程求解,充分利用数形结合的数学思想.
解:设点E的坐标为(m,-m+7),则F
,
,∴EF=-m+7- .
1
1
∵EF= AD,∴-m+7- = ×6.解得m1=2,m2=3,
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S矩形OAPB=|k|
S△ABC=
|k|
S▱ABCD=
|k|
返回栏目导航
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
3.反比例函数解析式的确定
(1)待定系数法:
①设出反比例函数的解析式为y= (k≠0);
反比例函数及其应用— 题型突破
返回栏目导航
其他条件不变,若△BCD的面积是1,求k的值.
2
△
解:∵AE∥OD,∴△COD∽△CEA.∴
=
=4.
△
1
1
1
∵△BCD的面积等于1,OC= OB,∴S△COD= S△BCD= .
5
4
4
1
∴S△CEA=4× =1.
4
1
1
1
1
3
∵OC= CE,∴S△AOC= S△CEA= .∴S△AOE= +1= .
2014中考复习备战策略_数学PPT第13讲_反比例函数
(1)求上述反比例函数和一次函数的函数解析式; (2)设该直线与 x 轴、y 轴分别相交于 A,B 两点, 与反比例函数图象的另一个交点为 P,连接 OP,OQ, 求△OPQ 的面积.
1 k 解:(1)将点 ( , 8)代入 y= , 2 x k 1 得 8= , k= ×8= 4. 1 2 2 4 ∴反比例函数的解析式为 y= . x
∴四边形 AEOD 和 BEOC 都为矩形. 1 ∵点 A 在双曲线 y= 上, ∴ S 矩形 AEOD= 1. x 3 ∵点 B 在双曲线 y= 上, ∴ S 矩形 BEOC= 3. x ∴四边形 ABCD 的面积为 3- 1= 2.
6. 若反比例函数 y=(m-2)x 一、三象限内,则 m 的值是 3 .
k 1.反比例函数 y= (k 是常数, k≠ 0)的图象是双 x 曲线 . 因为 x≠ 0, k≠ 0,相应地 y 值也不能为 0,所以 反比例函数的图象无限接近 x 轴和 y 轴,但永不与 x 轴、 y 轴相交 .
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠ 0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响 .
考点五
反比例函数的应用
例 5 (2013· 益阳 )我市某蔬菜生产基地在气温较低 时, 用装有恒温系统的大棚栽培一种在自然光照且温度 为 18 ℃的条件下生长最快的新品种.下图是某天恒温 系统从开启到关闭及关闭后,大棚内温度 y(℃ )随时间 k x(时)变化的函数图象,其中 BC 段是双曲线 y= 的一 x 部分.请根据图中信息解答下列问题:
∴ S△ OPQ= S△ AOB- S△ AOQ- S△ BOP 1 1 1 = × 5× 5- × 5× 1- × 5× 1 2 2 2 15 = . 2
初三反比例函数ppt课件
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
九年级数学中考专题复习:反比例函数课件 (共63张PPT)
k 方法一:分别把各点的横坐标代入反比例函数 y=x(k>0) 中,求出 y1,y2,y3 的值,再比较出其大小即可.
k 方法二:反比例函数 y=x(k>0)的图象在第一、三象限,
在每一个象限内,y 随 x 的增大而减小.A(-2,y1),B(- C(2,y3)在第一象限,所以 y3>0,所以 y3>y1>y2.
1,y2)在第三象限,因为-2<-1,所以 y2<y1<0,因为点
[2014· 湘潭] 如图,A,B 两点在双曲线 y 4 = x上,分别经过 A,B 两点向 x 轴、y 轴 作垂线段,已知 S 阴 影 = 1 ,则 S1 + S2 = ( D ) A .3 B . 4 C.5 D.6
欲求 S1+S2,只要求出过 A,B 两点向 x 轴、y 轴作的垂 线段与坐标轴所形成的矩形的面积即可,而矩形面积为 4 双曲线 y=x的系数 k,由此即可求出 S1+S2. 4 ∵A,B 是双曲线 y=x上的点,分别经过 A,B 两点向 x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都 等于|k|=4, ∴S1+S2=4+4-1×2=6. 故选 D.
1 [2014· 广东] 如图,已知 A(-4,2),B(-1,2) m 是一次函数 y=kx+B 与反比例函数 y= x (m≠0, m<0)图象的两个交点,AC⊥x 轴于点 C,BD⊥ y 轴于点 D. (1)根据图象直接回答:在第二象限内,当 x 取 何值时,一次函数的值大于反比例函数的值?
中考预测 我市某蔬菜生产基地在气温较低时,用装有恒温 系统的大棚栽培一种在自然光照且温度为18 ℃的 条件下生长最快的新品种.如图是某天恒温系统 从开启到关闭及关闭后,大棚内温度y(℃)随时间 x(时)变化的函数图象,其中BC段是双曲线y= ������ (k≠0)的一部分.请根据图中信息解答下列问题
初三反比例函数ppt课件ppt课件
反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
九年级数学总复习课件:第13课时反比例函数
x
∴2=k×1,解得k=2,
∴正比例函数解析式为y=2x;
(3)【思路分析】将x=2代入(2)中所求的 正比例函数的解析式,求出对应的y值,然后 与3比较,如果y =3,那么点B(2,3)是在正 比例函数图象上,否则不在.
解:点B(2,3)不在正比例函数图象上,理 由如下: 将x=2代入y=2x,得y=2×2=4≠3, 所以点B(2,3)不在正比例函数y=2x的图象 上.
反比例函数
y= k (k≠0) x
k的符号
k>0
k②_<_0___
图象
反比例函数
y = k (k≠0) x
位于第一、三 位于第二、四
所在象限
象限
象限
性质
在每一个象限 内,y随x的增 大而③_减__小__
在每一个象限 内,y随x的增 大而④_增__大__
3. 反比例函数中系数k的几何意义 (1)如图,过反比例函数图象上任一点 P作x轴、y轴的垂线PM、PN所得矩形PMON 的面积S=⑤_|__k_|_.
于点C(0,y),
令x=0,有y=3,
E
∴点C的坐标为
C
(0,3),∴OC=3,
F
例3题解图
如解图,过点A,B分别作y轴垂线AE、BF, 交y轴于E、F点, 由A(1,4),B(-4,-1) 可知AE=1,BF=4,
∴S△BOC= ·OC·BF = ×3×4 =6,
1
1
S△AOC= ·O2 C·AE= ×32×1= ,
x
(2)【思路分析】设AB与y轴交于点C,
所以△OAB的面积等于△OBC与△OAC的面积
之和.过A,B两点作y轴垂线交y轴于E,F点,
得△OBC与△OAC面积分别为 OC B1F,
九年级下数学中考复习第13讲反比例函数课件
的值是 ( )
A.-1
B.1
C. 1
D. 3
2
4
【解析】选D.∵直线y=-x+2分别与x轴,y轴交于A,B两点,
则点A(2,0),点B(0,2),
∴△AOB是等腰直角三角形,AB=2 2 . 又∵AB=2EF,∴EF= 2 .设点E的横坐标为x1,点F的横坐标为 x2,则x1-x2=1.
y -x 2,
【真题专练】 1.(2013·凉山州中考)如图,正比例函数 y1与反比例函数y2相交于点E(-1,2),若 y1>y2>0,则x的取值范围在数轴上表示正 确的是 ( )
【解析】选A.∵正比例函数y1与反比例函数y2相交于点E(-1,
2),∴根据图象可知当y1>y2>0时x的取值范围是x<-1,∴在数
合适.
2.(2013·宁夏中考)函数 y=a(a≠0)与y=a(x-1)(a≠0)在同
x
一坐标系中的大致图象是 ( )
【解析】选A.当a<0时,一次函数的图象经过第一、二、四象 限,而双曲线散布在第二、四象限,没有符合要求的;当a>0 时,一次函数的图象经过第一、三、四象限,而双曲线散布在 第一、三象限,A选项符合题意,故应选A.
(2) A(-1,2) C(1,0)
待定系数法确定解析式
【自主解答】(1)∵直线y=mx与双曲线y n相交于A(-1,a),
x
B两点,
∴A,B两点关于原点O对称.
∵A(-1,a),
∴B点横坐标为1,而BC⊥x轴,
∴C(1,0).
∵△AOC的面积为1,∴A(-1,2). 将A(-1,2)代入y=mx,y n ,
【真题专练】 1.(2014·白银中考)如图,边长为1的正方形ABCD中,点E在CB 延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则 在下面函数图象中,大致能反应y与x之间函数关系的是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点知识梳理
中考典例精析
基础巩固训练
考点训练
3 【点拨】由 k 的几何意义,得 SA=2× =3,SB= 2 3 1 2× =3,SD= ×1×6=3.对于选项 C,分别过点 M, 2 2 1 N 向 y 轴、x 轴作垂线,可求出 SC=3+ ×(1+3)× 2 (3-1)-3=4.故选 C. 【答案】 C
考点知识梳理
中考典例精析
基础巩固训练
考点训练
【点拨】解法一:求值法.把 x=1,x=2,x=-3 6 分别代入 y=x,得 y1=6,y2=3,y3=-2,∴y3<y2 <y1.故选 D.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
6 解法二:图象法.作出函数 y=x的简图,并在 图象上确定点 A,B,C 的大体位置.观察图象,易 知 y3<y2<y1.故选 D.
中考典例精析
基础巩固训练
考点训练
考点三 反比例函数值的大小比较
例 3 (2013· 株洲)已知点 A(1,y1),B(2,y2),C(-3, 6 y3)都在反比例函数 y=x的图象上,则 y1,y2,y3 的大小 关系是( ) B.y1<y2<y3 D.y3<y2<y1
A.y3<y1<y2 C.y2<y1<y3
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点三
反比例函数解析式的确定
1. 由于反比例函数的关系式中只有一个待定系数 k,因此只需已知一组对应值就可以求出 k. 2.待定系数法求解析式的步骤 (1)设出含有待定系数的函数解析式; (2)把已知条件代入解析式,得到关于待定系数的 方程; (3)解方程求出待定系数,从而确定解析式.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
a2-a+ 2 4. 在平面直角坐标系中, 反比例函数 y= x 图象的两个分支分别在( A.第一、三象限 C.第一、二象限
2
A
)
B.第二、四象限 D.第三、四象限
12 7 解析: a - a+ 2= (a- ) + > 0, 因此该反比例函 2 4 数的图象在第一、三象限.故选 A.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
1 5.如图,点 A 在双曲线 y= 上,点 B 在双曲线 x 3 y=x上, 且 AB∥x 轴, 点 C, D 在 x 轴上, 若四边形 ABCD 为矩形,则它的面积为 2 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
解析:如图,过点 A 作 AE⊥ y 轴,垂足为 E, ∵四边形 ABCD 为矩形, ∴ AD⊥ x 轴, BC⊥ x 轴. ∵ AB∥ x 轴, ∴ BE⊥ y 轴.
考点训练
解析:∵- k - 1< 0, -k -1 ∴ y= 的图象在第二、四象限,且在每个象 x 限内 y 随 x 的增大而增大. 且当 x> 0 时, y< 0;当 x< 0 时, y> 0.
2
2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
∴ y1> 0, y2< 0, y3< 0. 又 ∵3> 2, ∴y3> y2. ∴ y1> y3> y2.故选 B.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
方法总结 已知反比例函数的解析式和点的横坐标时, 可以直 接求出函数值进行比较; 当反比例函数的解析式中含有 未知系数,不能代入求函数值时,可以利用反比例函数 的性质或画函数图象的方法比较大小 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点四 反比例函数系数 k 的几何意义 例 4 (2013· 六盘水)下列图形中, 阴影部分面积最大 的是( )
考点知识梳理 中考典例精析 基础巩固训练 考点训练
考点二
用待定系数法求反比例函数的解析式
k 例 2 (2013· 淮安 )若反比例函数 y= 的图象过点 x (5,-1),则实数 k 的值是( A.-5 1 C. 5 )
1 B.- 5 D.5
考点知识梳理
中考典例精析
基础巩固训练
考点训练
k k 【点拨】把点 (5,- 1)代入 y= ,得- 1= , 5 x ∴ k=- 5.故选 A. 【答案】 A
考点知识梳理 中考典例精析 基础巩固训练 考点训练
216 (3)当 x= 16 时, y= = 13.5, 16 ∴当 x=16 时,大棚内的温度约为 13.5 ℃ . 方法总结 解决实际问题的一般步骤如下: 1审题: 弄清问题 中的常量与变量, 探究出问题中的等量关系; 2确定问 题中的两个变量,列出它们之间的反比例函数关系式; 3代入数值求解 .
考点知识梳理 中考典例精析 基础巩固训练 考点训练
考点知识梳理
中考典例精析
基础巩固训练
考点训练
1.已知反比例函数的图象经过点(-1,2),则它的 解析式是 ( B ) 2 B. y=- x 1 D. y = x
1 A. y=- 2x 2 C. y = x
考点训练
解析:本题考查用待定系数法求反比例函数的解 k 析式.设反比例函数的解析式为 y= ,把 (- 1,2)代入, x k 得 2= ,即 k=- 1×2=- 2, ∴它的解析式为 y= -1 2 - .故选 B. x
考点知识梳理
中考典例精析
基础巩固训练
考点训练
2 2 .对 于反比 例函数 y = , 下列 说法正 确的是 x ( D )
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点二
反比例函数的图象和性质
k 1.反比例函数 y= (k 是常数, k≠ 0)的图象是双 x 曲线 . 因为 x≠ 0, k≠ 0,相应地 y 值也不能为 0,所以 反比例函数的图象无限接近 x 轴和 y 轴,但永不与 x 轴、 y 轴相交 .
考点知识梳理 中考典例精析 基础巩固训练 考点训练
A.图象经过点(1,-2) B.图象在二、四象限 C.当 x>0 时, y 随 x 的增大而增大 D.图象关于原点成中心对称
考点知识梳理
中考典例精析
基础巩固训练
考点训练
2 解析:把点 (1,- 2)代入解析式 y= ,等号左、右 x 两边不相等,所以函数图象不过这个点,故 A 错误; 因为 k>0,所以函数图象在第一、三象限,故 B 错误; 因为 k> 0,所以在每个象限内,y 随 x 的增大而减小, 故 C 错误;反比例函数的图象总是关于原点成中心对 称的,故 D 正确.故选 D.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
3.已知点(-1,y1),(2,y2),(3,y3)在反比例函 -k2-1 数 y= x 的图象上.下列结论中正确的是( B A.y1>y2>y3 C.y3>y1>y2 B.y1>y3>y2 D.y2>y3>y1 )
考点知识梳理
中考典例精析
基础巩固训练
考点知识梳理
中考典例精析
基础巩固训练
考点训练
方法总结 k 因为反比例函数 y= k 是常数,k≠0中的 k 有正、 x 负之分,所以在利用解析式求矩形或三角形的面积时, 都应加上绝对值符号;已知矩形或三角形的面积求反比 例函数的解析式或 k 的值时,要根据函数图象所在的象 限确定 k 的正负.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
解法三:性质法.∵k= 6> 0,∴函数图象在第一、 三象限, ∵ A(1, y1), B(2, y2), C(- 3, y3), ∴点 A, B 在第一象限,点 C 在第三象限,∴y3 最小,又 ∵k= 6 > 0,在每个象限内,y 随 x 的增大而减小,1< 2,∴ y1 > y2, ∴y3< y2< y1.故选 D. 【答案】 D
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点五
反比例函数的应用
解决反比例函数的实际问题时,要先确定函数解 析式,再利用图象找出解决问题的方案,要特别注意 自变量的取值范围 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点一
反比例函数的性质
m+2 例 1 (2013· 衢州)若函数 y= x 的图象在其所在的 每一象限内,函数值 y 随自变量 x 的增大而增大,则 m 的取值范围是( A.m<-2 C. m>-2 ) B.m<0 D.m>0
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠ 0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
k y= (k 是常数, x k≠0)
k>0
k<0
图
象
考点知识梳理
中考典例精析
基础巩固训练
考点训练
k y=x(k 是常数, k≠0) 所在象限
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点五
反比例函数的应用
例 5 (2013· 益阳 )我市某蔬菜生产基地在气温较低 时, 用装有恒温系统的大棚栽培一种在自然光照且温度 为 18 ℃的条件下生长最快的新品种.下图是某天恒温 系统从开启到关闭及关闭后,大棚内温度 y(℃ )随时间 k x(时)变化的函数图象,其中 BC 段是双曲线 y= 的一 x 部分.请根据图中信息解答下列问题:
考点知识梳理 中考典例精析 基础巩固训练 考点训练
考点四
反比例函数系数k的几何意义 k 反比例函数 y=x(k≠0)中 k 的几何意义:由双曲
k 线 y=x(k≠0)上任意一点向两坐标轴作垂线, 两垂线与 坐标轴围成的矩形的面积为 |k| .